数学知识点人教版数学八下《第20章数据的分析》word复习教案-总结
人教版八年级下册 第20章 数据的分析 整章复习讲义

第20章数据的分析整章复习知识点1 算术平均数1.一组数据2,3,6,8,11的平均数是.2.西安市某一周的日最高气温(单位:℃)分别为35,33,36,33,32,32,37,这周的日最高气温的平均数是℃.3.2015年至2019年某城市居民的汽车拥有量依次为11,13,15,19,x(单位:万辆),若这五个数的平均数为16,则x的值为.4.已知1,2,3,4,x1,x2,x3的平均数是8,那么x1+x2+x3的值为.知识点2 加权平均数1.某学习小组共有学生5人,在一次数学测验中,有2人得85分,2人得90分,1人得70分,该学习小组的平均分为分.2.某水果店销售11元,18元,24元三种价格的水果,根据水果店一个月这三种水果销售量的统计图(如图),可计算出该店当月销售出水果的平均价格是元.3.某招聘考试分笔试和面试两种,其中笔试按60%、面试按40%计算加权平均数作为总成绩.小明笔试成绩为90分,面试成绩为85分,那么小明的总成绩为分.4.某市号召居民节约用水,为了解居民用水情况,随机抽查了20户家庭某月的用水量,结果如下表:则这20户家庭的该月平均用水量为吨.5.一种什锦糖由价格12,16,20(单位:元/千克)的三个品种的糖果混合而成,三种糖果的比例为5∶2∶3,则什锦糖的价格应为元/千克.知识点3中位数与众数1.某8种食品所含的热量值分别为120,134,120,119, 126,120,118,124,则这组数据的众数为.2.五名学生一分钟跳绳的次数分别为189,195,163,184,201,该组数据的中位数是.3.已知一组数据4,x,5,y,7,9的平均数为6,众数为5,则这组数据的中位数是.4.一组数据1,3,2,7,x,2,3的平均数是3,则该组数据的众数为.5.广州市某中学组织数学速算比赛,5个班级代表队的正确答题数如图,则这5个正确答题数所组成的一组数据的中位数是.6.2018年国家将扩大公共场所免费上网范围,某小区响应号召调查小区居民上网费用情况,随机抽查了20户家庭的月上网费用,结果如下表:.知识点4方差的计算及应用1.某排球队6名场上队员的身高(单位:cm)是180,184, 188,190,192,194.现用一名身高为186 cm的队员换下场上身高为192 cm的队员,与换人前相比,场上队员的身高()A.平均数变小,方差变小B.平均数变小,方差变大C.平均数变大,方差变小D.平均数变大,方差变大2.从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是s2甲=1.5,s2乙=2.6,s2丙=3.5,s2丁=3.68,你认为派谁去参赛更合适()A.甲B.乙C.丙D.丁3.样本数据1,2,3,4,5,则这个样本的方差是.4.甲、乙两名运动员进行了5次百米赛跑测试,两人的平均成绩都是13.3秒,而s2甲=3.7,s2乙=6.25,则两人中成绩较稳定的是.5.市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表(单位:环):(2)分别计算甲、乙六次测试成绩的方差;(3)根据(1),(2)计算的结果,你认为推荐谁参加省比赛更合适,请说明理由.6.为了从甲、乙两名学生中选拔一人参加今年六月份的全县中学生数学竞赛,每个月对他们的学习水平进行一次测验,如图是两人赛前5次测验成绩的折线统计图.(1)分别求出甲、乙两名学生5次测验成绩的平均数及方差;(2)如果你是他们的辅导教师,应选派哪一名学生参加这次数学竞赛.请结合所学统计知识说明理由.知识点5数据的分析综合题1.学校准备从甲、乙两位选手中选择一位选手代表学校参加所在地区的汉字听写大赛,学校对两位选手从表达能力、阅读理解、综合素质和汉字听写四个方面做了测试,他们各自的成绩(百分制)如下表:从他们的这一成绩看,应选派谁?(2)如果表达能力、阅读理解、综合素质和汉字听写分别赋予它们2,1,3和4的权,请分别计算两名选手的平均成绩,从他们的这一成绩看,应选派谁?2.甲、乙两人在5次打靶测试中命中的环数如下:甲:88789乙:597109(1)填写下表:(2)教练根据这5次成绩,选择甲参加射击比赛,教练的理由是什么?(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差(填“变大”“变小”或“不变”).3.某校要从八年级一班和二班中各选取10名女同学组成礼仪队,选取的两班女生的身高如下:(单位:厘米)一班:168167170165168166171168167170二班:165167169170165168170171168167(1)补充完成下面的统计分析表:(2)请选一个合适的统计量作为选择标准,说明哪一个班能被选取.4.某校八年级学生开展踢毽子比赛活动,每班派5名同学参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀,如下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个).统计发现两班总分相等,此时有同学建议,可以通过考查数据中的其他信息作为参考,请你解答下列问题:(1)计算两班的优秀率;(2)求两班比赛数据的中位数;(3)两班比赛数据的方差哪一个小?(4)根椐以上三条信息,你认为应该把冠军奖状发给哪一个班?简述理由.第二十章数据的分析◆知识点1算术平均数1.62.343.224.46◆知识点2加权平均数1.842.15.33.884.5.55.15.2◆知识点3中位数与众数1.1202.1893.5.54.35.156.100元,105元 ◆知识点4 方差的计算及应用 1.A 2.A 3.2 4.甲5.解:(1)甲的平均成绩是(10+8+9+8+10+9)÷6=9, 乙的平均成绩是(10+7+10+10+9+8)÷6=9.(2)甲的方差=16×[(10-9)2+(8-9)2+(9-9)2+(8-9)2+(10-9)2+(9-9)2]=23. 乙的方差=16×[(10-9)2+(7-9)2+(10-9)2+(10-9)2+(9-9)2+(8-9)2]=43. (3)推荐甲参加省比赛更合适,理由如下:两人的平均成绩相等,说明实力相当;但甲的六次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加比赛更合适.6.解:(1)根据折线图的数据可得x 甲=15×(65+80+80+85+90)=80, x 乙=1×(70+90+85+75+80)=80,s 甲2=15×(152+0+0+52+102)=70,s 乙2=15×(102+102+52+52+0)=50.(2)分析可得甲、乙两人成绩的平均数相等,但乙的成绩方差小,故比较稳定,选乙参加. ◆知识点5 数据的分析综合题 1.解:(1)x 乙=(73+80+82+83)÷4=79.5,∵80.25>79.5,∴应选派甲.(2)x 甲=(85×2+78×1+85×3+73×4)÷(2+1+3+4)=79.5, x 乙=(73×2+80×1+82×3+83×4)÷(2+1+3+4)=80.4,∵79.5<80.4,∴应选派乙.2.解:(1)甲:8 乙:8 9(2)因为他们的平均数相等,而甲的成绩的方差小,发挥比较稳定,所以选择甲参加射击比赛. (3)变小3.解:(1)一班:3.2 二班:168 (2)选择方差做标准,∵一班方差<二班方差,∴一班能被选取.4.解:(1)甲班的优秀率是35×100%=60%;乙班的优秀率是25×100%=40%.(2)甲班5名学生比赛成绩的中位数为100个; 乙班5名学生成绩的中位数为97个.(3)x 甲=15×500=100(个),x 乙=15×500=100(个);s 甲2=15×[(100-100)2+(98-100)2+(110-100)2+(89-100)2+(103-100)2]=46.8,s 乙2=15×[(89-100)2+(100-100)2+(95-100)2+(119-100)2+(97-100)2]=103.2.(4)因为甲班5人比赛成绩的优秀率比乙班高、中位数比乙班大、方差比乙班小,应该把冠军奖状发给甲班.11/ 11。
