西南大学网络学院20年春季[0931]《工程数学》在线作业辅导答案

合集下载

国家开放大学《工程数学》章节测试参考答案

国家开放大学《工程数学》章节测试参考答案

国家开放大学《工程数学》章节测试参考答案第2章 矩阵(一)单项选择题(每小题2分,共20分)⒈设,则(D ).A. 4B. -4C. 6D. -6⒉若,则(A ). A.B. -1C.D. 1⒊乘积矩阵中元素(C ). A. 1 B. 7 C. 10 D. 8⒋设均为阶可逆矩阵,则下列运算关系正确的是(B ). A. B.C. D.⒌设均为阶方阵,且,则下列等式正确的是(D ).A. B. C. D.⒍下列结论正确的是(A ). A. 若是正交矩阵,则也是正交矩阵B. 若均为阶对称矩阵,则也是对称矩阵C. 若均为阶非零矩阵,则也是非零矩阵D. 若均为阶非零矩阵,则a a ab b bc c c 1231231232=a a a a b a b a b c c c 123112233123232323---=000100002001001a a=a =12-121124103521-⎡⎣⎢⎤⎦⎥-⎡⎣⎢⎤⎦⎥c 23=A B ,n A BAB+=+---111()AB BA--=11()A B A B +=+---111()AB A B ---=111A B ,n k >0k ≠1A B A B +=+AB n A B =kA k A =-=-kA k A n ()A A -1A B ,n AB A B ,n AB A B ,n AB ≠0⒎矩阵的伴随矩阵为(C ).A. B. C. D. ⒏方阵可逆的充分必要条件是(B ).A.B.C.D.⒐设均为阶可逆矩阵,则(D ).A. B. C.D.⒑设均为阶可逆矩阵,则下列等式成立的是(A ). A. B.C.D.(二)填空题(每小题2分,共20分)⒈ 7 。

