南京大学物理化学下册(第五版傅献彩)复习题及解答
(完整版)南京大学物理化学下册(第五版傅献彩)复习题及解答

第八章电解质溶液第九章1.可逆电极有哪些主要类型?每种类型试举一例,并写出该电极的还原反应。
对于气体电极和氧化还原电极在书写电极表示式时应注意什么问题?答:可逆电极有三种类型:(1)金属气体电极如Zn(s)|Zn2+ (m) Zn2+(m) +2e- = Zn(s)(2)金属难溶盐和金属难溶氧化物电极如Ag(s)|AgCl(s)|Cl-(m), AgCl(s)+ e- = Ag(s)+Cl-(m)(3)氧化还原电极如:Pt|Fe3+(m1),Fe2+(m2) Fe3+(m1) +e- = Fe2+(m2)对于气体电极和氧化还原电极,在书写时要标明电极反应所依附的惰性金属。
2.什么叫电池的电动势?用伏特表侧得的电池的端电压与电池的电动势是否相同?为何在测电动势时要用对消法?答:正、负两端的电势差叫电动势。
不同。
当把伏特计与电池接通后,必须有适量的电流通过才能使伏特计显示,这样电池中发生化学反应,溶液浓度发生改变,同时电池有内阻,也会有电压降,所以只能在没有电流通过的情况下才能测量电池的电动势。
3.为什么Weslon标准电池的负极采用含有Cd的质量分数约为0.04~0.12的Cd一Hg齐时,标准电池都有稳定的电动势值?试用Cd一Hg的二元相图说明。
标准电池的电动势会随温度而变化吗?答:在Cd一Hg的二元相图上,Cd的质量分数约为0.04~0.12的Cd一Hg齐落在与Cd一Hg固溶体的两相平衡区,在一定温度下Cd一Hg齐的活度有定值。
因为标准电池的电动势在定温下只与Cd一Hg齐的活度有关,所以电动势也有定值,但电动势会随温度而改变。
4.用书面表示电池时有哪些通用符号?为什么电极电势有正、有负?用实验能测到负的电动势吗?答:用“|”表示不同界面,用“||”表示盐桥。
电极电势有正有负是相对于标准氢电极而言的。
不能测到负电势。
5.电极电势是否就是电极表面与电解质溶液之间的电势差?单个电极的电势能否测量?如何用Nernst方程计算电极的还原电势?5.电极电势是否就是电极表面与电解质溶液之间的电势差?单个电极的电势能否测量?如何用Nernst 方程计算电极的还原电势?答:电极电势不是电极表面与电解质溶液之间的电势差。
《物理化学(第五版,傅献彩)》课后习题及答案

热力学第一定律
1mol,T1,
p1=2×101.325kPa V1=11.2dm3
pT=常数 可逆
(1)T1=(p1V1)/(nR)=273K
∵ p1T1 p2T2 c
∴
2
101325
2
101325 0.0112 8.314
K
4
101325T2
1mol,T2 p2=4×101.325kPa
V2
T2 136.6K
n, T1=293K, p1=p V1=3dm3
p1=p2
n,T2=353K p2
V2
n 101.325 3 mol 0.125mol 8.314 293
U
n
353
C 293 p,m
R
dT
0.125
353.2 18.96 3.26 103 T
293.2
dT
0.125 18.996353
V2
8.314 136.6 4 101325
m3
2.8 103 m3
(2) U
nCV ,m T2
T1
1
3 2
8.314(136.6
273)J
1701J
H 15 8.31(4 136.6 273)J 2835J 2
(3)W pdV c d( nRT T ) nR dT 2 2nRdT
T pT
T
W 2nR(T2 T1 ) 2 8.31(4 136.6 273)J 2268J 14.设有压力为 p,温度为 293K 的理想气体 3dm3,在等压下加热,直到最后的温度为 353K 为止。计算过程中的 W、ΔU、ΔH、和 Q。已知该气体的等压热容为: Cp,m=(27.28+3.26×10-3T)J·K-1·mol-1。 解:
(NEW)傅献彩《物理化学》(第5版)笔记和课后习题(含考研真题)详解

