人教新课标版七年级数学上册§121有理数 教案
人教版版七年级上册数学第一章《有理数》1.2.4节《绝对值》教学设计(优质获奖).doc

1.2.4绝对值(第1课时)一、教学内容解析本节课的教学内容是绝对值.绝对值是笫一章有理数的一个重要内容,首先它可以促进学生对数轴、相反数概念的理解,其次它将冇理数的运算归结到了非负数的运算,我们以有理数的加法的知识框图为例,可以发现,如果没有绝对值的概念,则有理数的加法是很难进行运算的.最后绝对值还是有理数比较大小的借助数轴,给出了绝对值的定义,是数形相依的意识的具体体现;由绝对值的定义,归纳出了绝对值的性质,运用了分类讨论的思想;同时,通过观察具体数的绝对值,归纳岀了求任意一个数的绝对值的方法,渗透了从特殊到一般的学习方法;这些对今后的学习其它知识有很大的帮助.在教科书中,绝对■值的概念是借助距离概念加以定义,在数轴上,一个点由方向和距离(长度)确定;相应地,一个实数由符号与绝对值确定•这里,“方向” 与“符号”对应,“距离”与“绝对值”对应,又一次体现了数与形的结合、转化.所以,绝对值可以理解为距离这一几何量的代数表示.因此,在学习绝对值的概念吋,注意从实际问题引入,通过所创设的情境,引入了绝对值的概念•在学习了绝对值的定义后,概括出了绝对值的性质,而其性质将会是以后学生求一个数的绝对值时的首选方法.因此,可以确定本节课的教学重点为:绝对值的定义和性质.学生学情分析北京汇文屮学是北京市示范性屮学,同吋承担了北京市东城区教委创立的小学六年级“少年科学班”的教育教学工作,我所授课班级就是该“少年科学班”, 该班学生数学基础较好,学生个性活泼,思维活跃,积极性高,学习完正数与负数、数轴、相反数的内容后,通过随堂测试,发现该班大部分学生的成绩接近我校初一年级的平均分.但是,学生的抽象概括能力仍相对薄弱,思维过程不够完善,对符号P、"I及其意义的理解存在一定困难.从实际问题引入,抽象出绝对值的概念,有益于学生借助自身的生活经验感知概念.因此,木课的教学教学难点是:抽象出绝对值概念的过程.三、教学目标设置(1)知识技能:了解绝对值的表示方法,理解绝对值的概念,会求有理数的绝对值.(2)数学思考:经历绝对值概念的抽象与形成的过程,和归纳绝对值的性质过程,体会数形相依和分类讨论的观点.(3)问题解决:经丿力将实际问题抽象为数学问题的过程,从几何、代数两个角度得到求一个数的绝对值的方法.(4)情感态度:通过归纳绝对值的性质的过程,获得数学活动的经验.同时,通过实际情境,受到爱国主义教育.四、教学策略分析(1)在学习课标、研读教材的基础上,把绝对値这部分的内容划分为两课吋,第一课吋即木课吋得到绝对值的定义和性质,第二课吋得到有理数比较大小的方法并综合运用绝对值的定义和性质解决问题.(2)本节课采取教师启发引导与学生探究相结合的方式,使学生亲身休验得到绝对值的定义和性质过程.(3)促使学生采取积极主动、勇于探索的学习方式进行学习.(4)根据“以学定教”的原则,及时调整教学方案.五、教学过程1 •创设情境,引入概念情境1通过抗战胜利阅兵视频引出问题.2015年9 JJ 3 H,在北京举行的纪念抗H战争腔利70周年的阅兵活动屮,一个受阅方阵自东向西经过长安街,则该方阵在行进时共冇几次和北京城屮轴线与长安街的交汇处的距离为20米?师生活动:学生先一起回答问题后,教师再建系,引导学生通过数轴解释问题. 请其他学生修止或补充•教师点评.设计意图:通过实际情境,让学生感知距离是只考虑长度,不考虑方向的•同时, 通过建系,让学生体会在数轴上求出表示一个数的点与原点的距离.为Z后学生自己建系、自己举例做好铺垫•同时,在教学中,渗透爱国主义教育.情境2哈利法塔在75层和100层各有一间避难所•如果发生火灾时,一位游客恰好在85层•如果仅从距离的角度考虑,他会选择哪一层的避难所呢?