定积分的应用

合集下载

定积分的几个简单应用

定积分的几个简单应用

定积分的几个简单应用一、定积分在经济生活中的应用在经济管理中,由边际函数求总函数,一般采用不定积分来解决,或者求一个变上限的定积分;如果求总函数在某个范围的改变量,则采用定积分来解决.例1 某商场某品牌衬衫的需求函数是q p 15.065-=,如果价格定在每件50元,试计算消费者剩余.解 由p 50=,q p 15.065-=,得10000=q ,于是dq q )5015.065(100000--⎰10000023)1.015(q q -=50000=,所求消费者剩余为50000元.例2 已知某产品总产量的变化率为t t Q 1240)(+='(件/天),求从第5天到第10天产品的总产量.解 所求的总产量为⎰⎰+='=105105)1240()(dt t dt t Q Q 1052)640(t t +=650=(件). 二、用定积分求极限例1 求极限 ∑=∞→n k n n k 123lim .解 nn n n n n n n k n k 12111123+++=∑= )21(1nn n n n +++= . 上式是函数[]1,0)(在x x f =的特殊积分和.它是把[]1,0分成n 等分,i ξ取⎥⎦⎤⎢⎣⎡-n i n i ,1的右端点构成的积分和.因为函数[]1,0)(在x x f =可积,由定积分定义,有∑=∞→n k n n k 123lim ⎥⎦⎤⎢⎣⎡+++=∞→)21(1lim n n n n n n 3210==⎰dx x . 例2 求极限 2213lim k n n k n k n -∑=∞→. 解 212213)(11n k nk n k n n k n k n k -⋅=-∑∑==. 上式是函数[]1,01)(2在x x x f -=的特殊积分和.它是把区间[]1,0分成n 等分,i ξ取⎥⎦⎤⎢⎣⎡-n i n i ,1的右端点构成的积分和.因为函数21)(x x x f -=在[]1,0可积,由定积分定义,有2213lim k n n k n k n -∑=∞→31)1(31110232102=⎥⎦⎤⎢⎣⎡--=-=⎰x dx x x . 三、用定积分证明不等式 定积分在不等式的证明中有着重要的应用.在不等式的证明中,可根据函数的特点,利用定积分的性质来证明.例1 设)(x f 是闭区间[]b a ,上的连续函数,且单调增加,求证:⎰⎰+≥b ab a dx x f b a dx x xf )(2)(. 证明 作辅助函数 dt t f x a dt t tf x xa x a ⎰⎰+-=)(2)()(ϕ, 显然0)(=a ϕ,且)(2)(21)()(x f x a dt t f x xf x x a ⎰+--='ϕ )(2))((21)(2x f a a x f x f x ---=ξ [])()(2ξf x f a x --=, 其中[]x a ,∈ξ.因为)(x f 在[]b a ,上单调增加,所以0)(≥'x ϕ,从而)(x ϕ在闭区间[]b a ,上单调增加,所以0)()(=≥a x ϕϕ,取b x =得⎰⎰+≥b a ba dx x fb a dx x xf )(2)(. 定积分在许多领域中有着重要应用,它是解决一些几何学问题、物理学问题和经济学问题的重要工具.这一章主要介绍了定积分在不同学科中的应用问题.。

例谈定积分的应用

例谈定积分的应用

例谈定积分的应用
定积分是利用积分技术来搭建企业系统的一种服务方式,通过定积分,企业可以解决营销,客户追踪,价格管理,订单跟踪等问题,让企业
既有资源利用效率,又能惠及消费者。

