PTA精制pd-c催化剂的分析表征及国产催化剂失活原因分析
Pd_C催化剂失活原因分析与改进措施

第18卷第3期化学反应工程与工艺V o l 18,N o 32002年9月Chem ical R eacti on Engineering and T echno logy Sep , 2002文章编号:1001-7631(2002)03-0275-04研究简报收稿日期:2002-05-09;修订日期:2002-05-31作者简介:陈筱金(1958-),男,高级工程师。
Pd C 催化剂失活原因分析与改进措施陈筱金(上海石化股份公司涤纶事业部, 上海 200540)摘要: 在精对苯二甲酸(PTA )的生产中,有多种原因会导致Pd C 催化剂失活,影响其使用寿命。
根据多年生产经验及有关测试数据,分析了催化剂失活的机理与原因,并提出了预防与改进的具体措施。
关键词:钯炭催化剂; 失活; 分析; 改进中图分类号:TQ 032 文献标识码:A1 概 述精对苯二甲酸(PTA )生产技术,最早是由美国Am oco 公司开发成功并实现工业化应用的,即Am oco 2PTA 制造专利。
其主要工艺过程为:原料对二甲苯(PX )在乙酸介质中,通入空气液相催化氧化,制成PTA 粗制品(CTA ),CTA 中的对甲基苯甲酸(P 2TA )和对羧基苯甲醛(42CBA )中间产物会影响聚酯的酯化反应、缩聚反应和聚酯产品的色相,必须设法除去。
1964年,美国Am oco 公司与En 2gelhard 公司合作,开发成功了在钯炭催化剂上通过加氢精制粗TA 的方法,将CTA 中的42CBA 中间产物,在280℃、8M P 的反应条件下加氢还原成较易溶于水的对甲基苯甲酸(P 2TA ),P 2TA 在水中的溶解度远比TA 大,在150℃热水中通过离心分离,能较易从产品中分离,得到PTA 产品,其中42CBA 质量分数≤25×10-6[1]。
工业生产中钯炭催化剂的失活是个严重的问题,失活导致催化剂损耗成本增加,产品中杂质增多,生产能力下降。
延长PTAPd/C催化剂使用寿命方法分析

摘 要 : 在精对苯二甲酸的生产中, 有多种原因可能导致催化剂失活, 影响其使用寿命。根据近几年 P/ dC催化剂的使用状况
的分析 , 出影 响 P / 找 d C催化剂使用寿命 的因素 , 并探讨延长 P/ d C催 化剂使用 寿命 的方法 。通过在装卸 、 工艺操作 中精心操 作 , 稳 平 生产 , 避免波动 , 及时碱洗 , 严格控制氢气和脱离子水纯度 , 避免催化剂 中毒等一系列的延长 P / d C催化 剂使用 寿命 的方法 。
第4 0卷第 9期
21 0 2年 5月
广
州
化
工
Vo . . 140 No 9
G a gh u C e c l n u t u n z o h mia d sr I y
延 长 P A P/ T d C催 化 剂 使 用 寿 命 方 法 分 析
曹原 原 ,杨 明
( 中国石 油化 工股份 有 限公 司洛 阳分公 司,河 南 洛 阳 4 1 1 ) 7 0 2
ds u s d.Th o g h no dng a d un o di ic s e r u h te i la i n la ng,a d welo e a in o h r c s ,sa l r d ci n,a o d n u t a n l p r t ft e p o e s tb e p o u t o o v iigf cu — l
催化剂的失活与再生