师生活动:学生先一起冋答问题后,教师再建系,引导学生通过数轴解释问题. 请其他学生修止或补充•教师点评.设计意图:通过实际情境,让学生感知在考虑这个问题时,只考虑距离,不考虑方向•同时,再次通过建系,让学生体会在数轴上求出表示一个数的点与原点的距离•为之后学生口己建系、口己举例做好铺垫.情境3小明家正东3千米处有家超市A,正东2 T米处有家超市C ,正西2千米处有家超市B.如呆仅从距离的角度考虑,他会选择哪家超市?小明家正东3千米处有家超市正东2千米处有家超市C,正西2千米处有家超市〃•如果仅从距离的角度考虑,他会选择哪家超市?B OC A匹鰹I号一师生活动:学生先一起回答问题后,再由学生建立数轴解释问题•请其他学生修正或补充•教师点评.设计意图:通过实际情境,再次让学生感知在考虑距离的不用考虑方向的特征,同时•同时,通过自己建系,培养学生的建模能力,并再次体会在数轴上求出表示一个数的点与原点的距离•为之后自己举例、学习绝对值的概念做好铺垫. 提出问题:你能举出类似的例子吗?师生活动:学生自己举例子,自己建系,请其他学生修正或补充.教师点评.设计意图:让学生体会出在实际生活屮,只考虑距离,不考虑方向的事例是大量存在的.已引入绝对值的概念.§1.2.4绝对值一. 定义:一般地,数轴上表示数d的点与原点的距离叫做数d的绝对值•记作|Q|.Ml---- •• ---- o a—>举例:B O■C-34-1 0 123|-2|2.辨识概念,深化认识通过借助绝对值的定义,求出具体数的绝对值.例1・在数轴上画出表示下列各数的点,并求岀下列各数的绝对值.1 33,-2, 2, 1-, -2.5, 0.3 4师生活动:学生现在数轴上画出毎个数对应的点,再依次求出毎个数的绝对值, 并说明理由•教师点评.设计意图:引导学生借助数轴,求出一个数的绝对值,并口述理由,加深学生对绝对值概念的理解•在设计题目时,设计了三个止数,三个负数和零共三种情况, 方便学生之后概括性质.思考观察这七个数的绝对值,你能从中发现什么规律?活动1:请同学们先思考,再相互讨论.设计意图:引导学生通过观察例1屮七个数的绝对值,发现并概括出绝对值的性质•培养学生的观察和概括能力.得岀的结论:(1) 一个正数的绝对值是它本身;(2) 一个负数的绝对值是它的相反数;(3) 0的绝对值是0.师生活动:引导学生利用绝对值的性质,重新计算例1中七个数的绝对值,并说 明理由•教师点评.活动:请学生以一问一答的形式,计算一个数的绝对值,并说明理曲•教师点评. 设计意图:加深学生对绝对值概念的理解的绝对值,并为之后借助符号语言概括 绝对■值的性质提供素材.思考 2: \a\=?活动2:请同学们先思考,再相互讨论.二性质:⑴如果a>09那么|4二a ;(2) 如果 a=O 9 那么|a|= 0;(3) 如果 a<0,那么|a|= -a,小结:回顾所学的绝对值的知识,同时回顾得到绝对值概念的过程.设计意图:回顾所学知识,帮助学生解决Z 后的练习,同时,回顾得到绝对值概 念的过程,让学生体会数形相依、分类讨论的思想方法,以及从特殊到i 般的学 习方法.练习1 •判断下列说法是否正确.(1) 符号相反的数互为相反数;(2) —个数的绝对值越大,表示它的点在数轴上越靠右;(3) —个数的绝对值越大,表示它的点在数轴上离原点越远;⑷当a#0时,|a|总是大于0练习2•判断下列各式是否正确:(3)-5=|-5|.练习3•如图,检测5个排球,其中超过标准的克数记为正数,不足的克数记为负 数,从轻重的角度看,哪个球最接近标准?卜5 师生活动:学生回答问题,并说明理由•教师点评设计意图:引导学生解决不同类型的题目,加深学生对绝对值3•理解应用,巩 概念3.5 +0.7 -2.5 -0.6概念的理解.4•归纳总结,布置作业小结:通过今天这节课,你有哪些收获和感受? 师生活动:学生谈收获和感想,教师点评.作业:教材习题1.2:5, 10, 12.思考题:若|a|=-a,求d的取值范围.设计意图:根据学生的情况,留不同难度的作业,设置一道思考题,让学有余力的同学完成,可以加深学牛对绝对值概念的理解,并提高学牛的学习兴趣.。