⒉是关于的一个一次多项式,则该多项式一次项的系数是 2 。

⒊若为矩阵,为矩阵,切乘积有意义,则为 5×4 矩阵。

⒋二阶矩阵 [151]。

⒌设,则 [6―35―18]。

⒍设均为3阶矩阵,且,则 72 。

国家开放大学工程数学(本)形成性考核作业一、二、三

国家开放大学工程数学(本)形成性考核作业一、二、三

工程数学(本)网上形考作业1—3参考答案每个题序号里是两个题型,做题时对应抽题序号核对题和答案形成性考核作业11、n阶行列式中元素的代数余子式与余子式之间的关系是().1、三阶行列式的余子式M23=().2、若A为3×4矩阵,B为2×5矩阵,且乘积AC'B'有意义,则C为(5×4 )矩阵.2、设A为3×4矩阵,B为4×3矩阵,则下列运算可以进行的是(AB).3、设,则().3、设,则BA-1().4、设A,B均为n阶可逆矩阵,则下列运算关系正确的是().4、设A,B均为n阶方阵,k>0且,则下列等式正确的是().5、下列结论正确的是(对任意方阵A,A+A'是对称矩阵).5、设A,B均为n阶方阵,满足AB=BA,则下列等式不成立的是().6、方阵A可逆的充分必要条件是().6、设矩阵A可逆,则下列不成立的是().7、二阶矩阵().7、二阶矩阵().8、向量组的秩为(3).8、向量组的秩是(3).9、设向量组为,则()是极大无关组.9、向量组的极大线性无关组是().10、用消元法得的解为().10、方程组的解为().11、行列式的两行对换,其值不变.(错)11、两个不同阶的矩阵可以相加.(错)12、设A是对角矩阵,则A=A'.(对)12、同阶对角矩阵的乘积仍然是对角矩阵.(对)13、若为对称矩阵,则a=-3.(错)13、若为对称矩阵,则x=0.(对)14、设,则.(错)14、设,则.(对)15、零矩阵是可逆矩阵.(错)15、设A是n阶方阵,则A可逆的充要条件是r(A)=n.(对)16、 7 .16、设行列式,则 -6 .17、若行列式,则a= 1 .17、是关于x的一个一次多项式,则该多项式一次项的系数是 2 .18、乘积矩阵中元素C23=10 .18、乘积矩阵中元素C21= -16 .19、设A,B均为3阶矩阵,且,则 -72 .19、设A,B均为3阶矩阵,且,则 9 .20、矩阵的秩为 1 .20、矩阵的秩为 2 .形成性考核作业21、设线性方程组的两个解,则下列向量中()一定是的解.1、设线性方程组的两个解,则下列向量中()一定是的解.2、设与分别代表非齐次线性方程组的系数矩阵和增广矩阵,若这个方程组有解,则().2、设与分别代表非齐次线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则().3、若某个非齐次线性方程组相应的齐次线性方程组只有零解,则该线性方程组(可能无解).3、以下结论正确的是(齐次线性方程组一定有解).4、若向量组线性相关,则向量组内(至少有一个向量)可被该向量组内其余向量线性表出.4、若向量组线性无关,则齐次线性方程组(只有零解).5、矩阵的特征值为(-1,4).5、矩阵A的特征多项式,则A的特征值为().6、设矩阵的特征值为0,2,则3A的特征值为(0,6 ).6、已知可逆矩阵A的特征值为-3,5,则A-1的特征值为().7、设A,B为n阶矩阵,既是A又是B的特征值,x既是A又是B的特征向量,则结论(x是A+B 的特征向量)成立.7、设是矩阵A的属于不同特征值的特征向量,则向量组的秩是(3).8、设A,B为两个随机事件,则()成立.8、设A,B为两个随机事件,下列事件运算关系正确的是().9、如果(且)成立,则事件A与B互为对立事件.9、若事件A,B满足,则A与B一定(不互斥).10、袋中有5个黑球,3个白球,一次随机地摸出4个球,其中恰有3个白球的概率为().10、某购物抽奖活动中,每人中奖的概率为0.3. 则3个抽奖者中恰有1人中奖的概率为().11、线性方程组可能无解.(错)11、非齐次线性方程组相容的充分必要条件是.(对)12、当1时,线性方程组只有零解.(对)12、当1时,线性方程组有无穷多解.(错)13、设A是三阶矩阵,且r(A)=3,则线性方程组AX=B有唯一解.(对)13、设A是三阶矩阵,且,则线性方程组AX=B有无穷多解.(错)14、若向量组线性相关,则也线性相关.(错)14、若向量组线性无关,则也线性无关.(对)15、特征向量必为非零向量.(对)15、若A矩阵可逆,则零是A的特征值.(错)16、当 1 时,齐次线性方程组有非零解.16、若线性方程组有非零解,则-1 .17、向量组线性相关.18、设齐次线性方程组的系数行列式,则这个方程组有非零解。