5、选择性中毒
选择性中毒:利用毒物分子对某些活性部位的选择性吸 附来抑制或中毒不希望的催化活性,提高催化选择性。 例子1:Pt-Re/Al2O3重整催化剂,利用少量硫化剂对氢解 活性中心的选择性中毒(预硫化)提高芳构化选择性。 例子2:FCC汽油选择性加氢脱硫的催化剂,利用碱性物 质或结焦对强加氢活性中心的选择性中毒,提高加氢脱 硫选择性。 例子3:正己烷异构化的Ni/八面沸石催化剂,利用少量 H2S对氢解活性中心的选择性中毒抑制裂解反应,提高异 构化选择性。
烧结对催化活性的影响
正庚烷重整反应的选择性随Pt晶粒增大的变化 (780C) Pt表面积 微晶直径, nm m2/g 233 202 72 32 15 1.0 1.2 3.3 7.3 15.8 产率,%
异构化 9.0 10.6 14.2 21.7 24.3
脱氢环化 37.4 32.8 26.6 21.6 17.7
碳物种吸附
分解,聚合
碳物质沉积
活性组分被覆盖 孔被堵塞 催化活性降低
一、结焦
1、酸结焦:
烃类原料在固体酸催化剂上或固体催化剂 的酸性部位上通过酸催化聚合反应生成碳 质物质。 C H (CH )
n m x y
2、脱氢结焦: 烃类原料在金属和金属氧化物的脱氢部 位上分解生成碳或含碳原子团。
Cn Hm yC 3、离解结焦: 一氧化碳或二氧化碳在催化剂的解离部 位上解离生成碳。
相转变:如活性载体-Al2O3和-Al2O3
转变成低活性的-Al2O3。
相分离:如Ni-Cu合金表面Cu的富集。
七、活性组份被包埋
金属晶粒“陷入”氧化物载体中。
八、活性组份挥发
反应气氛与活性组分生成挥发性物质或可升华 的物质。 如: CO与金属生成羰基化合物;
最常见的催化剂失活原因

最常见的催化剂失活原因
催化剂失活原因有很多种,一般出现催化剂失活现象时首先怀疑下面比较常见的原因.
1.孔都塞(Pore mouth plugging )
镍(Ni),钒(V),铁(Fe)等金属慢慢堵塞催化剂Pore入口的现象,据了解镍和钒对催化剂的影响很大.
2.中毒(Poisoning)
砷(As)与催化剂发生很强的吸附反应,一旦吸附不容易与催化剂分离。
砷或很多类似于砷成分的物质与催化剂的特定部位进行有选择性的吸附反应。
选择性中毒分为:.
a) 酸性中毒 : 水, 有机氮化合物,有机氧化化合物,卤素, 氨
b) 金属中毒 : H2S, 有机硫化合物,各种重金属
还分为暂时性中毒和永久性中毒.
a) 暂时性中毒 : 因催化剂中毒活性下降,但通过消除中毒因素恢复活性的现象
b) 永久性中毒 : 因中毒活性下降后,不能再生,不能恢复活性的现象,一般金属中毒会导致永久性中毒.
3.结垢(Fouling)
如催化剂表面的Coke,所谓的催化剂表面有污垢,但Fouling与中毒不同,是非选择性反应.
4.烧结(Sintering)
催化剂持续在高温(规定以上温度)条件下时,催化剂会碎掉,碎掉后的催化剂相互凝聚在一起的话,催化剂活性表面积减少导致反应下降. 这种现象叫烧结。
5.磨损(Attrition) :
催化剂破碎的现象, 催化剂装填时或在反应器内部出现摩擦,导致催化剂。
磨损的话,会出现小fine或催化剂被碎掉,因此催化剂就会失去活性.。
铂碳催化剂的碳失活原因

铂碳催化剂的碳失活原因全文共四篇示例,供读者参考第一篇示例:铂碳催化剂是一种用于催化氧化还原反应的重要材料,具有较高的催化活性和稳定性。
随着催化剂在反应中不断使用,往往会出现碳失活的现象,导致催化剂的活性降低甚至失效。
