工程数学(本科)形考任务问题详解
国开形成性考核00490《工程数学(本)》形考作业(5)试题及答案

国开一体化平台《工程数学(本)》形考作业(5)试题及答案
(课程代码:00490,随机抽题,Ctrl+F查找更快捷,李老师祝同学们取得优异成绩!)----------------------------------------------------------------
形成性考核作业5
---------------------------------------------------------------- 解答题(第1-9题,每题8分,共72分;第10-13题,每题7分,共28分)
题目:1、1.求下列线性方程组的全部解。
解:
题目:2、
解:
题目:3、
解:
题目:4
解:
设长度合格为A事件,直径合格为B事件,则长度直径都合格为AB事件,根据题意有P(A)=0.95,P(B)=0.92,P(AB)=0.87.
题目:5、
解:
题目:6、
题目:7、
题目:8、
题目:9、某篮球运动员一次投篮投中篮框的概率为0.8,该运动员投篮4次,⑴求投中篮框不少于3次的概率;⑵求至少投中篮框1次的概率。
题目:10、
题目:11、
题目:12、
解:
题目:13、
----------------------------------------------------------------。
最新国家开放大学电大本科《工程数学》网络课网考形考作业一试题及答案 (2)

最新国家开放大学电大本科《工程数学》网络课网考形考作业一试题及答案试题一1.已知下列方程:(1)2x - 3y = 7(2)x + y = 8(a)请利用消元法求解该方程组的解;(b)请利用代入法求解该方程组的解;(c)请利用反代法求解该方程组的解;(d)请利用矩阵法求解该方程组的解。
2.某商场购进了成衣1200件,其中男装和女装的数量之比是2:3,女装比男装多出180件,请问男装和女装各有多少件?答案一(a)利用消元法求解该方程组的解:首先,将两个方程相加,得到新方程:(1)=> x + y + 2x - 3y = 8 + 7 化简得:3x- 2y = 15 接下来,将新方程与原方程(2)相加,得到新方程:•(3x - 2y = 15) => x + y + 3x - 3y = 8 + 15 化简得:4x - 2y = 23 解方程组得:x = 6, y = 2 所以,方程组的解为 x = 6, y = 2。
(b)利用代入法求解该方程组的解:将方程(2)代入方程(1)中,得到新方程: 2x - 3*(8 - x) = 7 化简得:2x - 24 + 3x = 7 化简得:5x = 31 解方程得:x = 31/5= 6.2 将 x 的值代入方程(2)中,得到 y 的值: 6.2 + y= 8 解方程得:y = 1.8 所以,方程组的解为 x = 6.2, y= 1.8。
(c)利用反代法求解该方程组的解:先假设x = 6,代入方程(2)中,得到 y 的值: 6 + y = 8 解方程得:y= 2 所以,当 x = 6 时,方程组的解为 x = 6, y = 2。
(d)利用矩阵法求解该方程组的解:将方程组的系数矩阵 A 和常数矩阵 B 做增广矩阵 [A|B] 如下: | 2 -3| 7 | | 1 1 | 8 | 通过初等行变换将增广矩阵转为行阶梯矩阵,得到如下矩阵: | 1 1 | 8 | | 0 -5 | -9 | 再通过初等行变换将行阶梯矩阵转为阶梯行矩阵,得到如下矩阵: | 1 1 | 8 | | 0 1 | 9/5 | 解矩阵得:x = 6, y = 2 所以,方程组的解为 x = 6, y = 2。
国家开放大学_工程数学(本)_形式任务5答案

−
=2
− 1=0.9974
得 = 7。
3. 设 X ~ N (20, 22 ) ,试求:(1) P (22 X 26) ;(2) P ( X 24) .(已知
(1) 0.8413, (2) 0.9772, (3) 0.9987 )
解:
(1) (22 < < 26)=
=
̅ −
∕ √Βιβλιοθήκη ~(0,1)由已知̅ = 80, = 16,于是得
=
已知
.
= 1.96,
̅
⁄√
̅ −
⁄ √
=
80 − 85
= −2
10
4
= 2 > 1.96,因此拒绝零假设,即该班的英语平均成
绩不为 85 分。
8. 据资料分析,某厂生产的砖的抗断强度 X 服从正态分布 N (32.5 , 1.21) . 今
解:
(1) (5 < < 9)=
<
<
= 1 <
<3
=(3) − (1)=0.9987−0.8413=0.1574
(2) ( > 7)=
>
=
> 2 =1 −
≤2
=1− (2)=1-0.9972=0.0228
2
2. 设 X ~ N (1, 2 ) ,试求:(1) P ( X 3) ;(2)求常数 a ,使得
̅ − .