一、定积分的应用
1、促销活动:利用定积分可以创建各种丰富多彩的促销活动,满减、
团购、买赠、金币锁定等,激励消费者购买和积累积分。

2、客户管理:定积分能够建立细致复杂的客户档案,包括客户经理内容,购买次数,消费金额,积分余额等,更好地进行客户管理。

3、价格管理:通过定积分,可以根据不同客户的特征,设置特定的价格,比如会员价,大客户价等,更好地提高定价精确度和竞争力。

4、订单追踪:定积分的订单追踪系统可以记录客户的订单信息,有利
于企业更好地追溯客户信息以及及时为客户提供优质服务。

二、定积分的优势
1、可靠性:定积分系统可以提供可靠性能,降低前端和后端系统出现
的异常和故障,防止客户和企业受到损害。

2、安全性:定积分的安全性也得到有效保障,内部数据交换完全采用
加密技术,保证信息不受外部干涉。

3、兼容性:定积分具有可行性和兼容性,它可以按照各种不同环境定
制与企业系统相协调的服务,能够提供企业最适合的解决方案。

4、易用性:定积分使用界面简洁明了,业务流程简单可靠,容易上手,操作简单易懂,为客户提供更贴心的服务。

三、总结
定积分的引入为企业的经营活动带来了更多的便利,有效提高了企业
的经营效率,也让消费者能够从消费上受到更多的好处。

由此可见,
定积分不仅是企业的一种低成本的服务方式,也是一个更加有效的、
更加充分的消费积分服务体系,为企业和消费者都更好地搭建企业系统。

定积分的应用

定积分的应用

定积分的应用定积分是微积分的重要概念之一,它在许多实际问题的求解中起着重要作用。

本文将介绍一些定积分的应用,并探讨它们在不同领域中的具体应用情况。

1. 几何学中的应用在几何学中,我们经常需要计算曲线与坐标轴之间的面积。

通过使用定积分,可以轻松解决这个问题。

以求解曲线 y = f(x) 与 x 轴之间的面积为例,我们可以将其划分为无穷多个宽度非常小的矩形,然后将这些矩形的面积相加,最终得到曲线与 x 轴之间的面积。

这个过程可以通过定积分来表示,即∫[a,b] f(x) dx,其中 a 和 b 分别是曲线的起始点和终止点。

2. 物理学中的应用在物理学中,定积分广泛应用于求解各种与物理量有关的问题。

例如,在动力学中,我们可以通过计算物体的位移和速度的定积分来求解物体的加速度。

同样地,在力学中,定积分可以用于计算物体所受的力的功。

这些应用都需要将物理量表示成关于时间的函数,并使用定积分来求解相关问题。

3. 经济学中的应用经济学也是定积分的应用领域之一。

在经济学中,我们经常需要计算一段时间内的总收益或总成本。

通过将这段时间划分为无数个非常小的时间段,然后计算每个时间段内的收益或成本,最后再将这些值相加,我们可以用定积分来表示这段时间内的总收益或总成本。

这种方法在经济学中有着广泛的应用,例如计算企业的总利润等。

4. 概率统计学中的应用在概率统计学中,定积分可以用于求解概率密度函数下的某个区间的概率。

在概率密度函数中,曲线下的面积表示了该事件发生的概率。

通过将概率密度函数在某个区间上的定积分,我们可以得到该区间内事件发生的概率。

这种方法在概率论和数理统计中具有重要的应用,例如计算正态分布下的概率,或者计算随机变量的期望值等。

综上所述,定积分在几何学、物理学、经济学和概率统计学等各个领域都有着重要的应用。

无论是计算面积、求解物理量、计算总收益还是计算概率,定积分都提供了一种有效的数学工具。

