定积分的应用
例谈定积分的应用

例谈定积分的应用
定积分是利用积分技术来搭建企业系统的一种服务方式,通过定积分,企业可以解决营销,客户追踪,价格管理,订单跟踪等问题,让企业
既有资源利用效率,又能惠及消费者。
一、定积分的应用
1、促销活动:利用定积分可以创建各种丰富多彩的促销活动,满减、
团购、买赠、金币锁定等,激励消费者购买和积累积分。
2、客户管理:定积分能够建立细致复杂的客户档案,包括客户经理内容,购买次数,消费金额,积分余额等,更好地进行客户管理。
3、价格管理:通过定积分,可以根据不同客户的特征,设置特定的价格,比如会员价,大客户价等,更好地提高定价精确度和竞争力。
4、订单追踪:定积分的订单追踪系统可以记录客户的订单信息,有利
于企业更好地追溯客户信息以及及时为客户提供优质服务。
二、定积分的优势
1、可靠性:定积分系统可以提供可靠性能,降低前端和后端系统出现
的异常和故障,防止客户和企业受到损害。
2、安全性:定积分的安全性也得到有效保障,内部数据交换完全采用
加密技术,保证信息不受外部干涉。
3、兼容性:定积分具有可行性和兼容性,它可以按照各种不同环境定
制与企业系统相协调的服务,能够提供企业最适合的解决方案。
4、易用性:定积分使用界面简洁明了,业务流程简单可靠,容易上手,操作简单易懂,为客户提供更贴心的服务。
三、总结
定积分的引入为企业的经营活动带来了更多的便利,有效提高了企业
的经营效率,也让消费者能够从消费上受到更多的好处。
由此可见,
定积分不仅是企业的一种低成本的服务方式,也是一个更加有效的、
更加充分的消费积分服务体系,为企业和消费者都更好地搭建企业系统。
定积分的应用

定积分的应用定积分是微积分的重要概念之一,它在许多实际问题的求解中起着重要作用。
本文将介绍一些定积分的应用,并探讨它们在不同领域中的具体应用情况。
1. 几何学中的应用在几何学中,我们经常需要计算曲线与坐标轴之间的面积。
通过使用定积分,可以轻松解决这个问题。
以求解曲线 y = f(x) 与 x 轴之间的面积为例,我们可以将其划分为无穷多个宽度非常小的矩形,然后将这些矩形的面积相加,最终得到曲线与 x 轴之间的面积。
这个过程可以通过定积分来表示,即∫[a,b] f(x) dx,其中 a 和 b 分别是曲线的起始点和终止点。
2. 物理学中的应用在物理学中,定积分广泛应用于求解各种与物理量有关的问题。
例如,在动力学中,我们可以通过计算物体的位移和速度的定积分来求解物体的加速度。
同样地,在力学中,定积分可以用于计算物体所受的力的功。
这些应用都需要将物理量表示成关于时间的函数,并使用定积分来求解相关问题。
3. 经济学中的应用经济学也是定积分的应用领域之一。
在经济学中,我们经常需要计算一段时间内的总收益或总成本。
通过将这段时间划分为无数个非常小的时间段,然后计算每个时间段内的收益或成本,最后再将这些值相加,我们可以用定积分来表示这段时间内的总收益或总成本。
这种方法在经济学中有着广泛的应用,例如计算企业的总利润等。
4. 概率统计学中的应用在概率统计学中,定积分可以用于求解概率密度函数下的某个区间的概率。
在概率密度函数中,曲线下的面积表示了该事件发生的概率。
通过将概率密度函数在某个区间上的定积分,我们可以得到该区间内事件发生的概率。
这种方法在概率论和数理统计中具有重要的应用,例如计算正态分布下的概率,或者计算随机变量的期望值等。
综上所述,定积分在几何学、物理学、经济学和概率统计学等各个领域都有着重要的应用。
无论是计算面积、求解物理量、计算总收益还是计算概率,定积分都提供了一种有效的数学工具。
通过理解和掌握定积分的应用,我们可以更好地解决实际问题,并深入研究各个领域中的相关理论。
定积分求平面图形面积在实际生活中的应用

定积分求平面图形面积在实际生活中的应用把复杂的积分问题求解出来就可以计算出平面图形的面积,在实际生活中也可以看到它的很多应用。