, ̅ + .
√
√
由已知,̅ = 15, = 3, = 16, .
= 1.96,于是可得
̅ −
.
√
̅ +
国开电大 工程数学(本) 形考任务1-5答案 (2)

国开电大工程数学(本) 形考任务1-5答案任务1答案在工程数学中,任务1通常包括对于给定的函数或方程求解、求导或求积分等基本运算。
以下是对任务1的答案:1.1 求解方程对于给定的方程,求解意味着找到使方程成立的变量的值。
解方程的一般步骤如下:1.将方程移项,整理为标准形式;2.根据运算法则,对方程进行简化;3.通过合适的代数运算,解出变量的值。
例如,对于方程2x+5=15,我们可以按照以下步骤求解:1.将方程移项得到2x=15−5;2.简化方程为2x=10;3.通过除法运算解出x的值,得到 $x = \\frac{10}{2}= 5$。
因此,方程2x+5=15的解为x=5。
1.2 求导求导是对给定函数的导数进行计算。
函数的导数反映了函数在每个点上的变化率。
求导的一般步骤如下:1.根据导数的定义,写出函数的导数表达式;2.使用导数的基本运算法则,对函数进行求导。
例如,对于函数x(x)=3x2+2x+1,我们可以按照以下步骤求导:1.写出函数x(x)的导数表达式为x′(x)=6x+2;2.使用导数的基本运算法则得到x′(x)=6x+2。
因此,函数x(x)=3x2+2x+1的导数为x′(x)=6x+2。
1.3 求积分求积分是对给定函数的积分进行计算。
函数的积分表示了函数在指定区间上的面积或曲线长度。
求积分的一般步骤如下:1.根据积分的定义,写出函数的积分表达式;2.使用积分的基本运算法则,对函数进行积分。
例如,对于函数x(x)=3x2+2x+1,我们可以按照以下步骤求积分:1.写出函数x(x)的积分表达式为 $\\int{(3x^2 + 2x +1)dx}$;2.使用积分的基本运算法则得到 $\\int{(3x^2 + 2x +1)dx} = x^3 + x^2 + x + C$,其中x为常数。
因此,函数x(x)=3x2+2x+1的积分为 $\\int{(3x^2 +2x + 1)dx} = x^3 + x^2 + x + C$。
国开电大《工程数学(本)》形考任务四答案

国家开放大学《工程数学(本)》形成性考核作业四测验答案一、解答题(答案在最后)
二、证明题(答案在最后)
参考答案
试题1答案:解:
试题2答案:
试题3答案:解:
试题4答案:
试题5答案:
试题6答案:
试题7答案:
试题8答案:
试题9答案:
试题10答案:
证明:(A+A′)′=A′+(A′)′=A′+A=A+A′∴A+A′是对称矩阵
试题11答案:
证明:∵A是n阶方阵,且AA′=I
∴|AA′|=|A||A′|=|A|2=|I|=1
∴|A|=1或|A|=-1
试题12答案:
证明:设AX=B为含n个未知量的线性方程组
该方程组有解,即R(Ā)=R(A)=n
从而AX=B有唯一解当且仅当R(A)=n
而相应齐次线性方程组AX=0只有零解的充分必要条件是R(A)=n
∴AX=B有唯一解的充分必要条件是:相应的齐次线性方程组AX=0只有零解。
工程数学(本科)形考任务答案

1 )判断该向量组是否线性相关
解: 该向量组线性相关 5.求齐次线性方程组
的一个基础解系. 解:
方程组的一般解为 6.求下列线性方程组的全部解.
令
,得基础解系
解:
令
,
方程组一般解为 ,这里 , 为任意常数,得方程组通解
7.试证:任一4维向量
都可由向量组
,
,
,
线性表示,且表示方式唯一,写出这种表示方式.
著性水平 检验 5.假设检验中的显著性水平
,需选取统计量
.
为 事件
( u为临界值) 发生的概率.
(三)解答题 1.设对总体得到一个容量为 10的样本值 4.5, 2.0, 1.0, 1.5, 3.5, 4.5, 6.5, 5.0, 3.5, 4.0
试分别计算样本均值
和样本方差 .