通过理解和掌握定积分的应用,我们可以更好地解决实际问题,并深入研究各个领域中的相关理论。

定积分物理应用公式

定积分物理应用公式

定积分物理应用公式定积分在物理学中有着广泛的应用,可以帮助我们计算一些重要的物理量,如质心、力矩和功等。

下面我们将分别介绍这些应用。

1. 质心的计算:质心是一个物体的平均分布位置,可以用定积分来计算。

对于一维情况下的质心计算,我们可以使用以下公式:质心位置x_c = (1/M) * ∫(x * dm)其中,M是物体的总质量,x是物体的位置,dm是质量元素。

通过对物体的质量进行微元的划分,然后对每个微元的位置乘以质量进行积分,就可以得到质心的位置。

2. 力矩的计算:力矩是一个物体受力时产生的转动效应,可以通过定积分来计算。

对于一维情况下的力矩计算,我们可以使用以下公式:力矩M = ∫(r x F) dx其中,r是力矩臂的长度,F是作用在物体上的力,dx是位置元素。

通过对物体的位置进行微元的划分,然后对每个微元的位置乘以力进行积分,再乘以力矩臂的长度,就可以得到力矩的大小。

3. 功的计算:功是一个物体在受力作用下所做的功,可以通过定积分来计算。

对于一维情况下的功计算,我们可以使用以下公式:功W = ∫(F dx)其中,F是作用在物体上的力,dx是位置元素。

通过对物体的位置进行微元的划分,然后对每个微元的位置乘以力进行积分,就可以得到功的大小。

以上是定积分在物理学中的一些应用。

通过定积分的计算,我们可以得到质心的位置,力矩的大小和功的大小,从而帮助我们更好地理解和分析物体的运动和受力情况。

这些应用不仅在理论研究中有着重要的作用,而且在工程实践中也有着广泛的应用。

在实际应用中,我们可以通过测量和实验来获取所需的物理量,然后将其代入相应的定积分公式中进行计算。

这样可以帮助我们更好地理解物体的运动和受力情况,从而指导我们的实际操作和应用。

定积分在物理学中有着重要的应用,可以帮助我们计算质心、力矩和功等物理量。

通过定积分的计算,我们可以更好地理解和分析物体的运动和受力情况,从而指导我们的实际操作和应用。

这些应用不仅在理论研究中有着重要的作用,而且在工程实践中也有着广泛的应用。

考研数学定积分的应用

考研数学定积分的应用

考研数学定积分的应用一、引言数学定积分是高等数学中的重要概念之一,它在实际生活中有着广泛的应用。

本文将从几个具体的应用案例入手,探讨考研数学定积分的应用。

二、面积计算数学定积分最基本的应用之一就是计算曲线与坐标轴所围成的面积。

例如,在工程测量中,我们经常需要计算某个区域的面积,如果该区域的边界曲线可以用函数表示,那么可以通过定积分来求解。

通过将曲线分割成无穷多个微小的矩形,计算每个矩形的面积并进行累加,最终得到所需的面积。

三、物体体积计算除了计算面积,数学定积分还可以用于计算物体的体积。

在工程设计中,经常需要计算复杂形状物体的体积,例如水库的容量、建筑物的体积等。

如果物体的截面可以用函数表示,那么可以通过定积分来求解。

同样地,将截面分割成无穷多个微小的面元,计算每个面元的体积并进行累加,最终得到所需的体积。

四、质心计算质心是物体在空间中的重心,对于复杂形状的物体,质心的计算可以通过数学定积分来实现。

首先,将物体分割成无穷多个微小的体积元,计算每个体积元的质量并与其质心坐标乘积,然后进行累加,最后将总质量除以总体积,即可得到质心的坐标。