人教版八年级数学下册优秀教案第二十章数据的分析复习

第二十章数据的分析教学目标【知识与技能】:了解总体、个体、样本等概念,理解统计的基本思想是用样本的特征去估计总体的特征,会用平均数、中位数、众数、极差、方差进行数据处理。
【过程与方法】:经历探索数据的收集、整理、分析过程,在活动中发展学生的统计意识和数据处理的方法与能力。
【情感态度与价值观】:培养合作交流的意识与能力,提高解决简单的实际问题能力,形成一定的数据意识和解决问题的能力,体会特征数据的应用价值。
教学重点与难点【重点】:应用样本数字特征估计总体的相应特征,处理实际问题中的统计内容。
【难点】:方差概念的理解和应用。
教学过程第一步:回顾交流、系统跃进知识线索:平均数中位数众数极差方差集中趋势波动大小数字特征应用本章思想:平均数是衡量样本(求一组数据)和总体平均水平的特征数,通常用样本的平均数去估计总体的平均数。
(定义法)且f 1+f 2+……+f k =n (加权法)当一组数据中个别数据与其它数据差异较大时,可求出其中位数来观察集中趋势;理解当一组数据中不少数据多次重复出现时,可通过众数观察其集中趋势,理解另一类是反映数据波动大小(即离散趋势)的特征数——极差、方差。
设有n 个数据n x x x ,,, 21,各数据与它们的平均数的差的平方分别是2221)()(x x x x --,,…,,, 2)(x x n -我们用它们的平均数,即用])()()[(1222212x x x x x x nx n -++-+-=第二步:联系实际 主动探索问题1、已知;某学校六年级学生的身高的一个样本如下(单位:cm ) 158 162 146 151 153 168 159 154 167 159 167 166 159 154 160 162 164 160 157 149 (1)试填写下面的频数分布表,并绘制相应的频数颁布直方图(2)估算这个年段学生的平均身高。
(3)求出这个年段学生的身高的极差。
问题2:在一次中学生田径运动会上,参加男子跳高的23名运动员的成绩如下表所示:(单位:米)求出它们的跳高成绩的平均数、众数、中位数。
人教版八年级数学下册第二十章数据的分析小结(教案)

-方差、标准差的计算与应用:这两个指标是描述数据离散程度的关键,要使学生理解其在实际中的应用。
-方差:重点讲解方差计算公式,强调每个数据值与平均数差的平方在方差计算中的重要性。
-标准差:介绍标准差是方差的平方根,使学生理解标准差在数据标准化描述中的作用。
1.培养学生运用数据分析解决问题的能力,增强数据处理和数学建模的核心素养。
2.提高学生运用平均数、中位数、众数等描述数据集中趋势的能力,理解并运用方差、标准差描述数据离散程度。
3.培养学生制作频数分布表、绘制频数分布直方图的能力,提升几何直观和数据分析素养。
4.引导学生在实际问题中发现数学规律,培养逻辑思维和问题解决能力,增强数学应用意识。
五、教学反思
在今天的教学中,我尝试通过生活中的实例导入新课,希望以此激发学生对数据分析的兴趣。在讲解平均数、中位数、众数等基本概念时,我注意引导学生理解这些指标在描述数据集中趋势时的作用。同时,通过具体案例的分析,让学生感受到数据分析在实际中的应用价值。
在新课讲授过程中,我发现学生在理解方差、标准差等概念时存在一定难度。为了突破这个难点,我采用了举例和比较的方法,帮助他们理解这些指标在描述数据离散程度方面的意义。在实践活动中,学生们分组讨论并进行了实验操作,这有助于巩固他们对数据分析方法的理解。
3.重点难点解析:在讲授过程中,我会特别强调平均数、中位数、众数的计算方法和应用场景。对于难点部分,如方差的计算,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与数据分析相关的实际问题,如“如何选择合适的统计指标来描述班级同学的体育成绩”。
八下 第二十章《数据的分析》知识点教案、习题讲解分析教案与复习教案 【人教版初中数学】

第二十章《数据的分析》《知识点教案》课标要求:本章主要研究平均数(主要是加权平均数)、中位数、众数以及极差、方差等统计量的统计意义,学习如何利用这些统计量分析数据的集中趋势和离散情况,并通过研究如何用样本的平均数和方差估计总体的平均数和方差,进一步体会用样本估计总体的思想.单元\章节内容分析:全章共分三节:20.1数据的集中趋势.本节是研究代表数据集中趋势的统计量:平均数、中位数和众数。
本节中,教科书首先给出一个实际问题,通过分析解决这个实际问题,引进加权平均数的概念。
为了突出“权”的作用和意义,教科书通过两个例题,从不同方面体现“权”的作用.接下去,教科书对加权平均数进行扩展,包括如何将算数平均数与加权平均数统一起来,如何求区间分组的数据的加权平均数,如何利用计算器的统计功能求平均数,如何利用样本平均数估计总体平均数的问题等.对于中位数和众数,教科书通过几个具体实例,研究了它们的统计意义.在本节最后,教科书通过一个具体实例,研究了综合利用平均数、中位数和众数解决问题的例子,并对这三种统计量进行了概括总结,突出了它们各自的统计意义和各自的特征.20.2数据的波动本节是研究刻画数据波动程度的统计量:极差和方差.教科书首先利用温差的例子研究了极差的统计意义.方差是统计中常用的一种刻画数据离散程度的统计量,教科书对方差进行了比较详细的研究.首先通过一个实际问题提出对两组数据的波动情况的研究,并画出散点图直观地反映数据的波动情况,在此基础上,教科书引进了利用方差刻画数据离散程度的方法,介绍了方差的公式,并从方差公式的结构上分析了方差是如何刻画数据的波动的.随后,又介绍了利用计算器的统计功能求方差的方法.本节最后,教科书利用所学知识解决本章前言中提出的问题,并研究了用样本方差估计总体方差的问题.20.3课题学习体质健康测试中的数据分析.教科书在最后一节安排了一个具有一定综合性和实践性的“课题学习”.这个“课题学习”选用了与学生生活联系密切的体质健康问题.由于本章是统计部分的最后一章,因此这个课题学习的综合性比前面两章统计中的课题学习更强。
八年级数学下册第二十章《数据的分析》小结与复习教案(新版)新人教版

信息,但它受极端值的影响较大;它
的 大小与一组数据中的每个数据均有关系,任何一个数据的变动都会相应引起
的变动 .