解:
2.设总体 的概率密度函数为
解:
( 1)当
时,由 1- α = 0.95,
查表得:
故所求置信区间为:
( 2)当 未知时,用 替代 ,查 t (4, 0.05,) 得
故所求置信区间为:
4.设某产品的性能指标服从正态分布 10个样品,求得均值为 17,取显著性水平 立.
,从历史资料已知 ,问原假设
,抽查 是否成
解:
,
由 因为
,查表得: > 1.96,所以拒绝
⑴
中至少有一个发生;
⑵
中只有一个发生;
⑶
中至多有一个发生;
⑷
中至少有两个发生;
⑸
中不多于两个发生;
⑹
中只有 发生.
解 : (1)
(2)
(3)
(4)
(5)
(6)
工程数学(本科)形考任务答案

工程数学作业(一)答案第 2 章矩阵(一)单项选择题(每小题 2 分,共 20 分)⒈设,则( D ).A. 4B. - 4C. 6D. - 6⒉若,则( A ).A. B. - 1 C. D. 1⒊乘积矩阵中元素( C ).A. 1B. 7C. 10D. 8⒋设均为阶可逆矩阵,则下列运算关系正确的是( B ).A. B.C. D.⒌设均为阶方阵,且,则下列等式正确的是( D ).A. B.C. D.⒍下列结论正确的是( A ).A. 若是正交矩阵,则也是正交矩阵B. 若均为阶对称矩阵,则也是对称矩阵C. 若均为阶非零矩阵,则也是非零矩阵D. 若均为阶非零矩阵,则⒎矩阵的伴随矩阵为( C ).A. B.C. D.⒏方阵可逆的充分必要条件是( B ).A. B. C. D.⒐设均为阶可逆矩阵,则( D ).A. B.C. D.⒑设均为阶可逆矩阵,则下列等式成立的是( A ).A. B.C. D.(二)填空题(每小题 2 分,共 20 分)⒈7 .⒉是关于的一个一次多项式,则该多项式一次项的系数是 2 .⒊若为矩阵,为矩阵,切乘积有意义,则为 5 × 4 矩阵.⒋二阶矩阵.⒌设,则⒍设均为 3 阶矩阵,且,则72 .⒎设均为 3 阶矩阵,且,则- 3 .⒏若为正交矩阵,则 0 .⒐矩阵的秩为 2 .⒑设是两个可逆矩阵,则.(三)解答题(每小题 8 分,共 48 分)⒈设,求⑴;⑵;⑶;⑷;⑸;⑹.答案:⒉设,求.解:⒊已知,求满足方程中的.解:⒋写出 4 阶行列式中元素的代数余子式,并求其值.答案:⒌用初等行变换求下列矩阵的逆矩阵:⑴;⑵;⑶.解:( 1 )( 2 )( 过程略 ) (3)⒍求矩阵的秩.解:(四)证明题(每小题 4 分,共 12 分)⒎对任意方阵,试证是对称矩阵.证明:是对称矩阵⒏若是阶方阵,且,试证或.证明:是阶方阵,且或⒐若是正交矩阵,试证也是正交矩阵.证明:是正交矩阵即是正交矩阵工程数学作业(第二次)第 3 章线性方程组(一)单项选择题 ( 每小题 2 分,共 16 分 )⒈用消元法得的解为( C ).A. B.C. D.⒉线性方程组( B ).A. 有无穷多解B. 有唯一解C. 无解D. 只有零解⒊向量组的秩为( A ).A. 3B. 2C. 4D. 5⒋设向量组为,则( B )是极大无关组.A. B. C. D.⒌与分别代表一个线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则( D ).A. 秩秩B. 秩秩C. 秩秩D. 秩秩⒍若某个线性方程组相应的齐次线性方程组只有零解,则该线性方程组( A ).A. 可能无解B. 有唯一解C. 有无穷多解D. 无解⒎以下结论正确的是( D ).A. 方程个数小于未知量个数的线性方程组一定有解B. 方程个数等于未知量个数的线性方程组一定有唯一解C. 方程个数大于未知量个数的线性方程组一定有无穷多解D. 齐次线性方程组一定有解⒏若向量组线性相关,则向量组内( A )可被该向量组内其余向量线性表出.A. 至少有一个向量B. 没有一个向量C. 至多有一个向量D. 任何一个向量9 .设 A ,B为阶矩阵,既是A又是B的特征值,既是A又是B的属于的特征向量,则结论()成立.A.是 AB 的特征值B.