《工程数学》形成性考核作业1答案

《工程数学》形成性考核作业1答案

《工程数学》形成性考核作业1答案第2章 矩阵(一)单项选择题(每小题2分,共20分)⒈设a a a b b b c c c 1231231232=,则a a a a b a b a b c c c 123112233123232323---=(D ).A. 4B. -4C. 6D. -6 ⒉若000100002001001a a =,则a =(A ). A. 12 B. -1 C. -12D. 1⒊乘积矩阵1124103521-⎡⎣⎢⎤⎦⎥-⎡⎣⎢⎤⎦⎥中元素c 23=(C ). A. 1 B. 7 C. 10 D. 8⒋设A B ,均为n 阶可逆矩阵,则下列运算关系正确的是( B ). A. A BAB +=+---111 B. ()AB BA --=11C. ()A B A B +=+---111D. ()AB A B ---=111⒌设A B ,均为n 阶方阵,k 为常数,则下列等式正确的是(D ). A. A B A B +=+ B. AB n A B = C. kA k A = D. A k kA n = ⒍下列结论正确的是( A ).A. 若A 是正交矩阵,则A -1也是正交矩阵B. 若A B ,均为n 阶对称矩阵,则AB 也是对称矩阵C. 若A B ,均为n 阶非零矩阵,则AB 也是非零矩阵D. 若A B ,均为n 阶非零矩阵,则AB ≠0⒎矩阵1325⎡⎣⎢⎤⎦⎥的伴随矩阵为( C ). A. 1325--⎡⎣⎢⎤⎦⎥ B. --⎡⎣⎢⎤⎦⎥1325 C. 5321--⎡⎣⎢⎤⎦⎥ D. --⎡⎣⎢⎤⎦⎥5321 ⒏方阵A 可逆的充分必要条件是(B ).A.A ≠0B.A ≠0C. A *≠0D. A *>0 ⒐设A B C ,,均为n 阶可逆矩阵,则()ACB '=-1(D ). A. ()'---B A C 111 B. '--B C A 11C. A C B ---'111()D. ()B C A ---'111⒑设A B C ,,均为n 阶可逆矩阵,则下列等式成立的是(A ). A. ()A B A AB B +=++2222 B. ()A B B BA B +=+2 C. ()221111ABC C B A ----= D. ()22ABC C B A '=''' (二)填空题(每小题2分,共20分)⒈210140001---= 7 .⒉---11111111x 是关于x 的一个一次多项式,则该多项式一次项的系数是 2 .⒊若A 为34⨯矩阵,B 为25⨯矩阵,切乘积AC B ''有意义,则C 为 5×4 矩阵.⒋二阶矩阵A =⎡⎣⎢⎤⎦⎥=11015⎥⎦⎤⎢⎣⎡1051. ⒌设A B =-⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=--⎡⎣⎢⎤⎦⎥124034120314,,则()A B +''=⎥⎦⎤⎢⎣⎡--815360 ⒍设A B ,均为3阶矩阵,且A B ==-3,则-=2AB 72 .⒎设A B ,均为3阶矩阵,且A B =-=-13,,则-'=-312()A B -3 .⒏若A a =⎡⎣⎢⎤⎦⎥101为正交矩阵,则a = 0 . ⒐矩阵212402033--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥的秩为 2 . ⒑设A A 12,是两个可逆矩阵,则A O OA 121⎡⎣⎢⎤⎦⎥=-⎥⎦⎤⎢⎣⎡--1211A O O A . (三)解答题(每小题8分,共48分)⒈设A B C =-⎡⎣⎢⎤⎦⎥=-⎡⎣⎢⎤⎦⎥=-⎡⎣⎢⎤⎦⎥123511435431,,,求⑴A B +;⑵A C +;⑶23A C +;⑷A B +5;⑸AB ;⑹()AB C '.解:(1)⎥⎦⎤⎢⎣⎡=+8130B A (2) ⎥⎦⎤⎢⎣⎡=+4066C A (3)⎥⎦⎤⎢⎣⎡=+73161732C A (4)⎥⎦⎤⎢⎣⎡=+01222265B A (5)⎥⎦⎤⎢⎣⎡=122377AB (6)⎥⎦⎤⎢⎣⎡='801512156)(C AB⒉设A B C =--⎡⎣⎢⎤⎦⎥=-⎡⎣⎢⎤⎦⎥=--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥121012103211114321002,,,求AC BC +. 解:⎥⎦⎤⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎦⎤⎢⎣⎡=+=+10221046200123411102420)(C B A BC AC ⒊已知A B =-⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=-⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥310121342102111211,,求满足方程32A X B -=中的X .解: 32A X B -=∴ ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-=252112712511234511725223821)3(21B A X ⒋写出4阶行列式102014360253311-- 中元素a a 4142,的代数余子式,并求其值.答案:0352634020)1(1441=--=+a 45350631021)1(2442=---=+a⒌用初等行变换求下列矩阵的逆矩阵:⑴ 122212221--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥; ⑵ 1234231211111026---⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥; ⑶ 1000110011101111⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥. 解:(1)[]⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--−−−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----−−→−⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡------−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=+-+--+-++-+-919292929192929291100010001919292031320323110021020112201203231900630201102012001360630221100010001122212221|2313323212312122913123222r r r r r r r r r r r r rr I A⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--=∴-9192929291929292911A (2)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------=-35141201132051717266221A (过程略) (3) ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=-11000110001100011A ⒍求矩阵1011011110110010121012113201⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥的秩. 解:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+-+-+-+-+-00000000111000111011011011010111000011100011101101111112211100111000111011011111102311210121010011011110110143424131212r r r r r r r r r r ∴ 3)(=A R(四)证明题(每小题4分,共12分)⒎对任意方阵A ,试证A A +'是对称矩阵. 证明:'')''(')''(A A A A A A A A +=+=+=+∴ A A +'是对称矩阵⒏若A 是n 阶方阵,且AA I '=,试证A =1或-1. 证明: A 是n 阶方阵,且AA I '=∴ 12==='='I A A A A A∴A =1或1-=A⒐若A 是正交矩阵,试证'A 也是正交矩阵. 证明: A 是正交矩阵 ∴A A '=-1∴)()()(111''==='---A A A A即'A 是正交矩阵。