其中有一类是涉及设计的,比如建筑设计中的空间分配、土地开发等;另一类是分析的,比如海洋表面的波浪分析等。
1、建筑设计建筑设计中,定积分可以用来求解空间分配问题。
比如,在房屋设计中,它可以用来确定楼层、楼梯、墙壁、门窗等占用了多少面积。
此外,它还可以用来求解不规则房间布局时,室外墙体和室内墙体的面积分配。
同样,在土地开发中也可以看到定积分的应用,如计算出道路两端的封闭区域面积,以及计算建筑的总面积。
定积分也可以帮助规划者精确计算出规划区域的面积,从而更好地管理规划区域的开发。
2、海洋表面的波浪分析定积分也可以用来求解海洋表面的波浪。
水波的主要性质是在洋流中运动,它的变化符合泊松方程,这是一个带积分的方程,可以用定积分来求解。
这种波浪分析可以更好地解释海洋表面的复杂性,进而指导航管理者和建筑者采取更安全有效的导航措施。
此外,在海岸线上,可以使用定积分来计算海岸线内各子区域的面积,以及海岸线及其各个部分的面积,为海洋管理者提供有形的参考数据。
3、农业此外,定积分在农业中也有非常广泛的应用。
比如,在种植作物时,可以使用定积分来计算出作物地的面积,以及需要灌溉地区的面积;在研究农田开发时,可以利用定积分来计算出耕作面积。
通过计算出具体的面积数据,可以更好地规划农田的分布和种植规模,从而节约农业资源,提高农作物的产量。
总结定积分是一种有用的数学技术,可以把复杂的数学问题转化成计算机可计算的简单形式,在计算平面图形面积上表现出很强的优势。
它在实际生活中有很多应用,比如建筑设计、土地开发、海洋洋面波浪分析,以及农业规划等。
定积分在数学中的作用

定积分在数学中的作用概述在数学中,定积分是微积分的一个重要概念,具有广泛的应用。
定积分可以用于计算曲线下面的面积、求解曲线的弧长、计算物体的质量、计算函数的平均值等。
本文将探讨定积分在数学中的作用及其应用领域。
定义定积分是将函数关于某一区间内的曲线下面的面积定义为一个数值的操作。
设函数f(x)在区间[a, b]上连续,则定积分的定义如下:∫[a, b] f(x)dx = lim(n→∞) Σ(f(xi)Δx)其中,xi是[a, b]上的任意一点,Δx是区间[a, b]划分成的n 个小区间的宽度。
作用计算曲线下的面积定积分最基本的作用是计算曲线下的面积。
对于一个非负连续函数f(x),其在区间[a, b]上的定积分表示曲线f(x)与x轴之间的面积。
定积分将曲线下的无限多个小面积累加起来,得到整个曲线下的总面积。
求解曲线的弧长除了计算面积,定积分还可用于求解曲线的弧长。
设函数f(x)在区间[a, b]上连续且可导,则曲线y=f(x)在区间[a, b]上的弧长可以表示为定积分的形式:L = ∫[a, b] √(1 + f'(x)²)dx其中f’(x)是f(x)的导数。
计算物体的质量在物理学中,定积分可以用于计算物体的质量。
设物体的密度在空间中的分布为ρ(x, y, z),则物体的质量可以表示为定积分的形式:m = ∭ρ(x, y, z)dV其中dV为空间元素的体积。
计算函数的平均值定积分还可以用于计算函数在一个区间上的平均值。
设函数f(x)在区间[a, b]上连续,则函数f(x)在区间[a, b]上的平均值可以表示为定积分的形式:f_avg = (1 / (b - a)) ∫[a, b] f(x)dx应用领域定积分在数学中的应用非常广泛。
除了上述提到的计算面积、求解弧长、计算质量、计算平均值等基本应用外,定积分还可以应用于以下领域:•物理学:例如计算物体的体积、计算物体的质心、计算物体的转动惯量等;•统计学:例如计算概率密度函数、计算累积分布函数、计算期望值等;•经济学:例如计算消费总量、计算生产总量、计算总收益等;•工程学:例如计算水流的流量、计算材料的强度、计算电路的功率等。
高等数学(第三版)课件:定积分的应用

线 y f ( x,) 直线 x a, x b (a b) 与
• x 轴围成的面积是在x 轴上方和下方曲边梯形
面积的差.