是 A+B 的特征值C.是 A - B 的特征值D.是 A+B 的属于的特征向量10 .设A,B,P为阶矩阵,若等式(C)成立,则称A和B相似.A.B.C.D.(二)填空题 ( 每小题 2 分,共 16 分 )⒈当1时,齐次线性方程组有非零解.⒉向量组线性相关.⒊向量组的秩是3.⒋设齐次线性方程组的系数行列式,则这个方程组有无穷多解,且系数列向量是线性相关的.⒌向量组的极大线性无关组是.⒍向量组的秩与矩阵的秩相同.⒎设线性方程组中有 5 个未知量,且秩,则其基础解系中线性无关的解向量有2个.⒏设线性方程组有解,是它的一个特解,且的基础解系为,则的通解为.9 .若是A的特征值,则是方程的根.10 .若矩阵A满足,则称A为正交矩阵.(三)解答题 ( 第 1 小题 9 分,其余每小题 11 分 )1 .用消元法解线性方程组解:方程组解为2.设有线性方程组为何值时,方程组有唯一解 ? 或有无穷多解 ?解:]当且时,,方程组有唯一解当时,,方程组有无穷多解3.判断向量能否由向量组线性表出,若能,写出一种表出方式.其中解:向量能否由向量组线性表出,当且仅当方程组有解这里方程组无解不能由向量线性表出4.计算下列向量组的秩,并且( 1 )判断该向量组是否线性相关解:该向量组线性相关5.求齐次线性方程组的一个基础解系.解:方程组的一般解为令,得基础解系6.求下列线性方程组的全部解.解:方程组一般解为令,,这里,为任意常数,得方程组通解7.试证:任一4维向量都可由向量组,,,线性表示,且表示方式唯一,写出这种表示方式.证明:任一4维向量可唯一表示为⒏试证:线性方程组有解时,它有唯一解的充分必要条件是:相应的齐次线性方程组只有零解.证明:设为含个未知量的线性方程组该方程组有解,即从而有唯一解当且仅当而相应齐次线性方程组只有零解的充分必要条件是有唯一解的充分必要条件是:相应的齐次线性方程组只有零解9 .设是可逆矩阵A的特征值,且,试证:是矩阵的特征值.证明:是可逆矩阵A的特征值存在向量,使即是矩阵的特征值10 .用配方法将二次型化为标准型.解:令,,,即则将二次型化为标准型工程数学作业(第三次)第 4 章随机事件与概率(一)单项选择题⒈为两个事件,则( B )成立.A. B.C. D.⒉如果( C )成立,则事件与互为对立事件.A. B.C. 且D. 与互为对立事件⒊ 10 张奖券中含有 3 张中奖的奖券,每人购买 1 张,则前 3 个购买者中恰有 1 人中奖的概率为( D ).A. B. C. D.4. 对于事件,命题( C )是正确的.A. 如果互不相容,则互不相容B. 如果,则C. 如果对立,则对立D. 如果相容,则相容⒌某随机试验的成功率为, 则在 3 次重复试验中至少失败 1 次的概率为( D ).A. B. C. D.6. 设随机变量,且,则参数与分别是( A ).A. 6, 0.8B. 8, 0.6C. 12, 0.4D. 14, 0.27. 设为连续型随机变量的密度函数,则对任意的,( A ).A. B.C. D.8. 在下列函数中可以作为分布密度函数的是( B ).A. B.C. D.9. 设连续型随机变量的密度函数为,分布函数为,则对任意的区间,则( D ).A. B.C. D.10. 设为随机变量,,当( C )时,有.A. B.C. D.(二)填空题⒈从数字 1,2,3,4,5 中任取 3 个,组成没有重复数字的三位数,则这个三位数是偶数的概率为.2. 已知,则当事件互不相容时, 0.8 ,0.3 .3. 为两个事件,且,则.4. 已知,则.5. 若事件相互独立,且,则.6. 已知,则当事件相互独立时, 0.65 ,0.3 .7. 设随机变量,则的分布函数.8. 若,则 6 .9. 若,则.10. 称为二维随机变量的协方差.(三)解答题1. 设为三个事件,试用的运算分别表示下列事件:⑴中至少有一个发生;⑵中只有一个发生;⑶中至多有一个发生;⑷中至少有两个发生;⑸中不多于两个发生;⑹中只有发生.解 : (1) (2) (3)(4) (5) (6)2. 