碳失活是铂碳催化剂在实际应用中面临的重要问题之一,其主要原因包括碳物种的积聚、氧化还原反应中生成的碳尖晶石结构、金属颗粒的改性等。
本文将从以上几个方面对铂碳催化剂的碳失活问题进行分析,并探讨可能的解决方法,以期为该领域的研究和应用提供有益参考。
1. 碳物种的积聚在氧化还原反应中,碳物种会不可避免地在铂碳催化剂表面积聚,形成碳层覆盖的现象。
这些碳物种可能来源于反应物的不完全裂解、副反应产生的碳氢化合物等。
碳层的存在将阻碍活性位点与反应物之间的相互作用,导致催化活性的降低。
碳层还可能通过质子迁移、电子传输等方式影响催化剂表面的电子结构,进一步影响其催化性能。
为了减轻碳物种的积聚对催化活性的影响,可通过提高反应温度,增加氧化剂浓度等方式促进碳物种的氧化还原,使其解吸至气相;也可以通过优化催化剂的结构和组成,提高其抗碳沉积的能力。
采用合适的载体材料和制备方法,可有效抑制碳物种的积聚,延长催化剂的使用寿命。
2. 氧化还原反应中生成的碳尖晶石结构在氧化还原反应中,碳物种经过一系列复杂的催化和氧化过程,最终转化为稳定的碳尖晶石结构。
碳尖晶石结构的生成将使活性位点被遮蔽,降低对反应物的吸附和转化能力,进而导致催化活性的降低。
为了减轻碳尖晶石结构对催化活性的影响,可通过调控反应条件,控制碳物种的聚合和转化过程;也可以设计多孔结构的载体材料,增加活性位点的暴露程度,减少碳尖晶石的形成。
有研究表明,添加适量的金属氧化物、碱金属盐等助催化剂,有助于阻断碳尖晶石结构的形成,提高催化活性。
3. 金属颗粒的改性在实际应用中,铂碳催化剂的金属颗粒可能受到外界环境、反应条件等因素的影响,发生形貌变化、析出物的生成等现象,从而损害其催化活性。
浅谈PTA生产技术及工艺流程——002

浅谈PTA生产技术及工艺流程目前世界PTA生产厂家采用的技术虽有差异,但归纳起来,大致可分为以下两类:(1)精PTA工艺此工艺采用催化氧化法将对二甲苯(PX)氧化成粗TA,再以加氢还原法除去杂质,将CTA精制成PTA。
这种工艺在PTA生产中居主导地位,代表性的生产厂商有:英国石油(BP)、杜邦(Dupont)、三井油化(MPC)、道化学-因卡(Dow-INCA)、三菱化学(MCC)和因特奎萨(Interquisa)等。
(2)优质聚合级对苯二甲酸(QTA、EPTA)工艺此工艺采用催化氧化法将PX氧化成粗TA,再用进一步深度氧化方法将粗TA精制成聚合级TA。
此工艺路线的代表生产厂商有三菱化学(MCC)、伊斯特曼(Eastman)、杜邦(Dupont)、东丽(Toray)等。
生产能力约占PTA总产能的16%。
两种工艺路线差异在于精制方法不同,产品质量也有所差异。
即两种产品所含杂质总量相当,但杂质种类不一样。
PTA产品中所含PT酸较高(200ppm左右),4-CBA较低(25ppm左右),而QTA(或EPTA)产品中所含杂质与PTA相反,4-CBA较高(250ppm左右),PT酸较低(25ppm以下)。
两种工艺路线的产品用途基本相同,均用于聚酯生产,最终产品长短丝、瓶片的质量差异不大。
目前,钴-锰-溴三元复合体系是PX氧化的最佳催化剂,其中钴是最贵的,所以目前该方面的一直进行降低氧化催化剂能耗的研究。
PTA生产过程中所用TA加氢反应催化剂为Pd/C,目前研究的主要问题是如何延长催化剂的使用寿命。
工业化的精对苯二甲酸制备工艺很多,但随着生产工艺的不断发展,对二甲苯高温氧化法成为制备精对苯二甲酸的最主要的生产工艺,这种工艺在对苯二甲酸的制备工艺中占有绝对优势。