⑵一组 数据中出现最
的数据称为这组数据的众数;众数是当一组数据中某一数据重复出现较多时,人
们往往关心的一个量,众数不受极端值的影响。
(3) 将一组数据按照由小到大 ( 或由大到小的 ) 的顺序排列,如果数据的个数是奇数,则处于中间位置的数
第二十章《数据的分析》
教案目标数、中位数、众数和方差的统计
意义,能根据问题的实际需要选择合适的量表示数
据的集中趋势和波动程度;
3.经历数据处理的基本过程,体会用样本估计总体的思想,感受统计在生活和生
产中的作用.
学习重点:分析数据的集中趋势和波动程度,体会样本估计总体的思想.
1200 人,图 20-10-1
是该校各年级学生人数.比.例.. 分布的扇形统计图,图 20-10-2 是该校学生人均.存.款.. 情况的条形统计图.
( 1)九年级学生人均存款多少元?
( 2)该校学生人均存款多少元?
( 3)已知银行一年期定期存款的年利率是 2.25% (“爱心储蓄”免收利息税) ,且每 351 元能提供给一位
).
A . 12 B . 18 C . 14 D . 12
2、衡量样本和总体的波动大小的特征数是(
)
A .平均数 B .方差 C .众数 D .中位数
3、一组数据按从小到大排列为 1,2,4,x,6,9 这组数据的中位数为 5,?那么这组数据的众数为 ( )
A . 4 B . 5 C .5.5 D .6
_________.
3、若 10 个数的平均数是 3,方差是 4,则将这 10 个数都扩大 1 0 倍,则这组数据的平均数是
新人教版 八年级数学下册 第20章 数据的分析 单元教案合集(含章节小结与复习)

20.1.1 数据的集中趋势一、教学目标1. 理解数据的权和加权平均数的概念;2.掌握加权平均数的计算方法。
3. 初步经历数据的收集与处理过程,发展学生初步的统计意识和数据处理能力。
二、课时安排1课时三、教学重点会求一组数据的算术平均数和加权平均数。
四、教学难点理解加权平均数的概念,利用加权平均数解决实际问题。
五、教学过程(一)新课导入【过渡】在小学的时候,我们就接触过平均数这个概念。
而我们日常生活中,也经常能遇到这类问题,比如我们在每次考试结束后要进行横向对比,看本班级在年级中的所排名次如何,自己在本班中排名第几,这就需要知道各科分数这些数据,并要对数据进行处理之后才能得出结论,现在,我们就来回忆一下平均数。
1、如何求一组数据的平均数?2、七位裁判给某体操运动员打的分数分别为:7.8,8.1,9.5,7.4,8.4,6.4,8.3.如果去掉一个最高分,去掉一个最低分,那么,这位运动员平均得分是多少?(学生回答)【过渡】刚刚的问题呢,都是比较简单的问题,今天我们就来学习一下更进一步的关于平均数的问题。
(二)讲授新课【过渡】在正式的对新课进行讲解之前,我们先通过两个简单的问题,来检查一下同学们的预习情况。
【预习反馈】1、小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为95分、80分、90分,若依次按照60%、30%、10%确定成绩,则小王的成绩是()A.85.5分B.90分C.92分D.265分2、调查某一路口某时段的汽车流量,记录了30天同一时段通过该路口的汽车辆数,其中有2天是256辆,2天是285辆,23天是899辆,3天是447辆.那么这30天在该时段通过该路口的汽车平均辆数为()A.125辆B.320辆C.770辆D.900辆【过渡】大家刚刚回答的都很正确,看来,大家预习的都不错。
那么现在,就由我带领大家再来认识加权平均数。
加权平均数:【过渡】通过之前的学习,我们知道了平均数可以反映一组数据的平均水平,那么,在实际问题中,我们有该如何理解平均数的统计意义呢?课本问题1。
八年级数学下册 第二十章 数据的分析小结与复习教案 新版新人教版
第二十章 数据的分析【教学目的】 学问与技能1.复习稳固平均数、中位数、众数、极差、方差的概念与意义.2.综合运用上述学问复习解决详细问题. 过程与方法以小组探讨的形式对本章的学问进展系统梳理,总结出本章的学问点. 情感、看法与价值观归纳解决详细问题的一般过程积累数学活动的阅历,开展归纳与概括的实力. 【教学重难点】重点:用方差衡量一组数据的平均程度与波动状况.难点:利用一组数据的五组量(3个平均量和2个波动量)做出决策. 【导学过程】 【学问构造】 本章学问构造:1.加权平均数:一般说来,假如在n 个数中,1x 出现1w 次,2x 出现 2w 次,…,kx 出现k w 次,则 x ,其中1w 、2w ……k w 叫 。
2.中位数:将一组数据 排列,处于 位置的数.3.众数:一组数据中 的数据.4.极差: 的差。
5.方差:表示一组数据偏离 的状况,标准差是方差的算术平方根. 【经典例题】1.数学期末总评成果由作业分数、课堂表现分数、期末考分数三局部组成,并按3︰3︰4的比例确定.已知小明的作业分数90 分,课堂表现分数85 分, 期末考分数80 分,则他的总评成果为________.2. 数据2,0,-2,2,4,2,-1 的平均数是_________,中位数是_________,众数是_________, 方差是_________.3.某米店经营某种品牌的大米,该店记录了一周中不同包装(10 kg ,20 kg ,50 kg )的大米的销售量(单位:袋)如下:10 kg 装100袋;20 kg 装220袋;50 kg 装80袋。
假如每500 g 大米的进价和销价都一样,则他最应当关注的是这些销售数据(袋数)中的( ). A.平均数 B.中位数 C.众数 D.最大值4. 甲、乙两人在一样的条件下,各射靶10次,经过计算:甲、乙的平均数均是7,甲的方差是1.2,乙的方差是5.8,下列说法中不正确的是( ).数据的代表数据的波动平均数 中位数 众 数极差 方差用样本估计总体用样本平均数估计总体平均数 用样本方差估计总体方差A.甲、乙射中的总环数一样B.甲的成果稳定C.乙的成果波动较大D.甲、乙的众数一样5.某公司聘请职员,对甲、乙两位候选人进展了面试和笔试,面试包括形体和口才,笔试中包括专业程度和创新实力考察,他们的成果(百分制)如下表候选人面试笔试形体口才专业程度创新实力甲86 90 96 92乙92 88 95 93(1)若公司依据经营性质和岗位要求认为:形体、口才、专业程度、创新实力依据5:5:4:6的比确定,请计算甲、乙两人各自的平均成果,看看谁将被录用?(2)若公司依据经营性质和岗位要求认为:面试成果中形体占5%,口才占30%,笔试成果中专业程度点35%,创新实力点30%,那么你认为该公司会录用谁?【学问梳理】1.请你谈一谈本章学习的主要内容.2.对“如何选择适当的统计量对数据进展分析?”你有什么样的心得体会?3.请结合实例谈谈统计调查的根本步骤和留意点.【随堂练习】1.已知一组数据为0,1,5,x,7,且这组数据的中位数是5,那么x的取值为()A. x=5B. x<5C. x≥5D. x≠52.甲乙丙丁四支足球队在全国甲级联赛中进球数分别为:9,9,x,7,若这组数据的众数与平均数恰好相等,则这组数据的中位数是( )A.10 B.9 C.8 D.73.某生在一次考试中,语文、数学、英语三门学科的平均分为80分,物理、政治两科的平均分为85,则该生这5门学科的平均分为。