袋中有 3 个红球, 2 个白球,现从中随机抽取 2 个球,求下列事件的概率:⑴ 2 球恰好同色;⑵ 2 球中至少有 1 红球.解 : 设= “ 2 球恰好同色”,= “ 2 球中至少有 1 红球”3. 加工某种零件需要两道工序,第一道工序的次品率是 2% ,如果第一道工序出次品则此零件为次品;如果第一道工序出正品,则由第二道工序加工,第二道工序的次品率是 3% ,求加工出来的零件是正品的概率.解:设“第 i 道工序出正品”( i=1,2 )4. 市场供应的热水瓶中,甲厂产品占 50% ,乙厂产品占 30% ,丙厂产品占20% ,甲、乙、丙厂产品的合格率分别为 90%,85%,80% ,求买到一个热水瓶是合格品的概率.解:设5. 某射手连续向一目标射击,直到命中为止.已知他每发命中的概率是,求所需设计次数的概率分布.解:……………………故 X 的概率分布是6. 设随机变量的概率分布为试求.解:7. 设随机变量具有概率密度试求.解:8. 设,求.解:9. 设,计算⑴;⑵.解:10. 设是独立同分布的随机变量,已知,设,求.解:工程数学作业(第四次)第 6 章统计推断(一)单项选择题⒈设是来自正态总体(均未知)的样本,则( A )是统计量.A. B. C. D.⒉设是来自正态总体(均未知)的样本,则统计量( D )不是的无偏估计.A. B.C. D.(二)填空题1 .统计量就是不含未知参数的样本函数.2 .参数估计的两种方法是点估计和区间估计.常用的参数点估计有矩估计法和最大似然估计两种方法.3 .比较估计量好坏的两个重要标准是无偏性,有效性.4 .设是来自正态总体(已知)的样本值,按给定的显著性水平检验,需选取统计量.5 .假设检验中的显著性水平为事件( u 为临界值)发生的概率.(三)解答题1 .设对总体得到一个容量为 10 的样本值4.5, 2.0, 1.0, 1.5, 3.5, 4.5, 6.5,5.0, 3.5, 4.0试分别计算样本均值和样本方差.解:2 .设总体的概率密度函数为试分别用矩估计法和最大似然估计法估计参数.解:提示教材第 214 页例 3矩估计:最大似然估计:,3 .测两点之间的直线距离 5 次,测得距离的值为(单位: m ):108.5 109.0 110.0 110.5 112.0测量值可以认为是服从正态分布的,求与的估计值.并在⑴;⑵未知的情况下,分别求的置信度为 0.95 的置信区间.解:( 1 )当时,由 1 -α= 0.95 ,查表得:故所求置信区间为:精品文档. ( 2 )当未知时,用替代,查 t (4, 0.05 ) ,得故所求置信区间为:4 .设某产品的性能指标服从正态分布,从历史资料已知,抽查10 个样品,求得均值为 17 ,取显著性水平,问原假设是否成立.解:,由,查表得:因为> 1.96 ,所以拒绝5 .某零件长度服从正态分布,过去的均值为 20.0 ,现换了新材料,从产品中随机抽取 8 个样品,测得的长度为(单位: cm ):20.0, 20.2, 20.1, 20.0, 20.2, 20.3, 19.8, 19.5问用新材料做的零件平均长度是否起了变化().解:由已知条件可求得:∵ | T | < 2.62 ∴ 接受 H 0。
工程数学(本)形成性考核作业5

工程数学(本)形成性考核作业51. 引言在工程数学课程中,作业是评估学生理解和应用数学概念和技巧的重要方式。
本文档旨在介绍工程数学本科课程的形成性考核作业5,其中包含了该作业的要求、背景、解决方案和结论。
2. 背景工程数学课程的第五个形成性考核作业旨在加深学生对概率和统计的理解。
在这个作业中,学生需要使用概率和统计的方法解决一个实际问题。
3. 作业要求作业要求学生完成以下任务:•选择一个与工程实践相关的实际问题。
•通过数据收集和分析确定问题的概率模型。
•使用适当的统计方法分析数据并得出结论。
•撰写一份报告,包括问题的背景、概率模型的建立和数据分析的结果。