• • 同样可由微元法分析
•⒉ 一般地,根据微元法由曲线 y f ( x), y g( x),
• ( f ( x) g( x)) 及直线x a, x b 所围的图形
• 面积.(右图所示)
• 解: 取 为积分变量,
•
面积微元为
d
A
1 2
(a )2
d
• 于是
A 2 1 (a )2d a 2 2
02
23
2 4 a 2 3
03
• 例5 计算双纽线 r 2 a2 cos2 (a 0)
•
所围成的平面图形的面积(下图所示)
• 解 因 r 2 0,故 的变化范围是 [ 3 , 5 ,]
• ⑴分割区间[a,b],将所求量(曲边梯形面积 A )
分为部分量(小曲边梯形面积 Ai)之和;
• ⑵确定各部分量的近似值(小矩形面积);
Ai f (i )xi
• ⑶求和得所求量的近似值(各小矩形面积之和);
n
A f (i )xi
i 1
• ⑷对和式取极限得所求量的精确值(曲边梯形面积).
n
A lim 0
• 它表示高为f ( x) 、底为 dx 的一个矩形面积.
• ⑵由定积分几何意义可知,当 f (x) 0 时,由曲
线 y f (x),直线 x a, x b (a b) 与 x 轴所围成
的曲边梯形的面积A为
A
b
f (x)dx
.
a
• ⑶当 f ( x)在区间 [a, b]上的值有正有负时,则曲
•
定积分的应用

定积分的应用定积分是微积分中的重要内容之一,经常被应用于实际问题的解决中。
本文将从三个方面来论述定积分的应用。
一、定积分在几何中的应用首先,定积分可以用于求曲线下面的面积。
以 y=f(x) 为例,若f(x)>0,则曲线 y=f(x) 与 x 轴的两点 a、b 组成的图形的面积为S=∫baf(x)dx这时,可以将曲线 y=f(x) 分成许多小块,每块宽度为Δx,高度为 f(xi),从而可以得到其面积为ΔS=f(xi)Δx因此,当Δx 趋于 0 时,所有小块的面积之和就等于图形的面积,即∑ΔS→S因此,用定积分就可以求出图形的面积。
其次,定积分还可以用于求旋转体的体积。
以曲线 y=f(x) 在 x 轴上旋转360°为例,其体积为V=π∫baf(x)^2dx这里,π为圆周率。
最后,定积分还可以用于求某些奇特图形的长、面积等等。
二、定积分在物理中的应用物理中也有许多问题可以通过定积分来解决。
比如,运动问题中的速度、加速度,可以通过位移的变化来求得。
若某运动物体的速度为 v(t),则其位移 s(t) 为s(t)=∫v(t)dt同样,若某运动物体的加速度为 a(t),速度为 v(t),则其位移为s(t)=∫v(t)dt=∫a(t)dt最后,定积分还可以用于求密度、质量等物理量。
三、定积分在工程中的应用定积分在工程中的应用也非常广泛。
比如,在流体力学中,对于一条管道中的液体,可以通过惯性和重力等因素,求出其中液体的流量和压力。
而这些流量和压力可以通过定积分计算得出。
在电学中,电量、电荷、电流和电势等都可以通过定积分来求解。
在结构设计中,定积分也常常被用来计算约束力、杠杆比例等。
总之,定积分在几何、物理和工程等领域中都有着广泛应用。
熟练地掌握定积分的方法和应用,对于科学研究和实际问题的解决都有着非常积极的帮助。
定积分的应用
定积分的应用在我们的生活中,有很多场景都需要用到定积分。