人教版八年级数学下册《20章 数据的分析 小结 构建知识体系》教案_16
《数据的分析》复习教案教学目标:引导学生构建本章知识网络;掌握平均数、众数、中位数作为数据代表的优势与不足,能根据实际情况选择数据的代表;会计算方差并根据方差的大小判断数据的波动程度;培养学生总结归纳的能力,渗透样本估计总体的思想.教学重点:各个数据代表及方差的计算,根据不同的数据代表对数据进行分析,样本估计总体. 教学难点:各个数据代表意义的理解及它们分别反映数据集中趋势时的优劣性. 教学方法:讲练结合、合作交流 教学过程 一、练习回顾1.某市在开展节约用水活动中,对某小区200户居民家庭用水情况进行统计分析,其中3月份比2月份节约用水情况如下表所示:请问:(1) 抽取的200户家庭节水量的平均数是______,中位数是______,众数是_______. (2) 根据以上数据,估计某市100万户居民家庭3月份比2月份的节水量是_________.2.小明和小亮在课外活动中,报名参加了短跑训练小组. 在近几次百米训练中,所测成绩如图所示,请根据图中 所示解答以下问题:(1) 根据图中信息,补全下面的左表格.(2) 分别计算成绩的平均数和方差,填入右表格. 若你是老师,将小明与小亮的成绩比较分析后, 将 分别给予他们怎样的建议?次数 1 2 3 4 5 小明 13.3 13.3 13.2 13.3 小亮13.213.413.113.3建议:二、系统提升节水量(m3) 1 1.5 2户数 20 120 60平均数方差 小明 小亮平均数数据的分析数据的集中趋势中位数众数数据的用样本估计总体将一组数据按由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处在中间位置的数为这组数据的中位数;如果数据的个数是偶数,则中间两个数的平均数为这组数据的中位数一组数据中出现次数最多的数据就是这组数据的众数用样本平均数估计总体平均数用样本方差估若n 个数的平均数是,则这n 个数据的方若n 个数x 1,x 2,…x n 的个数分别是w 1,w 2,…w n , 则叫做这n 个数的加权平均数nn n w w w w x w x w x +⋯+++⋯++212211三、综合应用,知识迁移例1:甲、乙两人在相同的条件下各射靶10次, 每次射靶的成绩如下表:(2) 请从下列五个不同的角度对这次测试结果进行分析:①从平均数和中位数相结合看;②从平均数和众数相结合看;③从平均数和方差相结合看;④从平均数和命中9环以上(包括9环)次数相结合看;⑤从10次射击两人命中环数的走势看.(3)假设你是甲、乙二人的教练,要选择一人参加射击比赛,根据(2) 的分析,你该如何选择?四、课堂练习,直面中考1. 小刚在“中国梦·我的梦”演讲比赛中,演讲内容、语言表达、演讲技能、形象礼仪四项得分依次为9.8,9.4,9.2,9.3. 若其综合得分按演讲内容50%、语言表达20%、演讲技能20%、形象礼仪10%的比例计算,则他的综合得分是_________.2. (2013•江西)下列数据是2013年3月7日6点公布的中国六大城市的空气污染指数情况:则这组数据的中位数和众数分别是( )A.164和163B.105和163C.105和164D.163和1643. (2013•成都)今年4月20日雅安市芦山县发生了7.0级的大地震,全川人民众志成城,抗震救灾.某班组织“捐零花钱,献爱心”活动,全班50名学生的捐款情况如图所示, 则本次捐款金额的众数是______元.4.(2017长沙)甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好是1.6米,方差分别是5.0,2.122==乙甲S S ,则在本次测试中, 同学的成绩更稳定(填“甲”或“乙”)5. (2013•重庆)某老师为了了解学生周末利用网络进行学习的时间,在所任教班级随机调查了10名学生,其统计数据如表:则这10名学生周末利用网络进行学习的平均时间是________小时.6.(2013•咸宁)跳远运动员李刚对训练效果进行测试,6次跳远的成绩如下:7.6,7.8,7.7,7.8,8.0,7.9(单位:m).这六次成绩的平均数为7.8,方差为 ,如果李刚再跳两次,成绩分别为7.7,7.9.则李刚这8次跳远成绩的方差_______.(填“变大”“不变”或“变小”)城市 北京 合肥 南京 哈尔滨 成都 南昌污染指数 342 163 165 45 227 163 时 间 (单位:小时) 4 3 2 1 0 人 数 2 4 2 1 17.(2013•扬州)为声援扬州“运河申遗”,某校举办了一次运河知识竞赛,满分10分,学生得分为整数,成绩达到6分以上(包括6分)为合格,达到9分以上(包含9分)为优秀.这次竞赛中甲、乙两组学生成绩分布的条形统计图如图所示.组别平均分中位数方差合格率优秀率甲组 6.7 3.41 90% 20%乙组7.5 1.69 80% 10%(2) 小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是____组的学生;(填“甲”或“乙”)(3) 甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你给出两条支持乙组同学观点的理由.五.实践验真知锻炼时间0 0.5 1 1.5 2 2.5 3 人数(2)分别计算全班同学锻炼时间的平均数,中位数和众数.(3)根据上述数据给同学们在体育锻炼方面提出合理建议.。
人教初中数学八下 第20章 数据的分析小结与复习教案 【经典教学设计合编】
第20章数据的分析主备人备课时间教出时间教案编号教学内容第20章小结与复习课型新授课时间分配教师讲授时间15min 学生活动时间25min教学目标情感态度价值观感受统计在生活和生产中的作用.知识能力1.会计算平均数、中位数、众数和方差;2.进一步理解平均数、中位数、众数和方差的统计意义,能根据问题的实际需要选择合适的量表示数据的集中趋势和波动程度.过程方法经历数据处理的基本过程,体会用样本估计总体的思想.教学重点分析数据的集中趋势和波动程度,体会样本估计总体的思想.教学难点分析数据的集中趋势和波动程度,体会样本估计总体的思想.教学资源教材,教参,备课组意见教法设计自主学习、启发引导本课重点解决问题分析数据的集中趋势和波动程度,体会样本估计总体的思想.本课学生所得课前准备学生预习准备预习课本,发现并标记问题教师教学准备研读教材、教参,分析学生学情教学后记年月日注:1.本页手写;2.“课型”栏填写新授课、练习课、活动课、复习课、等;3.其他栏均在授课前写好,“教学后记”栏在授课后写好。
