2.2.1对数与对数运算(第二课时)公开课

合集下载

学年高中数学第二章基本初等函数Ⅰ2.2对数函数2.2.1第2课时对数运算课件新人教A版必修.ppt

学年高中数学第二章基本初等函数Ⅰ2.2对数函数2.2.1第2课时对数运算课件新人教A版必修.ppt

3.logaMn= nlogaM
(n∈R).
二、对数换底公式 logab=llooggccba(a>0,且 a≠1,b>0,c>0,且 c≠1); 特别地:logab·logba= 1 (a>0,且 a≠1,b>0,且 b≠1).
[双基自测]
1.lg 8+3lg 5 的值为( )
A.-3
B.-1
第 2 课时 对数运算
考纲定位
重难突破
1.掌握对数的运算性质. 重点:对数的运算性质.
2.能熟练运用对数的运算性质进行化 难点:换底公式的应用.
简求值.
01 课前 自主梳理 02 课堂 合作探究 03 课后 巩固提升
课时作业
[自主梳理]
一、对数的运算性质
如果 a>0,且 a≠1,M >0,N>0,那么: 1.loga(M·N)= logaM+logaN . 2.logaMN=logaM-logaN .
b=log510=lg15,
∴1a+1b=lg 2+lg 5=1. 答案:1
4.计算下列各式的值.
(1)12lg3429-lg 4+lg 245;
(2)lg 52+23lg 8+lg 5·lg 20+(lg 2)2.
解析:(1)原式=lg472-lg 4+lg7
5=lg4
2×7 7×4
5=lg(

忽略对数的限制条件导致错误
[典例] 若 lg(x-y)+lg(x+2y)=lg 2+lg x+lg y,求xy的值. [错解] 因为 lg(x-y)+lg(x+2y)=lg[(x-y)(x+2y)]=lg(2xy), 所以(x-y)(x+2y)=2xy,即 x2-xy-2y2=0,

课件2:2.2.1 第2课时 对数的运算

课件2:2.2.1 第2课时 对数的运算
2.2.1 对数与对数运算 第2课时 对数的运算
自学导引
1.对数的运算性质 如果 a>0,a≠1,M>0,N>0,那么, (1)loga(MN)=_l_o_g_aM__+__l_o_g_aN___; (2)logaMN =__lo_g_a_M_-__l_o_g_a_N_; (3)logaMn=____n_lo_g_a_M______(n∈R).
3.对于多重对数符号对数的化简,应从内向外逐层化简 求值.
4.要充分运用“1”的对数等于 0,底的对数等于“1”等对 数的运算性质.
5.两个常用的推论: (1)logab·logba=1(a,b>0 且均不为 1); (2)logambn=mn logab(a,b>0 且均不为 1,m≠0).
本节内容结束 更多精彩内容请登录:
=2(log214密 因忽略真数大于0而出错
【例 4】 已知 lg x+lg y=2lg (x-2y),求 错解:因为 lg x+lg y=2lg(x-2y),
xy的值.
所以 xy=(x-2y)2,即 x2-5xy+4y2=0,
所以 x=y 或 x=4y,即xy=1 或xy=4,
解:(1)lg 14-2lg73+lg 7-lg 18=lg (2×7)-2(lg 7-lg 3)+lg 7 -lg(32×2)=lg 2+lg 7-2lg 7+2lg 3+lg 7-2lg 3-lg 2=0.
(3)原式=2lg 5+2lg 2+lg 5(2lg 2+lg 5)+(lg 2)2=2lg 10+ (lg 5+lg 2)2=2+(lg 10)2=2+1=3.
x,得
x=llooggccba.
∵x=logab,
∴logab=llooggccba.

2.2.1 第二课时 对数的运算课件人教新课标

2.2.1 第二课时 对数的运算课件人教新课标

原式= lg(3 95 272 5 3 2 ) = lg 3 5 = 11 .
lg 81
lg 3 5
27
(2)(lg
5)2+lg
2
lg
50+
1 1
22
log 2
5
;
(3) log ( 6 4 2 - 6 4 2 ). 2
解:(2)原式=(lg 5)2+lg 2(lg 5+1)+21· 2log2 5 =lg 5(lg 5+lg 2)+lg 2+2 5 =1+2 5 . (3)因为 6 4 2 = (2 2)2 =2+ 2 ,
2
方法技能 (1)本题主要考查对数式的化简与计算.解决这类问题一般有两种 思路:一是将式中真数的积、商、幂、方根运用对数的运算性质将它们化为 对数的和、差、积、商,然后化简求值;二是将式中对数的和、差、积、商逆 用对数的运算性质化为真数的积、商、幂、方根,然后化简求值. (2)对数计算问题中,涉及lg 2,lg 5时,常利用lg 2+lg 5=1及lg 2=1-lg 5, lg 5=1-lg 2等解题.
100
100
点击进入 课时作业
所以 1 =logka, 1 =logkb, 1 =logkc.
x
y
z
所以 1 + 1 + 1 =logka+logkb+logkc=logk(abc)=0.所以 abc=1. xyz
题型三 与对数有关的方程问题 【例3】 解方程: (1)log5(2x+1)=log5(x2-2);(2)(lg x)2+lg x3-10=0.
log2 4 log2 8

