防静电技术及失效分析

合集下载

ESD防护基础知识

ESD防护基础知识

3.防静电工作区标记
根据GJB3007-97国家军标规定: A级防静电工作区允许的对地静电电位不超过±100V; B级防静电工作区是指允许的对地静电电位不超过±1000V。 4.防静电工作区系统电阻的确定
静电的泄放必须“安全”,所谓“安全性”是指无论对元器件, 还是人身都必须保证绝对的安全。安全性有两个指标:一是静电电压 必须在1秒钟内降至100V;二是放电电流不能高于5mA。因此静电防护 的系统电阻选择在:106Ω -109Ω 。
相对湿度下静电电压(V)
10% 12000 6000 2000 11500 14500 26000 21000
40% 5000 800 700 4000 5000 20000 11000
55% 3000 400 400 2000 3500 7000 5500
第二部分 ESD防护技术
一.ESD防护的必要性
2.在手腕带佩戴上,禁止
1)将手腕带缠绕在手腕上,而不将其接地;
2)将手腕带佩戴在衣服袖口上或将其藏在防静电工作服的 松紧袖口内;
3)将鳄鱼夹直接夹持在设备、线体外壳上或非专用静电接 地端的其它点上。
★防静电手腕带的佩戴
4.ESD防护过程控制要求
1)静电防护是一个系统工程,渗透到生产的全过程,每个 环节都必须同样重视,万不可厚此薄彼。
六、静电防护系统的组成
完备的静电防护硬件系统包括: A.人体静电防护、 B.环境静电防护、 C.操作系统静电防护、 D.静电保护接地、 E.离子风静电消除器、 F.静电检测及监控仪表、 G.防护措施的日常维护
七、人体静电防护
人体在日常活动和生产操作中可产生的电压为数十伏到数万 伏的静电,而放电过程是及其短促的,所以静电放电过程中释 放的能量可达几十瓦,这足以引起芯片微区烧毁或SiO2膜击穿。

ESD静电防护

ESD静电防护

穿防静电服
为避免人体产生静电,工 作人员应穿着防静电服, 其材质应为导电纤维,以 降低摩擦起电的可能性。
使用防静电手环
防静电手环是通过非接触 方式消除人体静电,有效 防止静电对工作人员和设 备造成影响。
定期检查
定期检查防静电服和防静 电手环的完好性,确保其 性能正常。
设备设施接地
接地系统
为确保设备安全,应建立完善的接地系统,将设备与大地相连,以释放静电 。
• ESD静电防护标识是一种用于标识电子设备是否符合ESD静 电防护要求的标识。它通常是一个“三叶草”形状的图案, 下面标有“ESD SENSITIVE”字样。如果一个电子设备上贴 有这种标识,说明它已经通过了ESD静电防护测试,符合相 关标准的要求。
03
esd静电防护措施
人体静电防护
01
02
03
esd静电防护
2023-11-03
目录
• 静电产生与危害 • esd静电防护概念与标准 • esd静电防护措施 • esd静电防护培训与教育 • esd静电防护管理与实践 • esd静电防护新技术与发展趋势
01
静电产生与危害
静电产生原理
摩擦起电
当两种不同的材料相互摩擦时 ,由于它们对电子的亲和力不 同,会导致电子的转移和分离
esd静电防护教育形式及方法
理论教学
采用图文并茂、案例分析等方式,使学员更好地 理解静电防护知识护技能。
在线学习
提供视频教程、PPT等资料,让学员随时随地学 习ESD防护知识。
esd静电防护培训效果评估与改进
考试评估
01
对学员进行考试,评估学员掌握情况。
性。
根据评估结果,及时发 现存在的问题和不足, 采取相应的改进措施。