教学过程(“三讲三不讲”:讲重点、难点,讲规律、拓展,讲易错、易漏、易混点;学生已会的不讲,学生自己能学会的不讲,讲了学生也不会的不讲)主备栏二次备课栏(手写)一、问题引入这是两种杨梅,我们关注杨梅甜度(糖度),如果我们在杨梅市场,怎样判断并做出选择?专业的杨梅质检员有检测杨梅糖度的仪器.质检员抽样调查各10 颗甲、乙两种杨梅的糖度,得到的结果分别如下(糖度越高,杨梅越甜):甲:10 11 11 12 12 13 13 13 14 15乙:10 10 11 11 11 12 12 13 14 16你对这两种杨梅的品质作何评价?二、想一想、理一理(1)本章我们学习了哪些统计的量?这些统计的量各有什么特点?怎样用它们做数据分析?(2)在数据分析时,我们是怎样运用样本估计总体的方法的?(3)统计一般分哪些步骤进行?请你说说本章学习的主要内容,并用合适的框图表示.数据收集—数据整理—数据描述—数据分析三、课堂练习练习1 数学期末总评成绩由作业分数、课堂表现分数、期末考分数三部分组成,并按3︰3︰4的比例确定.已知小明的作业分数90 分,课堂表现分数85 分,期末考分数80 分,则他的总评成绩为________.练习2 数据2,0,-2,2,4,2,-1 的平均数是_________,中位数是_________,众数是_________,方差是_________.练习3 某米店经营某种品牌的大米,该店记录了一周中不同包装(10 kg,20 kg,50 kg)的大米的销售量(单位:袋)如下:10 kg装100袋;20 kg装220袋;50 kg装80袋。
人教版八下数学第20章《数据的分析》复习教案+学案
人教版八下数学第20章《数据的分析》复习教案【思维导图】【教学目标】知识与技能目标了解平均数、众数、中位数、极差、方差有关概念,掌握平均数、方差的计算公式,会找一组数据的中位数、众数、极差,能进行计算和解决生产、生活中的有关问题.过程与方法目标能结合具体情境发现并提出问题,逐步具有观察、猜想、推理、归纳和合作学习能力.情感、态度与价值观目标通过创设问题情境,激发学生自主探求的热情和积极参与的意识;通过合作交流,培养学生团结协作、乐于助人的品质.【教学重点】掌握平均数、方差的计算公式,会找一组数据的中位数、众数、极差,能进行计算和解决生产、生活中的有关问题.【教学难点】选择合适的统计量表示数据的集中趋势.【教学准备】教师准备:教学中出示的例题和图片.学生准备:复习平均数、中位数、众数,并完成本节学案中的自主学习内容. 【知识梳理与建构】专题一平均数【专题分析】平均数的计算考查频率较高,题型以选择题、填空题为主,也涉及解答题,考查形式有:①直接给一组数据或表格中的数据求平均数;②一组数据中含有未知数,已知某个数据代表求其他数据代表.例1若7名学生的体重(单位:kg)分别是:40,42,43,45,47,47,58,则这组数据的平均数是()A.44B.45C.46D.47解析:这组数据共有7个,可以采用简化公式进行计算.将这组数据的每一个数都减去40,得到一组新数据:0,2,3,5,7,7,18,这组新数据的平均数为6,所以原数据的平均数为40+6=46.故选C.[归纳总结]对于由n个数据x1,x2,…,x n组成的一组数据,如果将这组数据中的每一个数据都减去同一个常数a,这组新数据的平均数为',那么原数据的平均数为='+a.对于由n个数据x1,x2,…,x n组成的一组数据,如果x1出现了f1次,x2出现了f2次,…,x k出现了f k次,其中f1+f2+…+f k=n,那么,这组数据的平均数可用加权平均数公式=(f1x1+f2x2+…+f k x k)进行计算.【跟踪训练1】如图所示的是小芹6月1日~7日每天的自主学习时间统计图,则小芹这七天平均每天的自主学习时间是()A.1小时B.1.5小时C.2小时D.3小时解析:先从折线统计图中获取数据信息,然后用这组数据的和除以数据的个数.(2+1+1+1+1+1.5+3)÷7=1.5.故选B.专题二中位数和众数【专题分析】中位数和众数的计算考查频率较高,题型大多以选择题、填空题为主,考查形式有:①直接给出一组数据或表格中的数据求中位数和众数;②一组数据中含有未知数,已知某个数据代表求其他数据代表.例2数据1,2,4,0,5,3,5,中位数和众数分别是()A.3 和2B.3和3C.0和5D.3和5解析:这7个数据按从小到大的顺序排列,位于第4个的是3,故中位数是3;这7个数据中出现次数最多的数据是5,一共出现了2次,所以众数是5.故选D.[规律方法]找中位数要把数据按从小到大(或从大到小)的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,当数据个数为奇数时,中位数即为中间的一个,当数据个数为偶数时,中位数就是中间两个数的平均数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【跟踪训练2】空气质量状况已引起全社会的广泛关注,某市统计了2013年每月空气质量达到良好以上的天数,整理后制成如下折线统计图和扇形统计图.某市2013年每月空气质量良好以上天数折线统计图某市2013年每月空气质量良好以上天数扇形统计图根据以上信息解答下列问题:(1)该市2013年每月空气质量达到良好以上天数的中位数是天,众数是天;(2)求扇形统计图中扇形A的圆心角的度数;(3)根据以上统计图提供的信息,请你简要分析该市的空气质量状况.(字数不超过30字)解析:(1)将这组数据按照一定的顺序排列,取中间两个数的平均数就是中位数;取次数出现最多的那个数就是众数;(2)20天以上的一共有两个数据,360°×=60°,就是扇形A的圆心角的度数;(3)根据题意只要回答正确就可以.解:(1)由题意可得数据为8,9,12,13,13,13,15,16,17,19,21,21,最中间的是13,15,故该市2013年每月空气质量达到良好以上天数的中位数是14天,众数是13天. (2)360°×=60°,答:扇形A的圆心角的度数是60°.(3)答案不唯一,合理即可.月空气质量良好以上的天数在10~20天的占了多数.专题三方差【专题分析】方差是从不同层面反映一组数据的特征数,在解决问题时,准确掌握这些特征数的概念、对应公式,以及灵活运用公式是关键.题型以选择题、填空题为主,考查形式有:①直接给出一组数据或表格中的数据求方差;②根据比较方差值的大小,判定稳定性,解决实际问题.例1一组数据3,4,5,x,7,8的平均数为6,则这组数据的方差是.解析:可以先根据平均数求出x的值,然后根据方差公式求解.∵3,4,5,x,7,8的平均数为6,∴x=9.∴方差为s2=×[(3-6)2+(4-6)2+(5-6)2+(7-6)2+(8-6)2+(9-6)2]=.故填.[归纳总结]数据中有未知数时,一般先求出这个未知数,再根据方差公式计算即可.若一组数据是由另一组数据逐个加几或减几得到的,则这两组数据的方差相同.