七年级数学上册121有理数教案人教新课标版

人教版七年级第一章第二节 有理数 教案【教学目标】知识技能1. 进一步加深对负数的认识。
2. 掌握有理数的概念,会对有理数按照一定的标准进行分类, 初步了解“集合”的含义。
过程方法体会分类讨论的思想,能理解不同的分类标准有不同的分类方法,但都要求不重不漏。
情感态度通过师生合作,使分数、整数在引入负数的基础上达到完善,从而体会到成功的快乐。
【教学重点】正确理解有理数的概念。
【教学难点】正确理解分类的标准和按照定的标准进行分类。
【复习引入】1. 我们知道,所有的分数都可以写成两个整数的比.有限小数0.37可以写成两个整数的比吗?无限循环小数•3.0也可以写成两个整数的比吗?所有的有限小数都是分数吗? 所有的无限循环小数呢?结论:所有的有限小数和无限循环小数都是分数.想一想:小数3.14159265是分数吗?圆周率π为什么不是分数?你能确定小数3.14159265…是不是分数吗?2.小学所学的整数只包括正整数和零,也就是自然数.学了负整数以后,今后我们所指的整数与小学时所学的整数有什么不同? 对,还有负整数。
结论:正整数﹑零﹑负整数统称整数.3. 下列负数哪些是负分数? -12, 73-, -0.33, •-3.5. 【教学过程】1. 所有正整数组成正整数集合, 所有负整数组成负整数集合.请把下列各数填入它所属于的集合的大括号里:1, 0.0708, -700, -3.88, 0, 3.14159265, 237-, ••32.0. 正整数集合:{ …} 负整数集合:{ …}整数集合:{ …}正分数集合:{ …} 负分数集合:{ …}分数集合:{ …}(注意:大括号内的省略号表示什么?)数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号。
补充:所有正数组成正数集合,所有负数组成负数集合,所有整数组成整数集合,所有分数组成分数集合,所有正数和0组成非负数集合,所有正整数和0组成自然数集合……2.归纳概念:整数:正整数、0、负整数统称为整数。
数学:1.2.1《有理数》课件(人教新课标七年级上)

拓展
1、 0是整数吗?自然数一定是整数
吗?0一定是正整数吗?整数一定是自然 数吗? 2、图中两个圆圈分别表示正整数集合和整 数集合,请写并填入两个圆圈的重叠部分.你 能说出这个重叠部分表示什么数的集合吗?
… … …
正数集合
整数集合
作
业
教科书第18页习题1.2第1题
把下列给数填在相应的大括号里:
-4,0.001,0,-1.7,15,+1.5.
练习
1,任意写出三个有理数,并说出是什 么类型的数,与同伴进行交流.
练习
2.把下列各数填入它所属于的集合的 圈内: 15,
1 , 9
-5,
13 2 , 8 , 0.1, -5.32, 15
…
-80,
…
123, 2.333.
正整数集合
…
负整数集合
…
正分数集合
负分数集合
课堂小结
到现在为止我们学过的数都是 有理数(圆周率除外),有理数 可以按不同的标准进行分类,标 准不同,分类的结果也不同。
• 正整数、0、负整数统称整数, • 正分数和负分数统称分数. • 整数和分数统称有理数
正整数 整数零 负整数 有理数 分数正分数 负分数
我们还可以按其它标准分类吗?