静电防护技术操作

静电防护技术操作

工作台应配备防静电接地线,确保工作台与地面可靠连接。
工作台上应放置防静电垫,以便放置电子元件等物品。
工作台附近应避免放置易产生静电的物品,如塑料制品、化纤衣物等。
人员防静电措施
穿着防静电工作服
佩戴防静电手环
避免接触静电敏感设备
定期检查防静电设备是否正常工作
静电防护技术操作注意事项
PART 03
防静电工作区标识设置
静电防护技术操作应用场景
PART 04
电子制造行业
静电防护技术在电子制造过程中的重要性
静电防护技术在电子制造行业中的应用
静电对电子元器件的影响
静电防护技术在电子制造行业中的发展趋势
制药行业
添加标题
添加标题
添加标题
添加标题
静电防护技术可以减少药品生产过程中的静电干扰
药品生产过程中,静电可能导致药品污染和失效
静电防护技术的重要性:静电防护技术操作是保障石油化工生产安全、提高生产效率的重要手段
其他行业
航空航天行业:飞机制造、航天器制造、卫星发射等环节
医药行业:药品生产、药品包装、药品储存等环节
电子行业:电子产品生产、组装、测试等环节
石油化工行业:石油开采、炼油、化工生产等环节
静电防护技术操作案例分析
PART 05
设备电源线必须使用防静电电源线,避免产生静电
设备操作人员必须穿戴防静电工作服和防静电鞋,避免产生静电
防静电工作区环境要求
工作人员着装:穿着防静电工作服和防静电鞋
设备接地:确保所有设备接地良好
工作台面:使用防静电工作台或防静电垫
地面材料:使用防静电地板或防静电地垫
温度控制:20℃-25℃
保持环境湿度:40%-60%

基于工业数据挖掘的ESD软失效分析

基于工业数据挖掘的ESD软失效分析

现代电子技术Modern Electronics TechniqueMay 2024Vol. 47 No. 102024年5月15日第47卷第10期静电是一种存在于物体表面、正负电荷在局部失衡时产生的现象, 是静止的或者相对静止的电荷,其对电子产品的危害主要表现是静电放电的高压或者高能量导致器件受损。

因此在电子产品生产制造过程,需要合适的静电防护技术和防护措施[1⁃3]。

为了进一步实时地监控所有防护措施是否有效,当前,很多电子制造企业部署了基于物联网技术的静电放电(Electro ⁃Static Discharge, ESD )防护监控系统[4⁃5],用于监控生产线的ESD 防护措施的有效性。

静电放电的损害往往只有10%的比例造成电子元器件即时完全失效,通常表现为短路、开路以及参数的严重衰变,超出其额定范围,器件完全丧失了其功能,本文称此类失效为ESD 硬失效(Hard ESD, H⁃ESD )。

而另外的90%比例的静电损伤会潜伏下来, 造成积累效应[5]。

所以,一般情况下,一次ESD 不足以引起器件立即完全失效,但元件内部会存在某种程度的轻微损伤,通常表现为器件的电性能参数值在规格限内的偏差或漂移,造成此类器件处于“亚健康”状态,抗损伤的能力变弱。

由于这种ESD 轻微损伤并不明显,不易在生产过程中被检出,从而易被忽视,但这种元器件如果继续工作,随着工作时长带来的老化作用,极易出现失效,本文称此类现象为ESD 软失效(Soft ESD, S⁃ESD )。

H⁃ESD 一般能在产品出货前的电学性能和功能检测中及时发现;而S⁃ESD 通常在出货给到客户甚至终端用户使用后DOI :10.16652/j.issn.1004⁃373x.2024.10.013引用格式:刘祖耀,张海贝,颜志强,等.基于工业数据挖掘的ESD 软失效分析[J].现代电子技术,2024,47(10):69⁃72.基于工业数据挖掘的ESD 软失效分析刘祖耀1, 张海贝1, 颜志强1, 汪中博2, 司立娜1, 刘 路1(1.深圳长城开发科技股份有限公司, 广东 深圳 518025; 2.西安电子科技大学 机电工程学院, 陕西 西安 710071)摘 要: 针对电子产品出货后出现ESD 软失效而导致的退货现象,文章通过机器学习算法分析产品ICT 电性能测试参数、生产线ESD 防护监控数据和产品ESD 软失效的相关性。

静电防护(ESD)

静电防护(ESD)