对二甲苯高温氧化工艺是在高温、高压下进行的,副反应较多;而且由于温度高、压力大对设备本身的要求就高。
因此工艺改进主要就集中在降低氧化反应温度和降低氧化反应的压力两个方面。
钯/炭催化剂的失活原因
钯/炭催化剂的失活原因
沈吕宁;毛文麟
【期刊名称】《石油化工》
【年(卷),期】1991(020)004
【总页数】4页(P234-237)
【作者】沈吕宁;毛文麟
【作者单位】不详;不详
【正文语种】中文
【中图分类】O643.361
【相关文献】
1.催化氧化葡萄糖中失活钯铋炭催化剂再生方法探讨 [J], 彭方英;陈雪梅;鄢红艳
2.美罗培南合成用钯炭催化剂的失活及再生研究 [J], 李岳锋;张之翔;田勤奋;曾永康;曾利辉
3.合成4,6-二氨基间苯二酚用钯炭催化剂的制备及失活 [J], 艾强;王继伟;孙晓神;蒋文伟
4.CTP-Ⅴ型钯炭催化剂失活原因分析 [J], 王会友;王铭松;杨军;
5.CTP-Ⅴ型钯炭催化剂失活原因分析 [J], 王会友;王铭松;杨军
因版权原因,仅展示原文概要,查看原文内容请购买。
催化剂失活机理
催化剂失活机理催化剂失活是指催化剂在催化反应中活性降低或失去的过程。
催化剂失活机理复杂,取决于催化剂的性质、催化反应的条件以及反应中参与的物质。
以下是一些常见的催化剂失活机理:1. 积聚或沉积物:反应物中的杂质或催化剂中的组分在反应条件下形成积聚物或沉积物,覆盖了催化剂的活性表面,降低了反应速率。
2. 中毒:杂质或反应产物中的某些物质可以吸附在催化剂表面并与其活性位点发生化学反应,导致催化剂中毒,减弱或破坏催化剂的活性。
3. 晶格缺陷:催化剂的晶格结构可能发生缺陷,例如晶格位错、表面位错等,这些缺陷可能导致催化剂失活。
4. 热失活:在高温下,催化剂可能经历结构变化,活性位点受到热力学或动力学因素的影响,导致失活。
5. 金属粒子聚集:在一些催化反应中,活性金属颗粒可能在反应条件下聚集,形成大颗粒或甚至堆积在载体上,降低了催化活性。
6. 中间产物的积累:反应产物或中间产物在催化剂表面积累,形成吸附层,阻碍了反应物与活性位点的接触。
7. 氧化和还原:在氧化还原催化反应中,催化剂可能经历氧化或还原,改变了催化剂的氧化态,从而失活。
8. 机械损伤:催化剂颗粒可能在循环使用或运输中经历机械损伤,导致表面活性位点的丧失。
9. 生物污染:在一些生物反应中,微生物或生物产物可能吸附在催化剂表面,影响催化剂的活性。
为防止催化剂失活,可以采取以下措施:-优化反应条件,避免高温、高压等极端条件。
-合理选择催化剂和载体材料,提高其稳定性。
-引入共催化剂或添加稳定剂,防止催化剂的中毒或失活。
-定期对催化剂进行再生或更换。
-设计更复杂的催化剂结构,提高其抗失活能力。
因为失活机理的多样性,具体的防控策略需要根据催化反应和催化剂的性质进行定制。
MPB5型Pd_C催化剂的失活表征
MPB5型Pd/C催化剂的失活表征Ξ陈小娟1,崔 群13,王海燕1,堵文斌2,汪 洋2(1.南京工业大学化学化工学院,江苏南京210009;2.扬子石油化工股份有限公司,江苏南京210000)摘要:采用BET,TG,ICP,XRD,SE M和TE M等分析手段对PT A加氢失活的MP B5型Pd/C催化剂进行了表征,并与新鲜催化剂进行比较。
结果表明,失活催化剂的比表面积为837.8m2・g-1,Pd的质量分数为0.37%,比新鲜催化剂的比表面积(1146.3m2・g-1)和Pd的质量分数(0. 53%)分别下降了26.9%和30.2%;失活催化剂中Pd晶粒的粒径为50~100nm,约是新鲜催化剂中Pd晶粒的10~20倍。