正整数 正有理数 正分数 有理数零 负整数 负有理数 负分数
正数集合{
…},负数集合{ …},
正整数集合{ …},分数集合{ …}
首页
上页
下页
;上海应用技术大学国际教育中心/ ;
相对多一些.她知道,自身将来要伺候の呐位主子,是一名极其强大の道法、炼体双料善王.在整个法辰王国,也有着非常高の身份地位,连王尪大家,对自身の呐位主子都拾分客气.鞠言进入房间,关上房门.拾天之后,他可能就会进入法辰王国の修炼秘境进行较长事间の闭关.呐拾天事间,就 稍微准备一下吧!……红叶王国,国都皇宫!红叶老祖自当日从法辰王国离开后,便直接到了红叶王国の皇宫.呐一日,红叶王国の段泊王尪和尹红战申,也从法辰王国回到了红叶王国の国都.大殿内,只有红叶老祖呐位天庭大王和红叶王国の段泊王尪.“师尊!”段泊王尪拜见红叶大 王.“嗯!”红叶大王摆了摆手,而后说道:“那个鞠言,你要对他继续多加关注.”“是!弟子会派人,暗中对此人监视.”段泊王尪点头,顿了一下,他又凝眉道:“师尊,呐个鞠言,真の那么叠要吗?”“你想说哪个?”红叶大王眼睛一眯道.“师尊,呐个鞠言确实天赋极高,又是炼体、道法 双料善王.此人若愿意加入红叶王国,那自然是很好の,俺们都希望他能加入俺们红叶王国.但是他不愿意加入,似乎……也不用去杀他吧?如此一来,俺们红叶王国の名声可能会有一些不好,而且与其他几个王国の关系也可能受到影响.”真正要杀鞠言の,其实并不是段泊王尪.呐么多年来,段 泊王尪在其他几位王尪の印象中,并不是那么霸道の一个人.就由于鞠言战申不愿意加入红叶王国,就要杀鞠言战申,呐不是段泊王尪の行事风格.要不然,仲零王尪等人在段泊王尪要杀鞠言战申の事候,也不会显得那么吃惊.而且呐种事发生,也确实是会影响红叶王国在混元空间の名声.现在, 就已经有不少人暗中议论红叶王国の所作所为了.大多数の声音,对红叶王国都是带有批评意味の.红叶王国,不占理!“你不懂!”红叶大王却是摇摇头,他也没由于段泊王尪呐番话而生气.“呐个鞠言,不寻常.若只是炼体、道法双料善王,那虽然很不错,但也不会令俺如此上心.尹红战申 就是道法、炼体双料善王,又如何?”“段泊,呐鞠言所牵扯の事情,是你目前不能理解の.先前,俺也只是隐约の有预感,可是在伏束大王出面后,俺就差不多能确定了.”红叶大王先是摇摇头,随后又点点头说道.“师尊,伏束大王想干哪个?师尊你要杀一个小辈而已,伏束大王居然出面干预! 伏束大王,以前还曾到过俺红叶王国做客过,师尊对他也是礼数周全!”段泊王尪带着怨气说道.“呵呵,伏束大王出面,自是有他必须出面の原因.只是,在他出面之前,俺也没想到他会呐么做.否则,俺会直接就斩杀掉鞠言呐小子,让伏束根本来不及插手.”红叶大王冷笑了一声说道.“总之, 鞠言此子若不能为俺所用,那就要将他毁掉.段泊,你记住了,现在呐个鞠言已经不可能为俺所用,所以一旦有机会,便要将此子斩杀,以绝后患!”红叶大王又加叠了语气,对段泊王尪吩咐.“是,师尊放心!”段泊王尪连点头.“混元空间,怕是要不那么平静了.界善中已出现一些迹象,很可能 ……”红叶大王声音变得低沉,像是在自言自语.“师尊,难道是……混元通道又要开启了吗?”段泊王尪眼申一亮,连呼吸都急促起来.他是大王の弟子,他所知道の事情,比其他王尪都要多一些.记住收寄版网址:m,第三零伍七章以绝后患(第一/一页)『加入书签,方便阅读』第二零伍八章 进秘境第二零伍八章进秘境(第一/一页)红叶大王琛看了一眼站在面前の段泊王尪.而后,他并未立刻回答段泊王尪の问题,他の目光看向前方,似是陷入了回忆之中.见师尊红叶大王呐样の申情,段泊王尪屏住呼吸,不敢打扰.过了好一会,红叶大王才淡淡の出声说道:“上一次混元通道开启, 已是极其久远の事情了.以至于俺,对那次通道开启の印象都有些模糊了.”段泊王尪安静の听着,只是眼申却是极其の吙热,透着渴望.“耐心の等待吧!若是……真の开启,总有你の机会.你只需要在机会出现の事候,紧紧の抓住便是.”红叶大王又看向段泊王尪道.“是,师尊!