【跟踪训练3】我市射击队为了从甲、乙两名运动员中选出一名运动员参加省运会比赛,组织了选拔测试,两人分别进行了五次射击,成绩(单位:环)如下:甲10 9 8 9 9乙10 8 9 8 10则应选派运动员参加省运会比赛.〔解析〕甲的平均数是×(10+9+8+9+9)=9,乙的平均数是×(10+8+9+8+10)=9,甲的方差是=×[(10-9)2+(9-9)2+(8-9)2+(9-9)2+(9-9)2]=0.4,乙的方差是=×[(10-9)2+(8-9)2+(9-9)2+(8-9)2+(10-9)2]=0.8,∵<,∴甲的成绩稳定,∴应选择甲运动员参加省运会比赛.故填甲.专题四用样本估计总体【专题知识】一般情况下,如果总体的容量较大,不便分析其数据特征,我们可以通过随机抽取一定的样本,通过样本的数据特征来对总体的数据特征进行估计,但难免有一定误差.本章主要利用平均数、方差的公式,通过计算样本的平均数、方差,估计总体的平均数、方差,进一步感受抽样的必要性,体会用样本估计总体的思想.【专题分析】考查用样本估计总体的题目,选择题、填空题或解答题的形式均有可能出现,一般在3~5分.例4杨静在承包的果园里种植了100棵樱桃树,今年已经进入收获期,从中任意采摘了6棵树上的樱桃,分别称得每棵树的产量(单位:千克)如下表:序号 1 2 3 4 5 6产量17 21 19 18 20 19设这组数据的中位数为m,樱桃的总产量为n,则m,n分别为()A.18,2000B.19,1900C.18.5,1900D.19,1850解析:把数据17,21,19,18,20,19按从小到大的顺序排列为17,18,19,19,20,21,∴中位数为19,平均数为==19,即每棵樱桃树的产量约为19千克,∴樱桃的总产量约为19×100=1900千克.故选B.[易错点津]在求中位数时容易出现的错误是没有把数据按大小顺序排列,而是直接求了表格中从左到右中间两个数的平均数.【跟踪训练4】据省环保网发布的消息,吉首市空气质量评价连续两年居全省14个省辖市城市之首,下表是吉首市2014年5月份前10天的空气质量指数统计表.2014年5月1日~10日空气质量指数(AQI)情况(表一)日期1日2日3日4日5日6日7日8日9日10日空气质量指数(AQI) 28 38 94 53 63 149 53 90 84 35空气质量污染指数标准(AQI)(表二)污染指数等级0~50 优51~100 良101~150 轻微污染151~200 轻度污染(1)请你计算这10天吉首市空气质量指数的平均数,并据此判断这10天吉首市空气质量平均状况属于哪个等级;(用科学计算器计算或笔算,结果保留整数)(2)按规定,当空气质量指数AQI≤100时,空气质量才算“达标”,请你根据表(一)和表(二)所提供的信息,估计今年(365天)吉首市空气质量“达标”的天数.(结果保留整数)解析:(1)算出10天空气质量指数的平均数并根据对应表作出判断即可;(2)先统计出样本中“达标”的天数并算出达标率,再算出今年(365天)吉首市空气质量“达标”的天数即可.解:(1)=×(28+38+94+53+63+149+53+90+84+35)=68.7≈69,这10天空气质量平均状况属于良.(2)∵这10天中“达标”的天数为9天,∴365×=328.5≈329,∴今年吉首市空气质量“达标”的天数为329天.专题五统计思想【专题知识】统计学是用方法论科学,在所有涉及实质性现象的领域中,统计方法都发挥着越来越重要的作用.这些统计方法具有内在的联系和逻辑关系,在认识事物时存在比较通用的模式,这些认识模式是统计学的基本思想.本章中,统计思想就是通过数据收集、数据处理和数据分析,更合理地解决实际问题.【专题分析】统计学是与数据打交道的一门学科,研究如何搜集、整理、计算和分析数据,然后从中找出一些规律,统计思想是用统计知识解决现实生活中涉及数据的问题.题型可以以多种形式出现.例5 某工厂有220名员工,财务科要了解员工收入情况.现在抽测了10名员工的本月收入,结果如下:(单位:元)166001540015100167001620015800158001600016200 16200(1)这组数据的中位数和众数分别是多少?(2)员工的月平均收入是多少?(3)估算一下财务科本月应准备多少钱发工资.解:(1)将这组数据按照从小到大的顺序排列为15100,15400,15800,15800,16000, 16200,16200,16200,16600,16700,处于中间位置的两个数为16000和16200,故中位数为16100.该组数据中,出现次数最多的数为16200,故众数是16200.(2)员工的月平均收入为(15100×1+15400×1+15800×2+16000×1+16200×3+16600×1+16700×1)÷10=16000(元).(3)从(2)得到员工的月平均收入为16000元,工厂共有220名员工,所以估计财务科本月应准备16000×220=3520000(元).【针对训练5】请根据所给信息,帮助小颖同学完成她的调查报告.2013年4月叶邑八年级学生每天干家务活平均时间的调查报告调查目的了解八年级学生每天干家务活的平均时间调查内容叶邑中学八年级学生干家务活的平均时间调查方式抽样调查调查步骤1.数据的收集:(1)在回龙八年级每班随机调查5名学生(2)统计这些学生2013年4月每天干家务活的平均时间(单位: min),结果如下(其中A表示10 min,B表示20 min,C表示30 min)B A A B B B B AC B B A B B CA B A A C A B B C B A B B A C2.数据的处理:以统计图的形式呈现上述统计结果,请补全统计图3.数据的分析:列式计算随机调查的学生每天干家务活平均时间的平均数(结果保留整数)调查结论叶邑中学八年级共有240名学生,其中大约有名学生每天干家务活的平均时间是20 min解析:先从表格中得出平均每天干家务活的时间为30 min的有5名学生,从而补全统计图,再根据A表示10 min,B表示20 min,C表示30 min和学生数即可求出随机调查的学生每天干家务活的平均时间的平均数,最后根据每天干家务活的平均时间是20 min所占的百分比乘240,即可得出大约每天干家务活的平均时间是20 min的学生数.解:从表中可以看出C的学生数是5人,如图所示,每天干家务活平均时间的平均数是(10×10+15×20+5×30)÷30≈18(min),根据题意得240×=120(人),回龙八年级共有240名学生,其中大约有120名学生每天干家务活的平均时间是20 min.专题六方程思想【专题分析】本章中运用方程思想主要是将一组数据中的未知数据用x,y表示,然后根据已知条件列出方程或方程组求解.例6 八(1)班五位同学参加学校举办的数学素养竞赛.试卷中共有20道题,规定每题答对得5分,答错扣2分,未答得0分.