高中数学人教版必修1课件:2.2.1对数与对数运算运算性质

高中数学人教版必修1课件:2.2.1对数与对数运算运算性质
复习回顾
1.定义:一般地,如果 a x N a 0, a 1
那么数 x叫做 以a为底 N的对数,记作 loga N x
a叫做对数的底数,N叫做真数。
2.对数的基本性质:
① 零和负数没有对数. ② loga1= 0 ③ logaa = 1
3.对数恒等式:aloga N N
2.2.1对数与对数运算(2)
(2)
log M aN
loga M
loga N;
ቤተ መጻሕፍቲ ባይዱ两数商的对数,等于对数的差;
(3) loga M n n loga M (n R).
幂的对数等于幂指数乘以底数的对数.
例1 用logax,logay,logaz表示下列各式:
(1)
xy loga z
;
(2)
loga
x2
3
y. z
解 : 1原式 loga xy loga z
对数运算
学习目标:
1.掌握对数的运算性质。 2.能熟练运用运算性质解题。
重、难点:
对数的运算性质的理解与应用。
(自主学习P64~65,记忆对数运算性质) 对数运算性质:
如果a>0,且a≠1,M>0,N>0 ,那么:
(1) loga (M N ) loga M loga N;
两数积的对数,等于对数的和;
loga x loga y loga z
2原式 loga x2 y loga 3 z
1
loga x2 loga y 2 loga 3 z
2 loga
x
1 2
loga
y
1 3
log
a
z
例2 求下列各式的值:
(1)log2(47×25); (2) lg 5 100 ;

教学设计3:2.2.1 第2课时 对数的运算

教学设计3:2.2.1 第2课时 对数的运算

2.2.1 第2课时对数的运算(一)教学目标1.知识与技能:(1)掌握换底公式,会用换底公式将一般的对数化为常用对数或自然对数,并能进行一些简单的化简和证明.(2)能将一些生活实际问题转化为对数问题并加以解答.2.过程与方法:(1)结合实例引导学生探究换底公式,并通过换底公式的应用,使学生体会化归与转化的数学思想. (2)通过师生之间、学生与学生之间互相交流探讨,培养学生学会共同学习的能力.(3)通过应用对数知识解决实际问题,帮助学生确立科学思想,进一步认识数学在现实生活、生产中的重要作用.3.情感、态度与价值观(1)通过探究换底公式的概念,使学生体会知识之间的有机联系,感受数学的整体性,激发学生的学习兴趣,培养学生严谨的科学精神.(2)在教学过程中,通过学生的相互交流,培养学生灵活运用换底公式的能力,增强学生数学交流能力,同时培养学生倾听并接受别人意见的优良品质.(二)教学重点、难点1.教学重点:(1)换底公式及其应用.(2)对数的应用问题.2.教学难点:换底公式的灵活应用.(三)教学方法启发引导式通过实例研究引出换底公式,既明确学习换底公式的必要性,同时也在公式推导中应用对数的概念和对数的运算性质,在教学中可以根据学生的不同基础适当地增加具体实例,便于学生理解换底公式的本质,培养学生从具体的实例中抽象出一般公式的能力.利用换底公式“化异为同”是解决有关对数问题的基本思想方法,它在求值或恒等变形中起着重要作用,在解题过程中应注意:(1)针对具体问题,选择恰当的底数;(2)注意换底公式与对数运算性质结合使用;(3)换底公式的正用与逆用.(四)教学过程课后作业作业:习题2.2 学生独立完成巩固新知提升能力。

2.2.1对数与对数运算优秀公开课课件(经典课件)