弟子,明 白!”段泊王尪抑制不住心中の激动之情.段泊王尪,也是一名拥有混元无上称号の强大善王.不过单单论攻击历,他比起红叶王国の尹红战申,还要稍微の弱上一分.尹红战申呐个混元第一战申,可不是吃素の.而且,段泊王尪の年纪也是极大,正常情况下,他想要在实历上有巨大の进步是没 哪个希望の.即便使用各种珍贵の资源,实历上の进步也有限.但是,段泊王尪并不满足于自身の实历,他有着更大の野心.而由于红叶大王の存在,也令他能够获得更多の隐秘信息.呐混元通道,便是一个极少有人知道の玄奥存在.段泊王尪知道,混元通道の开启,便是一次天大の机会,一次甚 至可能令他进入天庭の机会.不过呐机会如何抓住以及使用,段泊王尪也不是很清楚,红叶大王没有对她详细の说过混元通道の事情.他只知道,混元通道,是连通其他混元空间の一条通道.“好了,就呐样吧!俺,走了.”红叶大王道.“恭送师尊!”段泊王尪连忙琛琛躬身,在他再次抬起头の 事候,红叶大王已是消失在在他の面前.……法辰王国の国都,鞠府!此事,距离战申榜排位赛结束,已过了拾余天不到半个月の事间.“鞠言战申!”柳涛公爵来到鞠府,面见鞠言.“柳涛公爵.”鞠言向柳涛公爵打招呼.“鞠言战申,陛下请你过去一趟.陛
人教版数学七年级上册1.2有理数教案

1.2有理数1.2.1有理数教学目标1.理解有理数的意义.2.能把给出的有理数按要求分类.3.了解0在有理数分类中的作用.4.体验分类是数学上的常用处理问题的方法。
教学重点重点会把所给的各数填入它所属于的集合里.难点掌握有理数的两种分类.教学过程一、创设情境,导入新课师:同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.学生讨论.二、合作交流,解读探究师:你能列举出一些你已经学过的各类型的数吗?学生列举:3,5.7,-7,-9,-10,0,13,25,-356,-7.4,5.2,…师:你能说说这些数的特点吗?学生回答,并相互补充.教师指出,我们把所有的这些数统称为有理数.你能对以上各种类型的数作出分类吗?说明:以上分类,若学生有因难,可加以引导:整数和分数统称为有理数,所以有理数可分为整数和分数两大类,那么整数又包含哪些数?分数呢?以上按整数和分数来分,那可不可以按性质(正数、负数)来分呢?试一试.说明:让学生感受分类的方法和原则,统一标准,不重不漏.三、应用迁移,巩固提高例1:把下列各数填入相应的集合内:3.1415926,0,2008,-12,-7.88,10%,10.1,0.67,-89.正数集合负数集合整数集合分数集合例2:以下是两位同学的分类方法,你认为他们的分类结果正确吗?为什么?四、练习与小结练习:教材练习题.小结:谈一谈今天你的收获.五、作业习题1.2第1题教学反思本课在引入了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概念.分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进行简单的分类是数学能力的体现,本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性。
1.2.2数轴教学目标1.了解数轴的概念,知道数轴的三要素,会画数轴.2.能将已知数在数轴上表示出来,能说出数轴上的已知点表示的数.3.掌握数轴的概念,理解数轴上的点和有理数的对应关系;4.感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。
2024年新人教版七年级数学上册教案

2024年新人教版七年级数学上册教案一、教学目标知识与技能掌握有理数的概念,包括正数、负数、零及其运算规则。
学会使用数轴表示有理数,并能进行简单的数轴运算。
理解代数式的概念,能进行基本的代数运算。
过程与方法通过观察、归纳、类比等数学活动,培养学生的数学思维能力。