五、弯曲杆件的弯矩计算在工程力学中,常常需要计算弯曲杆件的弯矩分布,以确定结构的稳定性和安全性。

通过数学定积分,可以将杆件分割成无穷多个微小的弯曲段,计算每个弯曲段的弯矩,并进行累加,最终得到整个杆件的弯矩分布。

六、概率密度函数计算概率密度函数是概率论与数理统计中的重要概念,用于描述随机变量的概率分布。

数学定积分可以用于计算概率密度函数的各种性质,例如求解期望值、方差以及其他统计指标。

通过对概率密度函数进行定积分,可以得到具体的数值,从而进行概率分析和决策。

七、总结本文简要介绍了考研数学定积分的几个应用,包括面积计算、物体体积计算、质心计算、弯曲杆件的弯矩计算以及概率密度函数的计算。

这些应用充分展示了数学定积分在实际生活和工程领域中的重要性和广泛应用。

通过学习和掌握数学定积分的应用技巧,可以更好地理解和应用数学知识,提高问题解决能力。

定积分求平面图形面积在实际生活中的应用

定积分求平面图形面积在实际生活中的应用

定积分求平面图形面积在实际生活中的应用把复杂的积分问题求解出来就可以计算出平面图形的面积,在实际生活中也可以看到它的很多应用。

其中有一类是涉及设计的,比如建筑设计中的空间分配、土地开发等;另一类是分析的,比如海洋表面的波浪分析等。

1、建筑设计建筑设计中,定积分可以用来求解空间分配问题。

比如,在房屋设计中,它可以用来确定楼层、楼梯、墙壁、门窗等占用了多少面积。

此外,它还可以用来求解不规则房间布局时,室外墙体和室内墙体的面积分配。

同样,在土地开发中也可以看到定积分的应用,如计算出道路两端的封闭区域面积,以及计算建筑的总面积。

定积分也可以帮助规划者精确计算出规划区域的面积,从而更好地管理规划区域的开发。

2、海洋表面的波浪分析定积分也可以用来求解海洋表面的波浪。

水波的主要性质是在洋流中运动,它的变化符合泊松方程,这是一个带积分的方程,可以用定积分来求解。

这种波浪分析可以更好地解释海洋表面的复杂性,进而指导航管理者和建筑者采取更安全有效的导航措施。

此外,在海岸线上,可以使用定积分来计算海岸线内各子区域的面积,以及海岸线及其各个部分的面积,为海洋管理者提供有形的参考数据。

3、农业此外,定积分在农业中也有非常广泛的应用。

比如,在种植作物时,可以使用定积分来计算出作物地的面积,以及需要灌溉地区的面积;在研究农田开发时,可以利用定积分来计算出耕作面积。

通过计算出具体的面积数据,可以更好地规划农田的分布和种植规模,从而节约农业资源,提高农作物的产量。

总结定积分是一种有用的数学技术,可以把复杂的数学问题转化成计算机可计算的简单形式,在计算平面图形面积上表现出很强的优势。

它在实际生活中有很多应用,比如建筑设计、土地开发、海洋洋面波浪分析,以及农业规划等。

定积分的应用(10

定积分的应用(10定积分是微积分中的一个重要概念。

它表示在一定区间内,函数曲线与 x 轴之间的面积,也可以理解为变化率的累加。

定积分的应用非常广泛,下文将介绍其中的十个应用。

一、求物体在一定时间内的位移我们知道,物体在做匀加速运动时,其位移可以用位移公式S=vt+1/2at² 来计算。

如果物体的运动速度是变化的,我们可以将其速度函数 v(t) 求出,然后将其积分得到位移函数 S(t),再在一定时间段内求出 S(t) 的定积分即可得到物体在该时间段内的位移。