4. 解决方案为了完成作业,学生需要按照以下步骤进行:4.1 选择实际问题学生需要选择一个与工程实践相关的实际问题。
例如,可以选择某个工程项目中的质量控制问题,或者某个工业过程中的可靠性问题。
4.2 数据收集和分析学生需要收集与所选问题相关的数据,并对数据进行分析。
数据收集可以通过实地调查、文献研究或其他途径完成。
对数据的分析可以使用概率和统计的方法,例如概率分布拟合、假设检验等。
4.3 建立概率模型通过对数据的分析,学生需要建立与问题相关的概率模型。
这个模型可以是离散型概率模型、连续型概率模型或其他类型的模型,具体取决于问题的性质和数据的特点。
4.4 数据分析和结论使用建立的概率模型,学生需要对数据进行进一步的分析,并得出相应的结论。
这个过程可以包括计算期望值、方差、置信区间等统计量,以及对数据的可靠性、有效性等方面的讨论。
4.5 撰写报告最后,学生需要将整个过程及结果写成一份报告。
报告应该包括问题的背景介绍、概率模型的建立过程、数据分析的结果以及对问题的讨论和结论。
报告的格式可以使用Markdown 文本格式,并包括必要的图表和代码片段。
5. 结论通过完成形成性考核作业5,学生能够加深对概率和统计的理解,并将其应用于实际问题的解决中。
这个作业不仅要求学生进行数据收集和分析,还要求他们建立概率模型和通过统计方法对数据进行进一步的分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工程数学作业(一)答案第 2 章矩阵(一)单项选择题(每小题 2 分,共 20 分)⒈设,则( D ).A. 4B. - 4C. 6D. - 6⒉若,则( A ).A. B. - 1 C. D. 1⒊乘积矩阵中元素( C ).A. 1B. 7C. 10D. 8⒋设均为阶可逆矩阵,则下列运算关系正确的是( B ).A. B.C. D.⒌设均为阶方阵,且,则下列等式正确的是( D ).A. B.C. D.⒍下列结论正确的是( A ).A. 若是正交矩阵,则也是正交矩阵B. 若均为阶对称矩阵,则也是对称矩阵C. 若均为阶非零矩阵,则也是非零矩阵D. 若均为阶非零矩阵,则⒎矩阵的伴随矩阵为( C ).A. B.C. D.⒏方阵可逆的充分必要条件是( B ).A. B. C. D.⒐设均为阶可逆矩阵,则( D ).A. B.C. D.⒑设均为阶可逆矩阵,则下列等式成立的是( A ). A. B.C. D.(二)填空题(每小题 2 分,共 20 分)⒈7 .⒉是关于的一个一次多项式,则该多项式一次项的系数是 2 .⒊若为矩阵,为矩阵,切乘积有意义,则为 5 × 4 矩阵.⒋二阶矩阵.⒌设,则⒍设均为 3 阶矩阵,且,则72 .⒎设均为 3 阶矩阵,且,则- 3 .⒏若为正交矩阵,则 0 .⒐矩阵的秩为 2 .⒑设是两个可逆矩阵,则.(三)解答题(每小题 8 分,共 48 分)⒈设,求⑴;⑵;⑶;⑷;⑸;⑹.答案:⒉设,求.解:⒊已知,求满足方程中的.解:⒋写出 4 阶行列式中元素的代数余子式,并求其值.答案:⒌用初等行变换求下列矩阵的逆矩阵:⑴;⑵;⑶.解:( 1 )( 2 )( 过程略 ) (3)⒍求矩阵的秩.解:(四)证明题(每小题 4 分,共 12 分)⒎对任意方阵,试证是对称矩阵.证明:是对称矩阵⒏若是阶方阵,且,试证或.证明:是阶方阵,且或⒐若是正交矩阵,试证也是正交矩阵.证明:是正交矩阵即是正交矩阵工程数学作业(第二次)第 3 章线性方程组(一)单项选择题 ( 每小题 2 分,共 16 分 )⒈用消元法得的解为( C ).A. B.C. D.⒉线性方程组( B ).A. 有无穷多解B. 有唯一解C. 无解D. 只有零解⒊向量组的秩为( A ).A. 3B. 2C. 4D. 5⒋设向量组为,则( B )是极大无关组.A. B. C. D.⒌与分别代表一个线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则( D ).A. 