国家开放大学《工程数学(本)》形成性考核作业1-4参考答案

国家开放大学《工程数学(本)》形成性考核作业1-4参考答案
c. 方程个数大于未知量个数的线性方程组一定有无穷多解
d. 齐次线性方程组一定有解
3-2.
2
若某个非齐次线性方程组相应的齐次线性方程组只有零解,则
该线性方程组(D).
a. 有无穷多解
b. 有唯一解
c. 无解
d. 可能无解
4-1.若
向量组线性无关,则齐次线性方程组
(D).
a. 有非零解
b. 有无穷多解
a.
b.
c.
d.
8-2.设 A,B 为两个随机事件,则(B)成立.
a.
b.
c.
d.
9-1.若事件 A,B 满足
,则 A 与 B 一定(B).
a. 互不相容
b. 不互斥
c. 相互独立
d. 不相互独立
9-2.如果(B)成立,则事件 A 与 B 互为对立事件.
a.
b.

c. A 与
互为对立事件
d.
10-1.袋中有 5 个黑球,3 个白球,一次随机地摸出 4 个球,其中恰有 3 个白球
1

正确答案是:1
试题 18
中元素 C23=
18-1.乘积矩阵
10

正确答案是:10
18-2. 乘积矩阵
中元素
C21=
-16

正确答案是:-16
试题 19
19-1.设 A,B 均为 3 阶矩阵,且
,则
-72

正确答案是:-72
19-2. 设 A,B 均为 3 阶矩阵,且
,则
正确答案是:9
试题 20
20-1.矩阵
.(√)
13-2.已知连续型随机变量 X 的分布函数 F(x),且密度函数 f(x)连续,则

西南大学网络学院20年春季[0950]《数学教育评价》在线作业辅导答案

西南大学网络学院20年春季[0950]《数学教育评价》在线作业辅导答案

0950 20201单项选择题1、选择题、填空题、解答题的考查功能都包括()。

1. D. 考查运算能力2. E. 考查应用意识3.考查基本概念4.考查推理能力2、数学教育的评价主体以学校和()为主。

1. F. 学生2.班主任3.家长4.教师3、确立()在数学教学课堂教学评价活动中的主体地位。

1. B. 学科2.学生3.知识4.教师4、考查采用()制度。

1. C. 百分数2.等级3.分数4.无分数5、诊断性评价是在(),对学生的认知、情感和技能进行评估。

1.课后2.课程和学习结束时3.课程和学习开始前4.课堂上6、数学教师评价的基本方法除了课堂观察,还有学生的数学学业成就、()、同行评价、教师的自我评价1.家长评价2.数学教师成长记录袋3.学生评价4.绩效考评7、再测信度的计算方法是()。

1. A. 求两半试题分数的相关系数2.科隆巴赫系数公式3.求两次测试分数的相关系数4.求两个复本分数的相关系数多项选择题8、数学教育评价的常见模式有()。

1.目标本位评价模式2.形成性评价模式3.回应性评价模式4.实验定向评价模式9、试卷设计必须符合()的基本原则。

1.导向性2.适应性3.科学性4.全面性10、国际中小学数学教育评价的共同趋势有()。

1.评价主体的多元性2.学生是评价的主体3.评价方式的多样性4.评价内容的多元化与开放性11、教育评价领域通常按照评价的模式分为()方法和()方法。

1.量化2.结果评价3.过程评价4.质性12、数学教育评价的基本功能有()。

1.甄别、选拔功能2.调控与教学功能3.激励、改进功能4.诊断功能13、数学知识包括()。

1.证明2.定理3.定义4.公式14、质性评价收集信息与资料的途径通常有()。

1.观察法2.谈话法3.调查法4.记录袋法15、数学教育发展性评价的目的在于促进发展,旨在建立()的评价新体系。

1.评价目标全面化2.评价方式多样化3.评价主体多元化4.评价标准分层化5.评价内容综合化16、数学学习评价,通常借助于()手段。

四川大学《工程数学2387》20春在线作业1.doc

四川大学《工程数学2387》20春在线作业1.doc

1.A.-2B.-1C.0D.1【参考答案】: C2.A. B. C.D.【参考答案】: A3.A.不是,6B.是, 6C.不是,0D.是, 0【参考答案】: B4.A. B. C. D.【参考答案】: B5.定长矢量与其导矢之间满足的关系是A.相互平行B.相互垂直C.大小相等D.垂直且大小相等【参考答案】: B6.A. B.C.D.【参考答案】: A7.A.1B.C.0D.【参考答案】: D8.A. B. C. D.【参考答案】: C9.A. B. C. D.【参考答案】: A10.A. B.C. D.【参考答案】: A11.A. B. C. D.【参考答案】: B12.A. B. C. D.【参考答案】: D13.下面描述正确的是A.调和场的旋度为0B.调和场的散度为0C.调和场的梯度为0D.调和场的旋度和散度有可能不全为0。