引导学生通过小组合作,共同探究数学问题,提高解决问题的能力。
情感、态度与价值观激发学生对数学学习的兴趣,树立学好数学的信心。
培养学生的团队合作精神和探究精神,形成积极向上的学习态度。
二、教学重点和难点教学重点有理数的概念和运算规则。
数轴的基本性质和数轴上的运算。
代数式的基本形式和代数运算方法。
教学难点有理数运算中符号的处理。
数轴上点的位置与有理数大小关系的理解。
代数式中变量的代入和化简。
三、教学过程导入新课通过生活中的实例,引出有理数的概念,如温度的变化、海拔的升降等。
提问学生已知的数学知识,激发学生的好奇心和求知欲。
知识讲解详细讲解有理数的定义、分类和运算规则,注重符号的处理。
通过实例演示数轴的基本性质和数轴上的运算方法。
引导学生理解代数式的基本形式,讲解代数运算的方法和技巧。
课堂练习设计多样化的练习题,让学生巩固所学知识,如选择题、填空题和计算题等。
鼓励学生独立思考,小组合作,共同解决问题。
及时反馈学生的练习情况,针对错误进行纠正和指导。
互动探究组织学生进行小组讨论,探究数学问题的解决方法。
引导学生通过观察、归纳、类比等方式,发现数学规律。
培养学生的创新思维和实践能力,提高学生的数学素养。
课堂总结总结本节课的知识点,强调重点和难点。
回顾学生的练习情况和互动探究的表现,进行鼓励和肯定。
布置课后作业和预习任务,为下一节课做好准备。
四、教学方法和手段教学方法启发式教学:通过提问和讨论,引导学生主动思考和探究数学问题。
合作学习:组织学生进行小组合作,共同解决问题,培养团队合作精神。
直观教学:利用数轴、图表等直观工具,帮助学生理解数学概念和运算规则。
人教版-数学-七年级上册-人教版七年级第一章第二节 1.2有理数 教案

人教版七年级第一章第二节 有理数 教案【教学目标】知识技能1. 进一步加深对负数的认识。
2. 掌握有理数的概念,会对有理数按照一定的标准进行分类, 初步了解“集合”的含义。
过程方法体会分类讨论的思想,能理解不同的分类标准有不同的分类方法,但都要求不重不漏。
情感态度通过师生合作,使分数、整数在引入负数的基础上达到完善,从而体会到成功的快乐。
【教学重点】正确理解有理数的概念。
【教学难点】正确理解分类的标准和按照定的标准进行分类。
【复习引入】1. 我们知道,所有的分数都可以写成两个整数的比.有限小数0.37可以写成两个整数的比吗?无限循环小数•3.0也可以写成两个整数的比吗?所有的有限小数都是分数吗? 所有的无限循环小数呢?结论:所有的有限小数和无限循环小数都是分数.想一想:小数3.14159265是分数吗?圆周率π为什么不是分数?你能确定小数3.14159265…是不是分数吗?2.小学所学的整数只包括正整数和零,也就是自然数.学了负整数以后,今后我们所指的整数与小学时所学的整数有什么不同? 对,还有负整数。
结论:正整数﹑零﹑负整数统称整数.3. 下列负数哪些是负分数?-12, 73-, -0.33, •-3.5. 【教学过程】 1. 所有正整数组成正整数集合, 所有负整数组成负整数集合.请把下列各数填入它所属于的集合的大括号里:1, 0.0708, -700, -3.88, 0, 3.14159265, 237-, ••32.0. 正整数集合:{ …} 负整数集合:{ …}整数集合:{ …}正分数集合:{ …} 负分数集合:{ …}分数集合:{ …}(注意:大括号内的省略号表示什么?)数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号。
补充:所有正数组成正数集合,所有负数组成负数集合,所有整数组成整数集合,所有分数组成分数集合,所有正数和0组成非负数集合,所有正整数和0组成自然数集合……2.归纳概念:整数:正整数、0、负整数统称为整数。
新人教版七年级数学上册 1.2.1《有理数》教学设计

新人教版七年级数学上册 1.2.1《有理数》教学设计一. 教材分析新人教版七年级数学上册1.2.1《有理数》是学生在学习了整数和分数的基础上,进一步学习有理数的知识。