二、计算概率密度函数下的概率概率密度函数也是一个函数,其定义为:在一个无限小区间内,事件发生的概率与该区间长度的比值。

在一定范围内,概率密度函数曲线下的面积等于该范围内事件发生的概率。

因此,我们可以通过计算概率密度函数的定积分来获得某个事件发生的概率。

三、计算质心位置质心是物体的一个重要物理概念,其位置定义为将物体划分成若干小的无限小质量体积元,在这些质量体积元上求平均位置所得的点。

计算出物体每个质量体积元的质心位置,然后按质量将它们加权平均,就可以得到整个物体的质心位置。

计算质心位置的过程实质上就是对质量体积元的轴心距进行加权平均,这就是定积分的应用。

四、计算曲线长度我们可以用定积分来计算一个曲线的长度。

将曲线划分成许多小段,每个小段都近似为一条直线段,利用勾股定理计算它们的长度之和,然后取极限即可得到曲线的长度。

五、计算旋转体积旋转体积的计算方法就是将一个平面图形绕某个轴线旋转所形成的体积。

可以用定积分来计算旋转体积,其基本思想就是把旋转体积看作是由许多小的圆柱体构成的,计算出每个小圆柱的体积之和即可得到整个旋转体积。

六、计算弧度在物理学和天文学中,我们往往需要计算弧度。

弧度是一个角度的度量方式,它表示弧长与半径之比。

对于一个圆,一周的弧长就是圆的周长,因此圆的一周弧度为2π 弧度。

如果我们知道了一个圆弧所对应的角度度数,就可以通过简单的定积分计算出它的弧度。

定积分的应用

定积分的应用在我们的生活中,有很多场景都需要用到定积分。

而在数学上,定积分也起到了重要的作用。

定积分可以计算曲线下的面积,如求函数 $f(x)$ 在区间 $[a,b]$ 上的面积。

接下来,我们将介绍一些常见的定积分的应用。

一、曲线下的面积假设我们有一个区间 $[a,b]$,以及一个函数 $f(x)$。

我们可以使用定积分来计算这个函数在该区间上的曲线下的面积。

这个面积可以用下面的式子来计算:$$ S=\int_{a}^{b}f(x)dx $$ 其中,$\int$ 表示定积分。

如果我们以 $f(x)\geq 0$ 的形式进行了定义,那么定积分就可以计算出曲线下的正面积。

例如,如果我们要计算函数 $f(x)=x^2$ 在区间 $[0,1]$ 上的曲线下的面积,我们可以通过下面的定积分来计算:$$ S=\int_{0}^{1}x^2dx $$利用积分的定义,可以将该式子化简为:$$ S=\lim_{n\rightarrow\infty}\sum_{i=1}^{n}f(x_i)\Deltax=\lim_{n\rightarrow\infty}\sum_{i=1}^{n}x_i^2\Delta x $$ 其中,$\Delta x=\frac{1}{n}$ 且 $x_i=i\Delta x$。

如果我们取 $n=100$,你会发现:$$ S=0.010050167\cdots $$ 这时,我们就可以知道函数 $f(x)=x^2$ 在区间 $[0,1]$ 上的曲线下的面积为约为 $0.010050167$。

二、体积类似于计算曲线下的面积,定积分也可以用于计算体积。

我们可以使用定积分来计算旋转曲面的体积,例如旋转曲面、扫描曲面等。

例如,假设我们需要计算曲线 $y=x^2$ 从 $x=0$ 到 $x=1$ 周围在 $y$ 轴旋转一周所形成的立体的体积,我们可以使用下面的公式计算出体积:$$ V=\int_{0}^{1}\pi y^2dx $$替换掉 $y=x^2$ 的值,我们得到:$$ V=\int_{0}^{1}\pi x^4dx $$ 计算该定积分的结果为:$$ V=\frac{\pi}{5} $$ 所以,曲线$y=x^2$ 从 $x=0$ 到 $x=1$ 周围所形成的立体的体积为$\frac{\pi}{5}$。