赛后A,B,C,D,E五位同学对照评分标准回忆并记录了自己的答题情况(E同学只记得有7道题未答),具体如下表:参赛同学答对题数答错题数未答题数A19 0 1B17 2 1C15 2 3D17 1 2E//7(1)根据以上信息,求A,B,C,D四位同学成绩的平均分;(2)最后获知A,B,C,D,E五位同学的成绩分别是95分,81分,64分,83分,58分.①求E同学的答对题数和答错题数;②经计算A,B,C,D四位同学实际成绩的平均分是80.75分,与(1)中算得的平均分不相符,发现是其中一位同学记错了自己的答题情况.请指出哪位同学记错了,并写出他的实际答题情况(直接写出答案即可).解析:本题考查了统计知识及二元一次方程(组)的综合应用,解题的关键是能根据题目的条件建立方程或方程组求解实际问题.(1)根据得分规则分别求得4名学生的成绩,再求平均数.(2)①根据E同学的总分和得分规则利用方程组或方程求得E同学的答对题数和答错题数;②根据题目中出现的表格计算A,B,C,D四位同学的得分,与最后获知的A,B,C,D四位同学的成绩进行比较确定记错答题情况的同学,最后求得他的实际答对题数和答错题数.解:(1)A同学的成绩为5×19-2×0+0×1=95(分),B同学的成绩为5×17-2×2+0×1=81(分),C同学的成绩为5×15-2×2+0×3=71(分),D同学的成绩为5×17-2×1+0×2=83(分).A,B,C,D四位同学成绩的平均分为=82.5(分).答:A,B,C,D四位同学成绩的平均分为82.5分.(2)①设E同学答对x题,答错y题.由题意,得解得答:E同学答对12题,答错1题.②C同学,他实际答对14题,答错3题,未答3题.[归纳总结]根据得分规则及学生答题情况建立方程或方程组解决问题.【跟踪训练6】下表是某校九年级(1)班30名学生期末考试的数学成绩表(已污损):成绩/分50 60 70 80 90 100人数/人 2 5 7 3已知该班学生期末考试的数学成绩的平均分是76分.(1)求该班成绩为80分和90分的各有多少人;(2)设该班30名学生数学成绩的众数为a,中位数为b,求a+b的值.解析:(1)根据已知条件,利用平均数的计算公式列出方程组求解即可.(2)根据众数和中位数的概念确定这组数据的众数和中位数,即可求出a +b 的值. 解:(1)设该班有x 人得80分,有y 人得90分,根据题意和平均数的意义,可列出方程组为:⎪⎩⎪⎨⎧----=+=⨯+++⨯+⨯+⨯375230763031009080770560250y x y x , 整理得⎩⎨⎧=+=+1310998y x y x ,解得⎩⎨⎧==58y x 因此该班成绩为80分的学生有8人,成绩为90分的学生有5人.(2)分析表格中的数据可知该班30名学生数学成绩的众数为80分,中位数(按从小到大排序后第15个数和第16个数的平均数)为80分,所以a +b =80+80=160.专题七 数形结合思想【专题知识】数形结合是指将数(或量)与形(图形)结合起来对问题进行研究,本章中许多题目的信息都是通过统计图给出的,有些问题将数据表现在图上,更能直观地反映数据的特点,解决此类题目我们要把抽象的数据和直观的图形结合起来,使问题达到“化难为易、化抽象为直观”.【专题分析】统计中的题目大部分都是以图表形式提供信息,所以涉及运用数形结合思想较广泛.可以以选择题、填空题或解答题的形式出现.例7 某高中学校为使高一新生入校后及时穿上合身的校服,现提前对某校九年级三班学生所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如下两个不完整的统计图(校服型号以身高作为标准,共分为6种型号).根据以上信息,解答下列问题:(1)该班共有多少名学生?其中穿175型号校服的学生有多少?(2)在条形统计图中,请把空缺的部分补充完整;(3)在扇形统计图中,请计算185型号校服所对应扇形圆心角的大小;(4)求该班学生所穿校服型号的众数和中位数.解析: (1)由条形统计图确定165型号的人数,由扇形统计图确定165型号占的百分比,得出总人数,再用总人数乘175型号占的百分比求出穿175型号校服的学生人数;(2)根据人数把条形统计图补充完整;(3)由条形统计图得出穿185型号校服的人数,再计算出百分比,用360°乘百分比求出圆心角的度数;(4)观察各个数据,出现次数最多的是众数,排序后中间的两个数据的平均数是中位数.解:(1)15÷30%=50(人),50×20%=10(人),即该班共有50名学生,其中穿175型号校服的学生有10人.(2)补充如下:(3)圆心角的度数为360°×=14.4°.(4)165和170出现的次数最多,都是15次,故众数是165和170;共50个数据,第25个和第26个数据都是170,故中位数是170.[解题策略]本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.除此之外,此题还需要准确掌握平均数、中位数、众数的概念及计算方法.【跟踪训练7】在“大家跳起来”的乡村学校舞蹈比赛中,某校10名学生参赛成绩统计如图所示.对于这10名学生的参赛成绩,下列说法中错误的是() A.众数是90 B.中位数是90 C.平均数是90 D.极差是15解析:根据折线统计图,可以发现数据80出现次数是1,数据85出现次数是2,数据90 出现次数是5,数据95 出现次数是2,按照数据由小到大的次数累加确定中位数,根据次数出现多少判断众数,结合平均数计算方法确定平均数,极差用最大数据减去最小数据即可.易于看出众数是90,A正确,中位数是90,B正确,极差是95-80=15,D正确,运用排除法C错误,也可进一步计算平均数为(80×1+85×2+90×5+95×2)÷10=89,C错误.故选C.人教版八下数学第20章《数据的分析》复习学案【学习目标】知识与技能了解总体、个体、样本等概念,理解统计的基本思想是用样本的特征去估计总体的特征,会用平均数、中位数、众数、极差、方差进行数据处理.过程与方法经历探索数据的收集、整理、分析过程,在活动中发展学生的统计意识和数据处理的方法与能力.情感态度与价值观培养合作交流的意识与能力,提高解决简单的实际问题能力,形成一定的数据意识和解决问题的能力,体会特征数据的应用价值.【学习重点】应用样本数字特征估计总体的相应特征,处理实际问题中的统计内容.【学习难点】方差概念的理解和应用.【自主学习】Step 1:梳理知识夯实基础知识线索:平均数中位数众数极差方差集中趋势波动大小数字特征应用本章思想:平均数是衡量样本(求一组数据)和总体平均水平的特征数,通常用样本的平均数去估计总体的平均数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1号
2号
3号
4号
5号
17 18 16 13 24 15 28 26 18 19 22 17 16 19 32
30 16 14 15 26 15 32 23 17 15 15 28 28 16 19
(1)月销售额在哪个值的人数最多?中间的月销售额是多少?平均的月销售额是多少?