本节课主要让学生了解有理数的定义,掌握有理数的分类,以及了解有理数的大小比较。
教材通过引入生活中的实例,使学生感受有理数在实际生活中的应用,提高学生的学习兴趣。
二. 学情分析七年级的学生已经掌握了整数和分数的知识,具备了一定的数学基础。
但部分学生对于抽象的概念理解起来可能存在困难,因此需要教师在教学过程中耐心引导,帮助学生建立直观的认识。
此外,学生对于数学在实际生活中的应用有一定的兴趣,教师可以抓住这一点,激发学生的学习积极性。
三. 教学目标1.理解有理数的定义,掌握有理数的分类。
2.学会有理数的大小比较方法。
3.能够运用有理数解决实际生活中的问题。
4.培养学生的逻辑思维能力和团队合作能力。
四. 教学重难点1.有理数的定义和分类。
2.有理数的大小比较方法。
五. 教学方法1.情境教学法:通过生活实例引入有理数的概念,让学生感受数学与生活的紧密联系。
2.小组讨论法:引导学生分组讨论,共同探讨有理数的分类和大小比较方法。
3.实践操作法:让学生通过实际操作,加深对有理数知识的理解。
4.激励评价法:及时给予学生鼓励和评价,提高学生的学习积极性。
六. 教学准备1.教学课件:制作课件,展示有理数的定义、分类和大小比较方法。
2.教学素材:准备一些实际生活中的例子,用于引导学生学习有理数。
3.学具:准备一些卡片,上面写有不同类型的有理数,用于学生分组讨论。
七. 教学过程1.导入(5分钟)利用课件展示一些生活中的实例,如温度、海拔等,引导学生思考这些现象可以用哪种数学知识来表示。
通过讨论,让学生感受有理数在实际生活中的应用,激发学生的学习兴趣。
2.呈现(10分钟)介绍有理数的定义,让学生了解有理数的概念。
接着,展示有理数的分类,包括整数、分数和零。
通过课件和实物展示,让学生对有理数有更直观的认识。
人教版七年级数学上册1.3.1有理数的加法(教案)

5.通过有理数加法的学习,培养学生的逻辑思维能Байду номын сангаас和解决问题的能力。
二、核心素养目标
1.培养学生运用数学语言进行表达与交流的能力,通过有理数加法的学习,增强数学表达和逻辑推理的素养。
2.激发学生的数学抽象思维,提高对有理数概念及其加法法则的理解,培养数学抽象和模型构建的核心素养。
人教版七年级数学上册1.3.1有理数的加法(教案)
一、教学内容
人教版七年级数学上册1.3.1有理数的加法,主要包括以下内容:
1.掌握有理数的定义,了解有理数的分类(正有理数、负有理数、零)。
2.学习有理数的加法法则,包括同号相加、异号相加、零与任何有理数相加的情况。
3.能够运用有理数加法法则解决实际问题,进行数值计算。
3.培养学生运用数学知识解决实际问题的能力,将加法运算与生活实际相结合,提升数学应用和问题解决的素养。
4.培养学生的数据分析和逻辑推理能力,通过有理数加法运算的训练,提高数据处理和推理的素养。
5.培养学生的团队合作意识,在小组讨论和互助学习中,增强合作交流与批判性思考的能力。
三、教学难点与重点
1.教学重点
五、教学反思
在今天的有理数加法教学中,我发现学生们对于有理数的概念和加法法则的理解整体上是积极的。他们对于正有理数、负有理数的分类能够较快掌握,但在异号相加的规则上,尤其是绝对值的处理上,还存在一些困难。这让我意识到,在讲解这部分内容时,需要更加细致和具体。
我尝试通过生活实例引入有理数加法,如温度变化、收支情况等,学生们对这些例子很感兴趣,能够更好地将数学与实际联系起来。但在实际操作中,我发现在将问题抽象为数学运算这一步骤上,学生们还是显得有些吃力。这可能是因为他们还没有形成将实际问题转化为数学模型的思维方式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2.1有理数
★目标预设
一、知识与能力:
1、能把给出的有理数按要求分类.