定积分在数学中的应用

定积分在数学中有广泛的应用,涵盖了多个领域,包括几何、物理、经济学和工程学等。

以下是一些常见的应用领域:
1. 几何学:定积分可用于计算曲线的弧长、曲线与坐标轴所围成的面积、空间曲面的面积和体积等。

通过将几何问题转化为定积分的计算,可以准确求解各种形状的几何量。

2. 物理学:定积分在物理学中的应用非常广泛。

例如,可以用定积分计算物体的质心、转动惯量、流体的压力和力矩等。

还可以通过定积分计算曲线下的面积来求解物体的位移、速度和加速度等运动学问题。

3. 经济学:定积分在经济学中的应用主要用于计算累积量。

例如,可以使用定积分计算总收益、总成本、总利润等经济指标。

还可以通过定积分计算边际收益和边际成本,从而进行经济决策和优化问题的分析。

4. 工程学:定积分在工程学中也具有重要的应用价值。

例如,可以使用定积分计算电路中的电流、电压和功率等物理量。

在结构工程中,可以通过定积分计算材料的体积、质量和重心位置等。

此外,定积分还在概率论、信号处理、图像处理等领域有各种应用。

总之,定积分作为微积分的重要工具,广泛应用于数学及其他学科的建模、计算和问题求解中,提供了丰富的数学工具和方法,有助于深入理解各个学科中的现象和问题。

定积分的应用公式总结

定积分的应用公式总结定积分是微积分中的重要概念,它在许多领域都有着广泛的应用。

在本文中,我们将对定积分的应用公式进行总结,并举例说明其在实际问题中的应用。

1. 面积与定积分。

定积分最基本的应用之一就是计算曲线与坐标轴之间的面积。

设函数f(x)在区间[a, b]上连续,且f(x) ≥ 0,则曲线y = f(x)与x轴所围成的图形的面积为。

A = ∫[a, b] f(x) dx。

这就是定积分的几何意义,它表示曲线与x轴之间的面积。

2. 物理学中的应用。

在物理学中,定积分常常用来计算曲线下方的面积,从而得到某一变量的总量。

例如,如果我们知道一个物体在 t 时刻的速度 v(t)(单位时间内的位移),则该物体在时间区间 [a, b] 内的位移为。

S = ∫[a, b] v(t) dt。

这里的 S 就表示了物体在时间区间 [a, b] 内的总位移。

3. 概率统计中的应用。

在概率统计中,定积分也有着重要的应用。

例如,如果我们知道某一随机变量X 的概率密度函数为 f(x),则 X 落在区间 [a, b] 内的概率为。

P(a ≤ X ≤ b) = ∫[a, b] f(x) dx。

这里的 P(a ≤ X ≤ b) 表示了随机变量 X 落在区间 [a, b] 内的概率。

4. 工程中的应用。

在工程领域,定积分也有着广泛的应用。

例如,在计算流体的体积、质量、密度、压力等问题时,定积分常常是不可或缺的工具。

另外,在电路分析、信号处理、控制系统等领域,定积分也有着重要的作用。

5. 经济学中的应用。

在经济学中,定积分常常用来描述某一商品的总收益、总成本、总利润等。

例如,如果知道某一商品的需求函数为 D(p),则该商品在价格区间 [a, b] 内的总收益为。

R = ∫[a, b] p D(p) dp。

这里的 R 表示了商品在价格区间 [a, b] 内的总收益。

总结。

定积分的应用远不止以上几个领域,它在数学、物理、工程、经济等众多领域都有着重要的作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

推 导 由 连 续 曲 线 y= f(x )、 直 线 x = a 、 x = b及 x轴 所 围 曲 边 梯 形 绕 x轴 旋 转 而 成 的 旋 转 体 的 体 积 计 算 公 式 :
取x为积分变量, y yf(x)
即以垂直于 x轴的平面
族分割旋转体成薄片, o
x
x
则 体 积 元 素 为
x
dVy2dx[f(x)]2dxdV(x), x[a,b].
1.4.3 定积分的应用

计算机数学基础
1.4.3 定积分的应用
2 平面图形的面积
1、由定积分的几何意义,连续曲线
x 轴所围成的曲边梯形的面2 、积若为 f(x )在 [a , b ] 上 不 都 是 非 负 的 , 则 所 围 成 图 形 (y如 右 图y)f(x)
2、 若 则所围
f(x )在 成图形
所以由y-型计 区算域公面积式的得面积面 公积式得:
A
=
3
2 y +
-1
3-
y 2 d y
= 10
2 3
.
B
A2
A1
A
例 4 推导椭圆面积 A 的计算公式.
解 设椭圆方程为
x2 a2
y2 b2
1.
由对称性知,总面积等于第一象限部分面积的4倍.
aa
以x为积分变量,得 A44 yd(A x()xd)x 00
x=a 、右直线 x=b
所围成,则其面积公式为:
y1 f1(x)
b
A = f 1 ( x ) - f 2 ( x ) d x .
a
4、若平面区域是 y型区域:
由左曲线 x1 = g1(y) 、 右曲线 x2 = g2 (y) 、下 直线 y = a 、上直线 y = b
o
y2 f2(x)
a
b
x
y
例2:计算由曲线 y=x3-6x 和 y=x2 所围成的图形的面积
解: 求两曲线的交点:
y x3 6x
y
x2
(0,0),(2,4),(3,9).
0
A 12
(x36xx2)dx
3
A20
(x2x36x)dx
于是所求面积 AA 1A 2
A 02(x36xx2)dx03(x2x36x)dx
253 . 12
2)设想把区间[a, b]分成 n个小区间,取其中任一
小区间并记为 [ x, x dx],求出相应于这小区间的部 分量 U 的近似值.如果 U 能近似地表示为 [a, b]
上的一个连续函数在 x处的值 f ( x)与 dx 的乘积,
就把 f ( x)dx称为量 U 的元素且记作dU ,即
dU f ( x)dx;
b
xg1(y)
xg2(y)
所围成, 则其面积公式为:
a
b
o
A g2 ( y) g1 ( y) dy. 如
x
a
例1 计算由两条抛物线 y 2 = x 和 y = x 2 所围成的图形的面积
解: 作出y2 = x, y = x2 的图象如图所示:
解方程组yy xx得:{ ,{ , 解 方 程 组 y y 2x2x得{x y xy 0 0 00,{x y xy1 111,
[a (
,
b
]
上不都 的面
如右图)
是 积
非负 为
的 A
0
, =
b
a
f(x) dx .
(x )