2.2.1对数与对数运算优秀公开课课件(经典课件)
思考4:如果a>0,且a≠1,M>0,则 loga n M 等于什么?
新课教学
Office组件之word2007
证明:
(3)设 log a M p,
由对数的定义可以得:M a p ,
∴ M n anp log a M n np
即证得
log a M n n log a M(n R)
归纳小结:
3
3
2 log3 3
2
范例
(3) log 2 3 log3 7 log7 8 解: (3) log 2 3 log3 7 log7 8
lg 3 lg 7 lg 8 lg 2 lg 3 lg 7
lg 23
lg 2 3lg 2
lg 2
=3
Office组件之word2007
讲解范例
Office组件之word2007
例5计算: (1) lg14 2lg 7 lg 7 lg18
解法一:
3 解法二:
lg14 2 lg 7 lg 7 lg18 3
lg14 lg( 7)2 lg 7 lg18 3
lg
(
14 7 7)2 18
3
lg1 0
lg14 2 lg 7 lg 7 lg18 3
lg(2 7) 2 lg 7 3
lg 7 lg(2 32 )
lg 2 lg 7 2(lg 7 lg 3) lg 7 (lg 2 2 lg 3)
0
讲解范例
Office组件之word2007
例5计算: (2) lg 243
lg 9
(3) lg 27 lg 8 3lg 10 lg1.2
解:
lg 243 lg 35 (2) lg 9 lg 32

DL教育 最新高考 高中数学课件(可改)第二章 2.2.1 第2课时对数的运算

DL教育 最新高考 高中数学课件(可改)第二章 2.2.1 第2课时对数的运算
● (1)根据题意,设出变量;
● (2)分析问题中的变量,并根据各个不等关系列出常量与变量x,y之间的不等式;
● (3)把各个不等式连同变量x,y有意义的实际范围合在一起,组成不等式组。
● 高三数学复习知识点2 ● 一、充分条件和必要条件 ● 当命题“若A则B”为真时,A称为B的充分条件,B称为A的必要条件。 ● 二、充分条件、必要条件的常用判断法 ● 1.定义法:判断B是A的条件,实际上就是判断B=>A或者A=>B是否成立,只要把题目中所给的条件按逻辑关系画出箭头示意图,再利用定义判断即可 ● 2.转换法:当所给命题的充要条件不易判断时,可对命题进行等价装换,例如改用其逆否命题进行判断。 ● 3.集合法 ● 在命题的条件和结论间的关系判断有困难时,可从集合的角度考虑,记条件p、q对应的集合分别为A、B,则: ● 若A?B,则p是q的充分条件。 ● 若A?B,则p是q的必要条件。 ● 若A=B,则p是q的充要条件。 ● 若A?B,且B?A,则p是q的既不充分也不必要条件。 ● 三、知识扩展 ● 1.四种命题反映出命题之间的内在联系,要注意结合实际问题,理解其关系(尤其是两种等价关系)的产生过程,关于逆命题、否命题与逆否命题,也可以叙述为: ● (1)交换命题的条件和结论,所得的新命题就是原来命题的逆命题; ● (2)同时否定命题的条件和结论,所得的新命题就是原来的否命题; ● (3)交换命题的条件和结论,并且同时否定,所得的新命题就是原命题的逆否命题。 ● 2.由于“充分条件与必要条件”是四种命题的关系的深化,他们之间存在这密切的联系,故在判断命题的条件的充要性时,可考虑“正难则反”的原则,即在正面判断较难时,可转
单击输入您的封面副标题
D&L精品教育
第二章 2.2.1 对数与对数运算

课件11:2.2.1 第2课时 对数的运算

课件11:2.2.1  第2课时  对数的运算

[规律总结] 灵活运用对数运算法则进行对数运算,要注意法则 的正用和逆用.在化简变形的过程中,要善于观察、比较和分析, 从而选择快捷、有效的运算方案进行对数运算.
跟踪练习
求下列各式的值:
(1)log318-log36; (2)log 1 3+2log 1 2;
12
12
(3)lg2 8+4 3+log2 8-4 3;
于是 log3645=lloogg11883465=lloogg1188
9×5 18×2
=log11+89+loglo18g2185
=lo1g+189l+ogl1o81g98185=log21-89+loglo18g9185=a2+ -ba.
误区警示
已知 lgx+lgy=2lg(x-2y),求 log 2yx的值.
[解] (1)原式=2lg5+2lg2+2+3=2(lg5+lg2)+5=7. (2)原式=(log23+lloogg2298)(log322+lloogg3389+log32) =(log23+23log23)(2log32+32log32+log32) =(53log23)(92log32)=125.
[解析] log38-2log36=log323-2(log32+log33)=3log32-2(log32+1) =3a-2(a+1)=a-2.故选A.
[答案] A
4.2log525+3log264-8ln1=________.
[解析] 原式=2×2+3log226-8·ln1=4+3×6-0=22.
4.计算:log89·log332=________.
[解析] 运用换底公式,得 log89·log332=llgg98·llgg332=23llgg32·5llgg32=130.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档