为信号接口添加防护措施,如采用金属插头 、护套等,以减小静电放电对信号的影响。
外壳设计
内部布线
采用导电材料制作产品外壳,使产品表面形 成连续的导电层,有利于电荷的传导和防护 。
内部布线应采用合适的线缆类型和布线方式 ,避免电荷积累和干扰信号传播。
05
ESD的检测与评估
ESD检测方法
直接放电法
将电荷直接施加到被测物体上 进行检测。
桌面及设备接地
桌面和设备应具有良好的接地措施 ,防止静电积累。
静电防护用品及使用规范
防静电手环
为操作人员配备防静电手环,确保 电荷能够通过手环导入大地。
防静电服装
为操作人员配备防静电工作服,减 少摩擦起电的可能性。
防静电鞋
为操作人员配备防静电鞋,防止电 荷通过脚底导入大地。
使用规范
操作人员应正确佩戴静电防护用品 ,并确保其接地良好。
摩擦起电是指两种不同材料或导电性能不同的物体相互摩擦时,其中一种材料会 失去电子而带正电,另一种材料会得到电子而带负电,导致正负电荷分离的现象 。
摩擦起电的电荷量一般较少,但有时由于摩擦时产生的高温或化学反应等也会使 电荷量积累到较高的程度。
感应起电
感应起电是指一个导体靠近带电体时,由于电荷间相互吸引 或排斥的作用,会使导体中的自由电荷移动并聚集在导体的 一端,从而使这一端带电的现象。
结果分析
记录测试数据,分析被测物体的ESD防护 性能,评估其是否符合相关标准和规范的 要求。
选择测试等级
根据产品类别选择相应的静电放电测试等 级。
测试执行
按照测试等级的要求,使用静电放电发生 器对被测物体进行放电操作。
测试准备
将被测物体放置在适当的测试环境中,确 保测试结果的准确性。

ESD与静电防护ppt

ESD与静电防护ppt

SSD静电放电(ESD)检测与失效分析技术
检测技术
介绍 SSD 静电放电检测技术 ,包括放电电极、信号采集和
分析系统等。
分析技术
介绍 SSD 静电放电失效分析技术 ,包括外观检查、电路板测试和 程序测试等。
应用案例
介绍 SSD 静电放电检测与失效分 析技术在企业生产中的应用案例, 包括产品研发、生产制造和市场销 售等环节。
SSD静电放电(ESD)失效分析
失效模式识别
通过外观检查、电路板测试和 程序测试等方法,识别 SSD 的 失效模式,包括硬失效和软失
效。
失效机理分析
分析 SSD 的失效机理,包括电 子元器件的热效应、电磁干扰
和静电放电等。
失效影响因素
分析影响 SSD 失效的因素,包 括环境温度、湿度、静电放电
次数和波形等。
人体静电放电检测法
摩擦起电检测法
通过带电人体对 SSD 进行放电,并 检测 SSD 的电流和电压,以评估 SSD 的静电放电抗扰度。
通过摩擦机对 SSD 进行摩擦起电, 并检测 SSD 的电位和电荷量,以评 估 SSD 的静电放电抗扰度。
感应起电检测法
通过感应电场对 SSD 进行起电,并 检测 SSD 的电流和电压,以评估 SSD 的静电放电抗扰度。
05
SSD静电放电(ESD)防护设计案例
SSD静电放电(ESD)防护设计案例一
案例名称
某知名SSD品牌ESD防护设计案 例
设计目标
为SSD产品提供全面的ESD防护 ,提高产品的稳定性和可靠性
设计思路
采用法拉第笼、滤波器、瞬态 抑制器等多种防护手段,对SSD
进行全方位的静电防护
SSD静电放电(ESD)防护设计案例二

静电防护(ESD)ppt

静电防护(ESD)ppt

静电防护的原理
降低静电电势
通过降低材料的电阻率、增加 材料的表面导电性等方式,降
低材料表面的静电电势。
控制静电放电途径
通过采用导电材料、设置静电消 除器等方式,控制静电放电途径 ,避免静电放电对产品造成损伤 。
增加环境湿度
通过增加环境湿度,使空气中的绝 缘能力下降,从而增加静电放电的 可能性,减少静电对产品的影响。
制定并执行相关安全规定,如禁止在 易燃易爆环境中使用化纤服装,进入 易燃易爆场所前应采取消除静电措施 。
03
安全培训和教育
加强员工安全培训和教育,提高员工 对静电放电危害的认识和防范意识。
设备使用中的静电放电防护案例
静电放电对设备的危 害
静电放电可能导致电子设备故障 、机械损伤、材料劣化等问题。
设备接地和搭接