说明MP B5型Pd/C 催化剂失活的主要原因是催化剂比表面积的下降,Pd含量的降低及Pd晶粒的长大。
关键词:对苯二甲酸;Pd/C催化剂;失活中图分类号:T Q032 文献标识码:A 文章编号:0258-7076(2008)04-0536-04 Pd/C催化剂是PT A精制的主要催化剂,某公司PT A装置过去一直使用美国Engelhard公司生产的C BA型Pd/C催化剂,其催化活性较高,但催化剂寿命较短,一般为0.5~1年;现在开始使用意大利M ontetation公司生产的MP B5型Pd/C催化剂,其稳定性好,寿命比C BA型Pd/C催化剂有所增加,约为1.5年。
一些研究报道了C BA型Pd/C催化剂的失活原因:顾沛国[1]、沈吕宁[2]、张永福等[3]认为失活的主要原因是Pd流失、Pd晶粒的长大;Nicola[4]、陈筱金[5]、侯振宇[6]、曾宪春[7]认为S中毒也是Pd/C催化剂失活的主要原因;熊大方[8]、吴征等[9]认为有机物对催化剂孔道和表面的堵塞和覆盖是导致工业Pd/C催化剂工业应用失活的主要原因。
由于各公司使用的Pd/C催化剂不同,PT A生产的操作条件也有所差异,因此造成Pd/C催化剂失活的原因也可能不同。
简述催化剂失活
简述各类催化剂失活的含义、特征、类型、主要失活机理和影响因素天津大学化工学院09化工一班王一斌3009207018摘要本文主要讲述工程上的催化剂失活的主要原因,在文中用一些例子讲述了这些原因和方法,这些方法中涉及了国内外传统的和某些先进的方法。
在化学反应里能改变其他物质的化学反应速率(既能提高也能降低),而本身的质量和化学性质在化学反应前后都没有发生改变的物质叫催化剂(也叫触媒)。
根据定义我们知道催化剂能改变化学反应进行的速度,因此在工业生产中具有重要的作用,但是我们也都知道在工业生产中催化剂并不能一直保持稳定不变的活性,因此研究催化剂的失活与再生便有着重要的意义。
催化剂失活是指在恒定反应条件下进行的催化反应的转化率随时间增长而下降的的现象叫催化剂失活。
催化剂失活的过程大致可分为三个类型:催化剂积碳等堵塞失活,催化剂中毒失活,催化剂的热失活和烧结失活。
下面就三种失活方式做简要解释:积碳失活:催化剂在使用过程中,因表面逐渐形成碳的沉积物从而使催化剂的活性下降的过程称积碳失活。
中毒失活:催化剂的活性和选择性由于某些有害物质的影响而下降的过程称为催化剂中毒。
热失活和烧结失活:催化剂由于高温造成烧结或者活性组分被载体包埋,活性组分由于生成挥发性物质或可升华的物质而损失造成的活性降低的现象。
正文一、积炭失活催化剂表面上的含碳沉积物称为结焦。
以有机物为原料以固体为催化剂的多相催化反应过程几乎都可能发生结焦。
由于含碳物质和/或其它物质在催化剂孔中沉积,造成孔径减小(或孔口缩小),使反应物分子不能扩散进入孔中,这种现象称为堵塞。
所以常把堵塞归并为结焦中,总的活性衰退称为结焦失活,它是催化剂失活中最普遍和常见的失活形式。
通常含碳沉积物可与水蒸气或氢气作用经气化除去,所以结焦失活是个可逆过程。
与催化剂中毒相比,引起催化剂结焦和堵塞的物质要比催化剂毒物多得多。
在实际的结焦研究中,人们发现催化剂结焦存在一个很快的初期失活,然后是在活性方面的一个准平稳态,有报道称结焦沉积主要发生在最初阶段(在0.15s 内),也有人发现大约有50%形成的碳在前20s 内沉积。