在 [a,b] 上 形2、(若如f(右x)
图在不 [)都a的,b面是]不积非都为 负是A正的= 的b ,f,(x )=则d xc所. f (围x )成d x图- 形d f的( x面) da积x 为
y
b
1.4.2 定积分的计算
3 定积分的分部积分法
解 4 无穷区间上的广义积分
计算机数学基础
1.4.3 定积分的应用

1.4.3 定积分的应用
1 元素法 以本书求曲边梯形面积为例,说明元素法解题的思想过程.
计算机数学基础
元素法的一般步骤:
1)根据问题的具体情况,选取一个变量例如 x为积
分变量,并确定它的变化区间[a, b];
x
a
a
c
b
c
d
e
b

A= a
f(x) dx .= f(x)dx - f(x)dx + f(x)dx - f(x)dx . a c
oo d
a
c
d
e
d
y f(x)
e bx
x - f(x)dx
e
b
3、 若 平 面 区 域 是 x型 区 域 :
由 上 曲 线 y1 = f1 (x ) 、
y
下 曲 线 y 2 = f2 (x ) 左 直 线
即两曲线的交点为(0,0), (1,1)
y
S=S曲 边 梯 形 OABC-S曲 边 梯 形 OABD
y y 2 xx B
S= 1( x-x2)dx 0
1
xdx 1x2dx
0
0
(2 3
3
x2
x3 3
)
|10
1. 3
C
y x2
o y xx2
O
DA
求两曲线围成的平面图形的面积的一般步骤:
(1)作出示意图;(弄清相对位置关系) (2)求交点坐标;(确定积分的上限,下限) (3)确定积分变量及被积函数; (4)列式求解.
3)以所求量U 的元素 f ( x)dx 为被积表达式,在区间
[a, b]上作定积分,得
U
b
a
f
(
x
)dx

即为所求量 U 的积分表达式.
这个方法通常叫做元素法.
应用方向:
平面图形的面积;体积;平面曲线的弧长;功;水压 力;引力和平均值等.
1.4.3 定积分的应用
2 平面图形的面积 解
计算机数学基础
旋转体的体积公式 V b[f(x)]2dx a
类 似 地 , 建 立 由 连 续 曲 线 x = (y)、 直 线 y= c、 y= d
[
1
x ( x 3 )]dx 28
2
3
则总面积:A
A1
A2
32 3
左 曲 线 为 :x = y 2 , 右 曲
线 为 : x = 2y + 3,下 直 线
分析2 :若y 把= 围- 1成, 的上 区直域线看成为 y:– 型y区=域3,则左曲线 为 x=y2,直右曲接 线由 x=y2y?+3,型 下区直线域 y面= -积1,的上直线 y=3
4
a
b
1
x2
xas itn
dx 4ab2cotdssin ta.b
0
a2
0
1.4.3 定积分的应用

计算机数学基础
1.4.3 定积分的应用

计算机数学基础
1.4.3 定积分的应用
3 旋转体的体积
旋转体——由一个平面图形绕同平面内一条直 线旋转一周而成的立体.这条直线叫做旋转轴.
圆柱
圆锥
圆台
y x2
A1
A2
yx36x
例3 求抛物线 y2 = x 与直线 x-2y-3=0 所围成的区域的面积
解: 先做出图形如下:
分析:所给的区域不是一个规范的x-域, 为了便于计算需将其图形进行分 割, 即 可化成两个x-形区域的面积问题。
B
A2
A1
1
A10[
x( x)]dx4 3
A
第二块的面积:
9
A2
相关文档
最新文档