静电积累
带电物体通过电荷的积累,形 成高电势,当电荷不能继续积 累时,就会发生静电放电。
静电放电
当带电物体的电势差超过空气 的绝缘能力时,就会发生静电
放电。
影响静电放电的因素
环境因素
环境中的湿度、温度、压力等都会影响静电放电 。
物体因素
物体的材料、表面状态、形状等都会影响静电放 电。
人员因素
人员活动、衣服、鞋子等都会影响静电放电。
满足标准要求
许多国家和地区的电子产品生产和销售法规都要求进行静电防护 ,以满足相关标准和规范的要求。
提高用户满意度
静电防护可以减少电子产品在使用过程中因静电而出现的问题, 提高用户满意度和产品信誉。
02
静电防护(ESD)基本原理
静电放电的物理过程
静电产生
物体带电是由于电子的转移, 通常是由于摩擦或感应而产生

防静电规范

防静电规范

防静电规范制作:郑业确认:承认:一、ESD产生的危害静电放电(ESD)常会发生在电子装配和包装过程中,它容易造成元器件损坏,而又容易被人们低估和忽视。

越来越多敏感的电子元件很易被静电所损坏,ESD每年给世界的电子制造工业造成很大的损失。

静电放电(ESD)的定义为,带有静电电荷(电子不足或过剩)的载体放电,产生电子流。

如果一个元件的两个针脚或更多针脚之间的电压超过元件介质的击穿强度,就会对元件造成损坏。

这是MOS器件出现故障最主要的原因。

氧化层越薄,则元件对静电放电的敏感性也越大。

故障通常表现为元件本身对电源有一定阻值的短路现象。

对于双极性元件,损坏一般发生在薄氧化层隔开的已进行金属喷镀的有源半导体区域,因此会产生泄漏严重的路径。

如果带有足够高静电电荷的载体靠近有相反电势的集成电路(IC)时,静电电荷会"跨接",产生电子流,引起静电放电(ESD)。

ESD以极高的强度且迅速发生,通常将产生足够的热量熔化半导芯片的内部电路,在电子显微镜下观察,会发现其外表象向外吹出的小子弹孔,从而引起电子元件不可修复的损坏。

这种ESD造成的损坏,只有少数的情况会在最后测整个元件时,发现元件已经失效。

但其它大多数的情况,ESD损坏只引起电子元件部分的性能下降,这意味着损坏的电子元件可能会毫无察觉地通过最后测试,因而产品到用户手中使用后就会出现过早的失效,这样一来其结果必然损坏制造商的产品质量声誉。