秩秩B. 秩秩C. 秩秩D. 秩秩⒍若某个线性方程组相应的齐次线性方程组只有零解,则该线性方程组( A ).A. 可能无解B. 有唯一解C. 有无穷多解D. 无解⒎以下结论正确的是( D ).A. 方程个数小于未知量个数的线性方程组一定有解B. 方程个数等于未知量个数的线性方程组一定有唯一解C. 方程个数大于未知量个数的线性方程组一定有无穷多解D. 齐次线性方程组一定有解⒏若向量组线性相关,则向量组( A )可被该向量组其余向量线性表出.A. 至少有一个向量B. 没有一个向量C. 至多有一个向量D. 任何一个向量9 .设 A ,B为阶矩阵,既是A又是B的特征值,既是A又是B的属于的特征向量,则结论()成立.A.是 AB 的特征值B.是 A+B 的特征值C.是 A - B 的特征值D.是 A+B 的属于的特征向量10 .设A,B,P为阶矩阵,若等式(C)成立,则称A和B相似.A.B.C.D.(二)填空题 ( 每小题 2 分,共 16 分 )⒈当1时,齐次线性方程组有非零解.⒉向量组线性相关.⒊向量组的秩是3.⒋设齐次线性方程组的系数行列式,则这个方程组有无穷多解,且系数列向量是线性相关的.⒌向量组的极大线性无关组是.⒍向量组的秩与矩阵的秩相同.⒎设线性方程组中有 5 个未知量,且秩,则其基础解系中线性无关的解向量有2个.⒏设线性方程组有解,是它的一个特解,且的基础解系为,则的通解为.9 .若是A的特征值,则是方程的根.10 .若矩阵A满足,则称A为正交矩阵.(三)解答题 ( 第 1 小题 9 分,其余每小题 11 分 )1 .用消元法解线性方程组解:方程组解为2.设有线性方程组为何值时,方程组有唯一解 ? 或有无穷多解 ?解:]当且时,,方程组有唯一解当时,,方程组有无穷多解3.判断向量能否由向量组线性表出,若能,写出一种表出方式.其中解:向量能否由向量组线性表出,当且仅当方程组有解这里方程组无解不能由向量线性表出4.计算下列向量组的秩,并且( 1 )判断该向量组是否线性相关解:该向量组线性相关5.求齐次线性方程组的一个基础解系.解:方程组的一般解为令,得基础解系6.求下列线性方程组的全部解.解:方程组一般解为令,,这里,为任意常数,得方程组通解7.试证:任一4维向量都可由向量组,,,线性表示,且表示方式唯一,写出这种表示方式.证明:任一4维向量可唯一表示为⒏试证:线性方程组有解时,它有唯一解的充分必要条件是:相应的齐次线性方程组只有零解.证明:设为含个未知量的线性方程组该方程组有解,即从而有唯一解当且仅当而相应齐次线性方程组只有零解的充分必要条件是有唯一解的充分必要条件是:相应的齐次线性方程组只有零解9 .设是可逆矩阵A的特征值,且,试证:是矩阵的特征值.证明:是可逆矩阵A的特征值存在向量,使即是矩阵的特征值10 .用配方法将二次型化为标准型.解:令,,,即则将二次型化为标准型工程数学作业(第三次)第 4 章随机事件与概率(一)单项选择题⒈为两个事件,则( B )成立.A. B.C. D.⒉如果( C )成立,则事件与互为对立事件.A. B.C. 且D. 与互为对立事件⒊ 10 奖券中含有 3 中奖的奖券,每人购买 1 ,则前 3 个购买者中恰有 1 人中奖的概率为( D ).A. B. C. D.4. 对于事件,命题( C )是正确的.A. 如果互不相容,则互不相容B. 如果,则C. 如果对立,则对立D. 如果相容,则相容⒌某随机试验的成功率为, 则在 3 次重复试验中至少失败 1 次的概率为( D ).A. B. C. D.6. 设随机变量,且,则参数与分别是( A ).A. 6, 0.8B. 8, 0.6C. 12, 0.4D. 14, 0.27. 设为连续型随机变量的密度函数,则对任意的,( A ).A. B.C. D.8. 在下列函数中可以作为分布密度函数的是( B ).A. B.C. D.9. 设连续型随机变量的密度函数为,分布函数为,则对任意的区间,则( D ).A. B.C. D.10. 