2、了解数0在有理数分类中的应用.
二、过程与方法:
经历从实际中抽出数学模型,从数形结合两个侧面理解问题;并能选择处理数学信息,做出大胆猜测.
三、情感态度与价值观:
体会数学知识,以现实世界的联系,体现数学充满着探索性.
★重点和难点:
有理数的分类方法
★教学准备:
温度计
★预习导学:
1、观察下面依次排列的一列数,它的排列有什么规律?请接着写出后面的3个数,你能写出第2002个数是什么吗?
①-1,1、1、-1、-1、1、1、-1、、、……②2,-4,-
6,8,10,-12,-14,16,,,
……
2、填空:甲乙两人同时从A地出发,如果甲向南走48m记作+48m,则乙向北走32m记作;这时甲、乙两人相距m.
★教学过程
一、创设情景,谈话导入:
1、教师问:你所知道的数可以分成哪些种类?你是按照什么划分的?
2、0.1、-0.5、5.32、-150.25等为什么被划为分数?我们学过的小数都是分数吗?
(友情提示,全班交流,教师点评)
二、精讲点拨,质疑问难
1、给出新的整数,分数的概念:引进负数后,数的范围扩大了.
整数包括:正整数,负整数和零.同样分数包括:正分数,负分数.
即整数——⎪⎩
⎪⎨⎧⋯⋯⋯⋯3210321、-、-负整数 如 :-零 、、正整数 如 :
分数——⎪⎪⎩
⎪⎪⎨⎧⋯⋯⋯⋯573221573221、-、-负分数 如:-、、正分数 如:
2、给出有理数概念:整数与分数统称为有理数. 即有理数⎪⎪⎪⎪⎪⎩
⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数也可分为 有理数
⎪⎩⎪⎨⎧负有理数零正有理数 3、正数和零统称为非负数. 和
统称为非正数.
4、有理数都可表示成b
a 的形式.
三、课堂活动,强化训练 例1、 下列各数是正数还是负数,整数还是分数?
-5、8、8.4、-8
1、0 (小组点评,学生回答,教师点评)
例2、将下列各数填入表示集合的在括号里:-5、0.3、43、-2
1、8848、-39
2、0、-23
1、213.4 正整数集合:{ ……}
负数集合:{ ……}
整数集合:{ ……}
分数集合:{ ……}
(畅所欲言,学生点评,得出结论)
学生练习:
1、书本P10第1题 .
2、把有理数6.4、-9、32、+10、-4
3、-0.021、-1、731、-8.5、25、-10按两种标准分类. (教师巡视,发现问题,个别指导)
四、延伸拓展,巩固内化
1、填空:
①在数字3、-0.5、-31、-52、0.8、239%、131中,在负数集合里的数是 , 在分数集合中的数是 .
②整数和分数合起来叫作 ;正分数和负分数合起来叫作 .
③最大的负整数为 ,最小的正整数 ,最小自然数是 。
④观察下面依次排列的一列数,它的排列有什么规律?请接着写出后面的3个数,你能写出第2001个数是什么吗?
-1,-31,51,71,-91,-111,131,15
1, , ,……. 第2001个数是 .
2、选择题:
① 下面说法中正确的是 ( )
A、正数和负数统称有理数
B、0既不是整数,又不是分数
C、零是最小的数
D、整数和分数统称有理数
② 下列各数中一定是有理数的是( )
A、π B、a C、7
2 D、a-
3 ③、一组数:-4,+1.7,-53,0, 99,-83
1, -1.6中,整数有m个,负分数有n个,则( )
A、m=n B、m>n
C、m<n D、m、n的大小不能确定
3、下列各数-31、0、‰9525.0780187
22、、、、、π--填入相应的括号中
正数集合{},负数集合{}正分数集合{},非负数集合{}小数集合{}
4、根据你对集合圈的理解填下图
五、布置作业
书P10及《当堂反馈》
教后反思
3060。