要密切注意元件在不易察觉的放电电压下发生的损坏,这一点非常重要。

人体有感觉的静电放电电压在3000 — 5000V之间,然而,元件发生损坏时的电压仅几百伏。

二、防静电规范要点环境:生产区域温度一般要求在温度15℃~30℃,相对湿度要求40%~85%,每天进行检查并记录数据.,不符时要采取措施使之达到要求。

1、防静电设施:①建立专门防静电网,保持接地电阻≤5Ω.②动力电地线要有效接地,接地电阻≤5Ω,所有输出口(插座)设有接地线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C2 125 ~ 249
C3 250 ~ 499
C4 500 ~ 999
C5 1000 ~ 1499
C6 1500 ~ 2999
C7 ≥ 3000
15
封装的失效分析
1. 失效分析的目的 找出失效原因 制定改进措施 (从设计、制造和使用方面) 提高产品质量和成品率。
16
失效分析程序: (1) 记录失效现象 (2) 鉴别失效模式 (3) 描述失效特征 (4) 假设失效机理 (5)证实:从正、反两面证实失效机
静电甚敏感器件 1级 0 ~ 1999
0级 0 ~249 1A 250 ~499 1B 500 ~999 1C 1000 ~1999
静电敏感器件
2级 2000 ~ 3999
静电中等敏感器件 3级 4000 ~ 15999
非静电敏感器件
≥ 16000
2级 2000 ~3999 3A 4000 ~7999 3B ≥ 8000
孔洞等很敏感。
快速:可作在线检测(对PQFP、 PBGA)等塑封器件; 可作分层和垂直断
面等多种分析
20
声学扫描显微镜之一 21
声学扫描显微镜之二
22
声扫描显微镜原理
23
24
4
25
26
27
28
3. X射线图像显示 非破坏性,透视内部结构完整性。 高放大倍数(可达2000≅),高分辨率 (2.0µm)。 对塑封器件和PCB最有效。
2
标准对电流波形 (电能量),引线端连
接方式,放电次数等试 验方法都有详细规定。
图1 HBM模型中测试器件ESD灵敏度的等效电路 这是一个较成熟的、最常用的模型。
3
(3) 人体模型(HBM)的有关标准 目前以人体模型来测试静电敏感器件的静电放电
灵敏度(ESDS)的标准有两种: 一是军标,美国是MIL-STD-883D,方法3015.7;
43
5. SEM 扫描电镜 高效大倍数图像显示及成分分析
45
BGA焊点裂纹局部放大
47
44
BGA焊点裂纹
46
芯片焊层疲劳裂纹
48
8
能谱仪成份分析
s-01
Nf =7000次,底盘镀镍层拉脱
49
Element kRation --ZAF-- Weight% -Atom%-
Ti
0.00047 0.7302
5
表3 各类微电子器件典型的静电放灵敏度范围
序号 1 2 3 4 5 6 7
类型 V MOS H MOS EPROM GaAsFET MOSFET JFET C MOS/N MOS
静电破坏电压(V) 30 ~ 1800 50 ~500 100 ~1500 100 ~ 300 100 ~200 140 ~700 250 ~ 4000
(3)MM ESDS电流波形(RL=0Ω),(ESD-S5. 21994)
9
10
(4)MM ESDS电流波形(RL=500Ω),(ESD-S5. 2-1994)
11
2、机器模型(MM)
模拟机器设备所带静电荷通过电子器件放电。模型核心内 容为200pF电容通过0Ω电阻对器件管脚放电。同样电压
下,放电电流比人体模型大。不是单峰衰减,而是多峰阻 尼振荡衰减。MM模型下元器件的ESD灵敏度分类见下
注:由于抗静电破坏技术的进展,器件抗ESD电压也在不断提高。
7
图2 HBM、MM、CDM三类模型静电放电灵敏(ESDS) 分类测试电流波形比较
(1)HBM ESDS电流波形(MIL-STD-883D 3015.7)
8
(2) CDM ESDS电流波形
Tr50 达到半高的上升时间 Td 半高波形宽度
Ip 峰值电流
表。 级别
静电敏感电压范围(V)
M1
< 100
M2
100 ~ 199
M3
200 ~ 399
M4
≥ 400
12
2
3、带电器件模型(CDM) 模拟器件本身所带静电荷,通过其管脚与地或比
其电位低的物体放电。这时器件内的抗静电保护电路 不起作用!器件对这种ESD的灵敏高,耐压低。这种 ESD模型的形式多,有4种:
0.0579
0.1935
Ni
0.02954 0.8572
3.0875
8.4252
Sn
0.17988 0.6859 23.4921 31.7098
Au
0.79011 0.9647 73.3625 59.6715
50
6. 带录相或数码相机的光学显微镜
国外功率晶体管横截面结构
51
52
7. 激光(云纹)干涉仪
中国是GJB 548A-96A,方法3015A。 另一个是国际抗静电学会的EOS/ESD-S5.1-1993。
两者的具体分类标准见表2。
4
表2 HBM模型下两种标准的静电灵敏器件的ESDS分
名称