设为随机变量,,当( C )时,有.A. B.C. D.(二)填空题⒈从数字 1,2,3,4,5 中任取 3 个,组成没有重复数字的三位数,则这个三位数是偶数的概率为.2. 已知,则当事件互不相容时, 0.8 ,0.3 .3. 为两个事件,且,则.4. 已知,则.5. 若事件相互独立,且,则.6. 已知,则当事件相互独立时, 0.65 ,0.3 .7. 设随机变量,则的分布函数.8. 若,则 6 .9. 若,则.10. 称为二维随机变量的协方差.(三)解答题1. 设为三个事件,试用的运算分别表示下列事件:⑴中至少有一个发生;⑵中只有一个发生;⑶中至多有一个发生;⑷中至少有两个发生;⑸中不多于两个发生;⑹中只有发生.解 : (1) (2) (3)(4) (5) (6)2. 袋中有 3 个红球, 2 个白球,现从中随机抽取 2 个球,求下列事件的概率:⑴ 2 球恰好同色;⑵ 2 球中至少有 1 红球.解 : 设= “ 2 球恰好同色”,= “ 2 球中至少有 1 红球”3. 加工某种零件需要两道工序,第一道工序的次品率是 2% ,如果第一道工序出次品则此零件为次品;如果第一道工序出正品,则由第二道工序加工,第二道工序的次品率是 3% ,求加工出来的零件是正品的概率.解:设“第 i 道工序出正品”( i=1,2 )4. 市场供应的热水瓶中,甲厂产品占 50% ,乙厂产品占 30% ,丙厂产品占20% ,甲、乙、丙厂产品的合格率分别为 90%,85%,80% ,求买到一个热水瓶是合格品的概率.解:设5. 某射手连续向一目标射击,直到命中为止.已知他每发命中的概率是,求所需设计次数的概率分布.解:……………………故 X 的概率分布是6. 设随机变量的概率分布为试求.解:7. 设随机变量具有概率密度试求.解:8. 设,求.解:9. 设,计算⑴;⑵.解:10. 设是独立同分布的随机变量,已知,设,求.解:工程数学作业(第四次)第 6 章统计推断(一)单项选择题⒈设是来自正态总体(均未知)的样本,则( A )是统计量.A. B. C. D.⒉设是来自正态总体(均未知)的样本,则统计量( D )不是的无偏估计.A. B.C. D.(二)填空题1 .统计量就是不含未知参数的样本函数.2 .参数估计的两种方法是点估计和区间估计.常用的参数点估计有矩估计法和最大似然估计两种方法.3 .比较估计量好坏的两个重要标准是无偏性,有效性.4 .设是来自正态总体(已知)的样本值,按给定的显著性水平检验,需选取统计量.5 .假设检验中的显著性水平为事件( u 为临界值)发生的概率.(三)解答题1 .设对总体得到一个容量为 10 的样本值4.5, 2.0, 1.0, 1.5, 3.5, 4.5, 6.5,5.0, 3.5, 4.0试分别计算样本均值和样本方差.解:2 .设总体的概率密度函数为试分别用矩估计法和最大似然估计法估计参数.解:提示教材第 214 页例 3矩估计:最大似然估计:,3 .测两点之间的直线距离 5 次,测得距离的值为(单位: m ):108.5 109.0 110.0 110.5 112.0测量值可以认为是服从正态分布的,求与的估计值.并在⑴;⑵未知的情况下,分别求的置信度为 0.95 的置信区间.解:( 1 )当时,由 1 -α= 0.95 ,查表得:故所求置信区间为:( 2 )当未知时,用替代,查 t (4, 0.05 ) ,得故所求置信区间为:4 .设某产品的性能指标服从正态分布,从历史资料已知,抽查10 个样品,求得均值为 17 ,取显著性水平,问原假设是否成立.解:,由,查表得:因为> 1.96 ,所以拒绝5 .某零件长度服从正态分布,过去的均值为 20.0 ,现换了新材料,从产品中随机抽取 8 个样品,测得的长度为(单位: cm ):20.0, 20.2, 20.1, 20.0, 20.2, 20.3, 19.8, 19.5问用新材料做的零件平均长度是否起了变化().解:由已知条件可求得:∵ | T | < 2.62 ∴ 接受 H 0。