而在数学上,定积分也起到了重要的作用。
定积分可以计算曲线下的面积,如求函数 $f(x)$ 在区间 $[a,b]$ 上的面积。
接下来,我们将介绍一些常见的定积分的应用。
一、曲线下的面积假设我们有一个区间 $[a,b]$,以及一个函数 $f(x)$。
我们可以使用定积分来计算这个函数在该区间上的曲线下的面积。
这个面积可以用下面的式子来计算:$$ S=\int_{a}^{b}f(x)dx $$ 其中,$\int$ 表示定积分。
如果我们以 $f(x)\geq 0$ 的形式进行了定义,那么定积分就可以计算出曲线下的正面积。
例如,如果我们要计算函数 $f(x)=x^2$ 在区间 $[0,1]$ 上的曲线下的面积,我们可以通过下面的定积分来计算:$$ S=\int_{0}^{1}x^2dx $$利用积分的定义,可以将该式子化简为:$$ S=\lim_{n\rightarrow\infty}\sum_{i=1}^{n}f(x_i)\Deltax=\lim_{n\rightarrow\infty}\sum_{i=1}^{n}x_i^2\Delta x $$ 其中,$\Delta x=\frac{1}{n}$ 且 $x_i=i\Delta x$。
如果我们取 $n=100$,你会发现:$$ S=0.010050167\cdots $$ 这时,我们就可以知道函数 $f(x)=x^2$ 在区间 $[0,1]$ 上的曲线下的面积为约为 $0.010050167$。
二、体积类似于计算曲线下的面积,定积分也可以用于计算体积。
我们可以使用定积分来计算旋转曲面的体积,例如旋转曲面、扫描曲面等。
例如,假设我们需要计算曲线 $y=x^2$ 从 $x=0$ 到 $x=1$ 周围在 $y$ 轴旋转一周所形成的立体的体积,我们可以使用下面的公式计算出体积:$$ V=\int_{0}^{1}\pi y^2dx $$替换掉 $y=x^2$ 的值,我们得到:$$ V=\int_{0}^{1}\pi x^4dx $$ 计算该定积分的结果为:$$ V=\frac{\pi}{5} $$ 所以,曲线$y=x^2$ 从 $x=0$ 到 $x=1$ 周围所形成的立体的体积为$\frac{\pi}{5}$。
定积分的计算与应用
定积分的计算与应用定积分是微积分的重要概念之一,用于计算曲线下的面积、质量、体积等问题。
本文将介绍定积分的计算方法和应用场景。
一、定积分的计算方法定积分的计算基于微积分中的积分运算,可以通过以下方法进行计算:1. 几何解释法:定积分可以视为曲线下的面积,因此可以利用几何图形的面积公式进行计算。
将曲线下的区域分割成无数个小矩形,并求取它们的面积之和,即可得到定积分的近似值。
通过增加小矩形的个数,可以不断提高计算精度。
2. 集合解释法:定积分可以被视为一组数的和,其中这组数是将函数值与对应的间隔长度相乘而得到的。
通过将曲线下的区域分割成若干个小区间,并计算每个小区间内的函数值与对应的间隔长度的乘积,再将这些乘积进行加和,即可得到定积分的近似值。
3. 牛顿-莱布尼茨公式:对于可微函数,可以使用牛顿-莱布尼茨公式进行定积分的计算。
该公式表达了函数的原函数(即不定积分)与定积分之间的关系。
通过求取函数的原函数,并在积分的上下限处进行代入计算,即可得到定积分的准确值。