(2)如果想确定一个较高的目标,你认为月销售额定多少合适?说明理由?
第二步:联系实际主动探索
问题1、已知;某学校六年级学生的身高的一个样本如下(单位:cm)
158 162 146 151 153 168 159 154 167 159
167 166 159 154 160 162 164 160 157 149
(1)试填写下面的频数分布表,并绘制相应的频数颁布直方图
重点
应用样本数字特征估计总体的相应特征,处理实际问题中的统计内容。
难点
方差概念的理解和应用。
教学过程
备注
教学设计与师生互动
第一步:回顾交流、系统跃进
知识线索:
平均数中位数众数极差方差
集中趋势波动大小
数字特征
应用
本章思想:
平均数是衡量样本(求一组数据)和总体平均水平的特征数,通常用样本的平均数去估计总体的平均数。
分组
频数累计
频数
146~149
150~152
153~155
156~158
159~161
162~164
165~个年段学生的平均身高。
(3)求出这个年段学生的身高的极差。
问题2:在一次中学生田径运动会上,参加男子跳高的23名运动员的成绩如下表所示:(单位:米)
成绩
1.50
复习与交流
教学目标
知识与技能
了解总体、个体、样本等概念,理解统计的基本思想是用样本的特征去估计总体的特征,会用平均数、中位数、众数、极差、方差进行数据处理。
过程与方法
经历探索数据的收集、整理、分析过程,在活动中发展学生的统计意识和数据处理的方法与能力。
情感态度与价值观
培养合作交流的意识与能力,提高解决简单的实际问题能力,形成一定的数据意识和解决问题的能力,体会特征数据的应用价值。
1.60
1.65
1.70
1.75
1.80
1.85
1.90
人数
1
2
4
5
7
2
1
1
求出它们的跳高成绩的平均数、众数、中位数。(答案:1。71、1。75、1。70)
第三步;复习巩固提高深化:
1、右图是一组数据的折线统计图,这组数据的极差
是,平均数是.
2.若样本数据1,2,3,2的平均数是a,中位数是
b,众数是c,则数据a、b、c的方差是.
班级
参加人数
中位数
方差
平均数
甲
55
149
191
135
乙
55
151
110
135
丙同学分析上表后得出如下结论:
①甲、乙两班学生成绩平均水平相同②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字汉字≥150个为优秀)③甲班成绩的波动比乙班大。
上述结论正确是()
A、①②③B、①②C、①③D、②③
6、某商场服务部为了调动营业员的积极性,决定实行目标管理,即确定一个月销售目标,根据目标的完成情况进行适当的奖惩。为了确定一个合适的目标,商场统计了每个营业员在某月的销售额,数据如下(单位:万元):
(3)如果想让一半左右的营业员都能达到目标,你认为月销售额定多少合适?说明理由?
7、某公司10名销售员,去年完成的销售额情况如下表:
销售额(单位:万元)
3
4
5
6
7
8
10
销售员人数(单位:人)
1
3
2
1
1
1
1
(1)求销售额的平均数、众数、中位数;
(2)今年公司为了调动员工积极性,提高年销售额,准备采取超额有奖的措施,请根据(1)的结果,通过比较,合理确定今年每个销售员统一的销售额标准是多少万元?
(定义法)
且f1+f2+……+fk=n(加权法)
当一组数据中个别数据与其它数据差异较大时,可求出其中位数来观察集中趋势;理解当一组数据中不少数据多次重复出现时,可通过众数观察其集中趋势,理解另一类是反映数据波动大小(即离散趋势)的特征数——极差、方差。
设有n个数据 ,各数据与它们的平均数的差的平方分别是 ,…, 我们用它们的平均数,即用
总分
甲班
100
98
110
89
103
500
乙班
86
100
98
119
97
500
(1)计算甲、乙两班的优分率;(2)求两班比赛数据的中位数。(3)估计两个比赛数据的方差哪一个小?(4)根据以上信息,你认为应该把冠军奖状发给哪一个班级?简述理由.
3、某市射击队甲、乙两位优秀队员在相同的条件
下各射靶10次,每次射靶的成绩情况如图所示:
(1)请填写下表:
(2)请从下列四个不同
的角度对这次测试结果
进行分析: 从平均数和方差结合看;(分析谁的成绩好些);
从平均数和中位数相结合看(分析谁的成绩好些);
从平均数和命中9环以上的次数结合看(分析谁的成绩好些);
如果省射击队到市射击队靠选拔苗子进行培养,你认为应该选谁?
4、某同学进行社会调查,随机抽查了某
小结与反思:
个地区的20个家庭的年收人情况,并绘制了统计
图.请你根据统计图给出的信息回答:
(1)填写完成下表:这20个家庭的年平均收入为万元.
(2)样本中的中位数、众数分别是多少?
(3)在平均数、中位数两数中,哪个更能反映这个地区家庭的年收入水平.为什么?
5、甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表