【参考答案】: AB14.A. B.C.D.【参考答案】: BC15.下例选项正确的是A.数量场的梯度场是数量场。

B.数量场的梯度场是矢量场。

C.矢量场没有梯度场。

D.矢量场有梯度场。

【参考答案】: BC16.下面的概念是矢量的是A.梯度B.散度C.旋度D.方向导数【参考答案】: AC17.A. B.C.D.【参考答案】: D18.A.错误B.正确【参考答案】: B19.A.错误B.正确【参考答案】: A20.A.错误B.正确【参考答案】: A21.3、单位阶跃函数不满足狄利克雷条件,但是正、余弦满足狄利克雷条件。

A.错误B.正确【参考答案】: A22.A.错误B.正确【参考答案】: A。

西南大学2020年春季数学课程标准解读【0692】课程考试大作业参考答案

西南大学2020年春季数学课程标准解读【0692】课程考试大作业参考答案
在我国对数学 “双基” 比较公认的释义是:在特定教育阶段,根据教育目标
所确定的、学生发展所必需的最基本的数学知识、技能。一般认为,数学基本思想指对数学及其对象,数学概念和数学结构以及数学方法的本质性认识。它蕴含在数学知识形成、发展和应用过程中,制约着学科发展的主线和逻辑架构,也是数学知识和方法在更高层次上的抽象与概括。数学基本活动经验,是指学生通过亲身经历数学活动过程所获得的具有个性特征的经验。这里有两个关键词体现了其核心要义:一是“活动”,一是“亲身经历”。“四基”不是相互独立和割裂的,而是一个密切联系,相互交融的有机整体,在课程设计和教学活动组织中,应同时兼顾这四个方面的目标。这些目标的整体家现,是学生数学学科核心素养得以提升的保障。
【情境】在高中函数概念的教学中,为什么要强调函数是实数集合之间的对应关系?
【分析】初中学习的函数概念表述为:如果在一个变化过程中有两个变量 和 ,对于变量 的每一个值,变量 都有唯一的值与它对应,那么称 是 的函数。它强调的是用函数描述一个变化过程。例如,在匀速直线运动中(速度为 ),路程 随着时间 的变化而变化,因此路程是时间的函数,记为 。再如,在单价 、数量 、总价 的关系中,总价 随着数量 的变化而变化,因此总价是数量的函数,记为 ,通常把这样的表述称为函数的“变量说”。
学科价值《普通高中数学课程标准(2017年版)》指出:
数学抽象是数学的基本思想,是形成理性思维的重要基础,反映了数学的本质特征,贯穿在数学产生、发展、应用的过程中。数学抽象使得数学成为高度概括、表达准确、结论一般、有序多级的系统。
从上述表述可以看到,对数学抽象的数学学科价值集中反映在两个层面上。
第一,上述表述是对数学发生、发展的重要性(决定性)价值的揭示。第二,上述表述是对数学抽象在数学学科理论系统中的功能性价值的揭示。在2017年课程性质中明确了数学课程的社会功能和教育功能强调了高中数学课程,是义务教育阶段后普通高级中学的主要课程,具有基础性,选择性和发展性,必修课程,面向全体学生构建共同基础,选择性必修课程,选修课程,充分考虑学生的不同成长需求,提供多样性的课程,供学生自主选择,高中数学课程,为学生的可持续发展,和终身学习创造条件。

西南大学1903[0931工程数学》机考大作业

西南大学1903[0931工程数学》机考大作业
西南大学网络与继续教育学院课程考试试题卷
类别:网教(网教/成教)专业:土木工程2019年3月
课程名称【编号】:工程数学【0931】A卷
大作业满分:100分
计算题:共5个大题(每小题20分,共100分)
一、计Байду номын сангаас行列式 .
二、求矩阵 的秩,并求它的一个最高阶非零子式,其中 .
三、求解方程组 .
四、某工厂有甲、乙、丙三个车间,生产同一种产品,每个车间的产量分别占全厂的30%、30﹪、40﹪,各车间产品的次品率分别为5%、4﹪、2﹪。求全厂产品的次品率。
五、某篮球运动员投中篮圈的概率是0.9,求他两次独立投篮投中次数 的概率分布.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档