二、定积分的应用场景定积分在物理学、经济学、工程学等领域都有广泛的应用。
以下将介绍一些常见的应用场景:1. 面积计算:最简单的应用是计算平面图形的面积。
通过确定曲线的方程以及积分的上下限,可以计算出曲线所围成区域的面积。
2. 质量计算:如果将曲线下的区域视为物体的密度分布,则可以利用定积分计算物体的质量。
通过将物体分割成无数个小区域,并计算每个小区域内的密度值与对应的区域面积的乘积,再将这些乘积进行加和,即可得到物体的总质量。
3. 体积计算:类似质量计算,定积分可以被用于计算三维物体的体积。
通过将物体分割成无数个小体积,并计算每个小体积的大小,再将这些体积进行加和,即可得到物体的总体积。
4. 概率计算:在概率论中,定积分可以用于计算随机变量的概率密度函数下的概率。
通过计算概率密度函数在某个区间上的定积分,可以得到该区间内事件发生的概率。
5. 积累量计算:定积分还可以用于计算积累量,例如距离、速度、加速度等。
定积分在数学中的应用
定积分在数学中有广泛的应用,涵盖了多个领域,包括几何、物理、经济学和工程学等。
以下是一些常见的应用领域:
1. 几何学:定积分可用于计算曲线的弧长、曲线与坐标轴所围成的面积、空间曲面的面积和体积等。
通过将几何问题转化为定积分的计算,可以准确求解各种形状的几何量。
2. 物理学:定积分在物理学中的应用非常广泛。
例如,可以用定积分计算物体的质心、转动惯量、流体的压力和力矩等。
还可以通过定积分计算曲线下的面积来求解物体的位移、速度和加速度等运动学问题。
3. 经济学:定积分在经济学中的应用主要用于计算累积量。
例如,可以使用定积分计算总收益、总成本、总利润等经济指标。
还可以通过定积分计算边际收益和边际成本,从而进行经济决策和优化问题的分析。
4. 工程学:定积分在工程学中也具有重要的应用价值。
例如,可以使用定积分计算电路中的电流、电压和功率等物理量。
在结构工程中,可以通过定积分计算材料的体积、质量和重心位置等。
此外,定积分还在概率论、信号处理、图像处理等领域有各种应用。
总之,定积分作为微积分的重要工具,广泛应用于数学及其他学科的建模、计算和问题求解中,提供了丰富的数学工具和方法,有助于深入理解各个学科中的现象和问题。
数学分析-定积分的应用
故
3.
求曲线
图形的公共部分的面积 .
解:
与
所围成
得
所围区域的面积为
设平面图形 A 由
与
所确定 提示:
选 x 为积分变量.
旋转体的体积为
4.
若选 y 为积分变量, 则
则有
一般地 , 当曲边梯形的曲边由参数方程
给出时,
则曲边梯形面积
二、参数方程情形
例3. 求由摆线
的一拱与 x 轴所围平面图形的面积 .
解:
且曲线不在自相交,
则曲线围成面积为:
所表示的曲线是封闭的,即
如果参数方程
例3. 求椭圆
解:
所围图形的面积 .
利用椭圆的参数方程
得
当 a = b 时得圆面积公式
三、极坐标情形
求由曲线
及
围成的曲边扇形的面积 .
在区间
上任取小区间
则对应该小区间上曲边扇形面积的近似值为
所求曲边扇形的面积为
对应 从 0 变
例5. 计算阿基米德螺线
解:
到 2 所围图形面积 .
例6. 计算心形线
所围图形的
面积 .
解:
(利用对称性)
例7. 计算心形线
与圆
所围图形的面积 .