军标MILSTD883 方法3015
EOS/ESD-S5.1
级别 静电敏感电压(V) 级别 静电敏感电压(V)
按电荷产生方式:磨擦起电——在外壳上,接触式 感应起电——在外壳或体内,非接触式
按安装方式有带插座和无插座两种。
13
表4 CDM的种类和CDM中元器件的ESDS分类
接触式:带插座(CS) 无插座(CN)
非接触式:带插座(NS) 无插座(NN)
级别
静电敏感电压范围 (V)
C1 0 ~ 124
C2 125 ~ 249
6
1
序号 8 9 10 11 12 13 14 15
类型 线性电路(运放) 肖特基二极管 ECL SAW SCR SL-TTL/S-TTL TTL/DTL/H-TTL 厚膜电阻
静电破坏电压(V) 180 ~ 2500 300 ~ 3000 500 ~ 1500 150 ~ 500 680 ~1500 300 ~ 2500 380 ~ 7000 300 ~ 3000
18
3
常用失效分析技术 常用的分析方法有电性能测试、结构分析、(表面
形貌、内部结构)、热分析、(热阻、热分布、热-力 分析、加速应力试验、理论计算和模拟)等。
1. 电性能测试:直流参数 交流参数 ESD试验:人体带电模型 机器带电模型 器件带电模型
寻找失效模式
19
2. 声学扫描显微镜(ASM)
是非破坏性的检测、对分层、裂纹、
理,失效可实现重复; (6) 采取改进措施,新措施中是否
隐含新的失效因素。
17
常用的失效分析技术
(1) 电性能测试和外观检验;
(2) X光透射检查仪; (3) 超声显微镜;非破坏性、可分层、A-SCAN 点扫描 、B-SCAN、截面扫描、C-SCAN、水平面 扫描; (4) 红外热像仪:温度分布,(需开盖!或封 盖前检查); (5) 扫描电子显微镜(SEM)微区形貌; (6) 俄歇谱(Auger);成分,成分深度分 布; (7) 莫尔干涉仪:形变和受应力情况; (8) 有限元分析 : 热、热力
C3 250 ~ 499
C4 500 ~ 999
C5 1000 ~ 1499
C6 1500 ~ 2999
C7 ≥ 3000
14
表4 CDM的种类和CDM中元器件的ESDS分类
接触式:带插座(CS) 无插座(CN)
非接触式:带插座(NS) 无插座(NN)
级别
静电敏感电压范围 (V)
C1 0 ~ 124
F14
无氧铜基板上(1/2)的等效应力分析
59
(1/2)
58
10
8. 有限元分析
管座
芯片 芯片 焊层
53
54
9
(剖面)
ϖT= 18.3℃
粘接层纵向温度
18.3 下降率 50
=
0.366
℃/
µm
55
56
底面温度梯度
ΔT Δx
=
75.2 − 60.5 0.7

21 ℃/
mm
75.2 − 61.6 ≈ 27 ℃/ mm 0.5
57
应力集中于密封窗框的焊接区,上大下小,边上大中心小(宽焊接框,无槽,宽外沿)。 可伐/无氧铜结构中的关于X1对称面上的Mises应力等值图(单位MPa)
接触式——摩擦起电模型 非接触式——电场感应模型(FIM) ESD S5.3-1995 带插座模型 ESD DS5-3.1-1996 无插座模型 JESD 22-C101 场感应CDM微电子器件耐压测试方式
1
2、人体模型(HBM) (1)人体是最主要的静电源。 HBM模型主要是模拟人体所带静电对微电子器 件 ESD而可能产生的损伤。 (2)模型的核心是将人体用100pF电容和1.5kΩ 电阻的RC放电回路来模拟。
四、电子元器件ESD灵敏度测试分类的三个模型及有关标准
静电放电灵敏度(ESDS)是指会导致元器件失效 的静电放电电平。 1、三个模型及有关标准 (1)人体模型(HBM),MIL-STD-883D,
(GJB548A)方法3015.7
EOS/ESD-S5.1-1993 (2)机器模型(MM),ESD-S5.2-1996 (3)带电器件模型(CDM),
29
305Biblioteka 仪器外形之一基本技术
31
检测结果举例
32
键合引线和压焊块
33
34
35
36
6
设备外形之一
4. 红外热像仪(Infra Scope) 可测工作状态下的芯片热分布,最高结 温,电流趋边效应。测量热阻,检测热 斑,验证管芯粘接情况等。 需开帽检测。
37
38
39
达林顿管芯发热情况
相关文档
最新文档