提示:
方法1 利用对称性
旋转而成的环体体积 V
方法2 用柱壳法
说明: 上式可变形为
上
半圆为
下
此式反映了环体微元的另一种取法(如图所示).
备用题
解:
1. 求曲线
所围图形的面积.
显然
面积为
同理其它.
又
故在区域
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 作图,求出交点;
2 选择积分变量,写出面积元素;
3 作定积分,并计算.
x x 求由 y e , y e 与 y 2 所围图形的面积。 例1 : y 解: (1) 选 x 为积分变量 x x
y e 求交点 y2 (ln 2,2)
x
y ex y2 ( ln 2,2)
cos 2 sin 4 d 3a 2
2 0
(sin 4 sin 6 )d
3 1 5 3 1 3 2 3 2 3a ( ) a , A a . 4 2 2 6 4 2 2 8 32
3、极坐标情形
求由连续曲线 r r ( ), ,
同理
r 2a sin
a
0
x
0
a
2a
x
例1:求由 r 2a cos 所围图形的面积。 解: r 2a cos
:
2
2
y
0
r 2a cos
1 2 A r ( ) d 2
x
a
2 0
2a
1 2 ( 2a cos ) 2 d 2 2
I d I f ( x )d x .
a
a
b
b
这就是定积分的微元法。 如长为 l 的细棒上的线密度ρ(x) 连续,则细棒 的质量: 作 [ x, x dx] [ 0, l ] , 这一小段的质量取 dm ( x )dx
l
0 x x dx
l
x
则整段细棒的质量为各小段质量的无限累加。
( y)
( y)
高为 ( y ) ( y ),
d A [ ( y) ( y)] d y
x
d c
c
此时取 y 为积分变量
A [ ( y ) ( y )] d y
一般: A
d c
( y) ( y) d y
求平面图形面积的步骤:
0 2 0 r 2a
o
r
x 2a
心形线 (圆外旋轮线)
y
r a(1 sin ) 0 2
0 r 2a
2a
P
a
r
x
o
例2.求曲线 r 3 cos θ 及 r 1 cos θ 分别所围成
的图形的公共部分的面 积。
y r = 3cos
第五章
定积分及其应用
在引出定积分的引例中,我们介绍了 计算曲边梯形的面积,变速直线运动的路 程等问题。它们所涉及的思想方法是相同 的。现在我们把这一思路用更简洁的形式 表示出来,以期能用它来解决更多的此类 问题。如求平面图形的面积、旋转体的体 积、平面曲线的弧长、变力所作的功及水 压力等。
§6 . 定积分的微元法
f(x)
a
x
x+dx
b
x
dV A( x )dx f ( x )dx
2
2 f ( x )dx V= a
b
求旋转体体积
曲边梯形:x=g(y),x=0, y=c, y=d 绕 y 轴
y
d
x=g(y)
c
0
x
求旋转体体积
曲边梯形:x=g(y),x=0, y=c, y=d 绕 y 轴
y
d
得 θ
由 3cos = 1+ cos
3 0
A= 2
π 3
1 (1 cos ) 2 d 2
o
A
x
2 3
1 2 ( 3 cos θ )2 dθ 2 3
r = 1+ cos
二、 立 体的 体 积
1、旋转体的体积
旋转体: 由一平面图形绕这平面内的一条直线 旋转一周而成的立体。此直线称为对
例1: 求由 r 2a cos 所围图形的面积。 分析:由直角坐标与极坐标的变换关系:
x r cos , y r sin
2
r 2a cos x 2 y 2 2a x
2 2
( x a ) y a , 为圆心在(a, 0),半径为a 的圆 2a y r 2a cos y
用 A 表示任一小区间[ x, x dx] [a, b] 上的小曲边梯形面积,则小区间长为 dx,
把 取为左端点x , 则 A f ( x )d x, 且 f ( x )dx A o(dx ) (dx 0)
称 f ( x ) d x 为所求量 A 的元素,记作 d A,
回顾求曲边梯形面积的步骤:
y = f (x) ≥ 0,且在 [a, b] 上连续。 (1) 分割:得小曲边梯形的面积 Ai
(2) 近似: Ai f ( i ) x i (i =1, 2,…, n)
( Ai 与 f ( i ) xi 仅差高阶无穷小)
n
(3) 求和: A f ( i ) xi
y
y = f (x)
dA A
即 dA f ( x ) d x ,又称为面 积元素, 或面积微元。
把 d A 在 [a, b] 上无限累加,
b x
0
a x dxx+dx
A dA f ( x ) d x .
a
a
b
b
把面积 A 改为一般的所求量 I,则有
d I f ( x )dx ,
m dm ( x ) d x
0
0
l
§7. 定积分的几何应用
利用微元法解决下列问题的计算: (1) 平面图形的面积
(2) 旋转体的体积
(3) 平行截面面积为已知的立体体积
(4) 平面曲线的弧长 (5) 旋转曲面的面积等几何问题。
一、平面图形的面积
1、直角坐标情形 (1) 图形由连续曲线
i 1
(4) 取极限: A lim f ( i ) xi f ( x )d x
0
i1 a
n
b
其中,极限固然重要,但定积分形式的形成关键
在于 (1), (2), (1) 所求量具有区间可加性是形成定积分的前提。 (2) 部分量 Ai f ( i ) xi , 形成了被积表达式 的雏形。 为简便起见,现省去下标。
求由两条连续曲线 r r1 ( ), r r2 ( )
与 , 围成的图形面积。
r r2 ( )
A A2 A1
A
r r1 ( )
1 2 r2 ( ) d 2
r
0
1 2 r1 ( ) d 2
1 2 2 A [ r2 ( ) r1 ( ) ] d . 2
围成的图形面积。 (即求曲边扇形的面积)
r r ( )
由元素法:任取
d
[ , d ] [ , ],
则相应的小曲边扇形的 面
A
0
积近似地由半径为 r ( ), 中心角为d 的圆扇形的面积代替。即有面积元素:
r
1 2 1 2 d A r ( ) d , A d A r ( ) d . 2 2
2
4a
2
1 2 cos d 4a a . 2 2
2
心形线 (圆外旋轮线)
一圆沿另一圆外 缘无滑动地滚动,动 圆圆周上任一点所画 出的曲线。
o
y
a
a
x
观察动点的运动
心形线(圆外旋轮线)
y
o
a
a
x 2a
观察动点的运动
心形线 (圆外旋轮线)
y P
r a(1 cos )
y f ( x ), y 0, x a , x b 所围
(a ) y
f ( x ) 0 取任一小区间 [ x, x dx] [a, b]
以直边近似代替曲边,
y = f (x)
dA f ( x )dx
A dA
a b
A A d
0
a x x+dx b x
f ( x) d x
A d A1
a
c
b c
d A2
b
0
a
. x
c
x . b
x
f ( x) d x c f ( x) d x
a
c
b a
f ( x) d x .
(2)
图形由两条连续曲线
y f ( x ), y g( x ) 与 x a , x b 围成
( a ) f ( x ) g( x )
a
b
(b) f ( x ) 在 [a, b] 上有正有负
在 [a, c] 上, 取 [ x, x dx ] [a, c] ,
d A1 f ( x ) d x
在 [c, b] 上,取 [ x, x dx ] [c, b] ,
d A2 f ( x ) d x
y
y = f (x)
称轴。 如: 圆柱、 圆锥、 圆台、 圆球、 …
现在利用元素法推导旋转体的体积公式。
求旋转体体积 曲边梯形: y=f (x), x=a, x=b, y=0 绕 x 轴旋转
f(x)
a
b
x
求旋转体体积 曲边梯形: y=f (x), x=a, x=b, y=0 绕 x 轴旋转
2 A ( x ) f ( x) 111111111
o
3