目 录第1章 气 体1.1 复习笔记1.2 课后习题详解1.3 名校考研真题详解第2章 热力学第一定律2.1 复习笔记2.2 课后习题详解2.3 名校考研真题详解第3章 热力学第二定律3.1 复习笔记3.2 课后习题详解3.3 名校考研真题详解第4章 多组分系统热力学及其在溶液中的应用4.1 复习笔记4.2 课后习题详解4.3 名校考研真题详解第5章 相平衡5.1 复习笔记5.2 课后习题详解5.3 名校考研真题详解第6章 化学平衡6.1 复习笔记6.2 课后习题详解6.3 名校考研真题详解第7章 统计热力学基础7.1 复习笔记7.2 课后习题详解7.3 名校考研真题详解第8章 电解质溶液8.1 复习笔记8.2 课后习题详解8.3 名校考研真题详解第9章 可逆电池的电动势及其应用9.1 复习笔记9.2 课后习题详解9.3 名校考研真题详解第10章 电解与极化作用10.1 复习笔记10.2 课后习题详解10.3 名校考研真题详解第11章 化学动力学基础(一)11.1 复习笔记11.2 课后习题详解11.3 名校考研真题详解第12章 化学动力学基础(二)12.1 复习笔记12.2 课后习题详解12.3 名校考研真题详解第13章 表面物理化学13.1 复习笔记13.2 课后习题详解13.3 名校考研真题详解第14章 胶体分散系统和大分子溶液14.1 复习笔记14.2 课后习题详解14.3 名校考研真题详解第1章 气 体1.1 复习笔记一、气体分子动理论1.理想气体理想气体:在任何压力、任何温度下都符合理想气体状态方程pV=nRT 的气体。
理想气体状态方程中,p为气体压力,单位是Pa;V为气体的体积,单位是m3;n为物质的量,单位是mol;T为热力学温度,单位是K;R是摩尔气体常数,。
2.气体分子动理论的基本公式(1)气体分子运动的微观模型①气体是大量分子的集合体;②气体分子不断地作无规则的运动,均匀分布在整个容器之中;③分子彼此的碰撞以及分子与器壁的碰撞是完全弹性的。
物理化学第五版下册复习题答案傅献彩

物理化学第五版下册复习题答案傅献彩1、33.小明用已调节好的天平测物体质量,通过增、减砝码后,发现指针指在分度盘的中央刻度线左边一点,这时他应该()[单选题] *A.将游码向右移动,直至横梁重新水平平衡(正确答案)B.将右端平衡螺母向左旋进一些C.将右端平衡螺母向右旋出一些D.把天平右盘的砝码减少一些2、5.推着自行车前行时前轮和后轮所受摩擦力的方向相同.[判断题] *对(正确答案)错3、29.生产和生活中,人们选择材料时会考虑材料的物理性质,下面属于主要从密度的角度考虑选材料的是()[单选题] *A.用塑料作为插座外壳的材料B.用铝合金作为制作飞机的材料(正确答案)C.用橡胶作为汽车轮胎的材料D.用钨作为白炽灯泡灯丝的材料4、51.下列不是光源的是()[单选题] *A.萤火虫B.太阳C.月亮(正确答案)D.燃烧的火把5、关于光现象,下列说法正确的是()[单选题]A. 光在水中的传播速度是3×108m/sB.矫正近视眼应佩戴凸透镜C. 光的色散现象说明白光是由多种色光组成的(正确答案)D. 镜面反射遵守光的反射定律,漫反射不遵守光的反射定律6、75.在生产和生活中,人们常以密度作为选择材料的主要因素。
下面属于主要从密度的角度考虑选材的是()[单选题] *A.用水做汽车发动机的冷却液B.用塑料做电源插座外壳C.用塑料泡沫做表演场景中的“滚石”(正确答案)D.用橡胶作为汽车轮胎的材料7、2.先启动计时器,再释放小车.[判断题] *对(正确答案)错8、30.如图,我国首款国际水准的大型客机C919在上海浦东机场首飞成功,标志着我国航空事业有了重大突破。
它的机身和机翼均采用了极轻的碳纤维材料。
这种材料的优点是()[单选题] *A.密度大B.密度小(正确答案)C.熔点低D.硬度小9、下列物体中,质量约为2×105mg的是()[单选题] *A. 一颗图钉B. 一本初二物理课本(正确答案)C. 一张课桌D. 一支黑水笔10、2.物体的加速度a=0,则物体一定处于静止状态.[判断题] *对错(正确答案)11、4.骑着自行车前行时前轮和后轮所受摩擦力的方向相同.[判断题] *对错(正确答案)12、93.小明在测量某种液体的密度时,根据测量数据绘制出了烧杯和液体的总质量与液体体积的关系图象如图所示,下列说法正确的是()[单选题] *A.该液体的密度是3g/cm3B.由图象可知,该液体体积越大,密度越小C.该液体体积是50cm3时,液体和烧杯的总质量是90g(正确答案)D.烧杯的质量是40kg13、继共享单车之后,共享汽车已经悄然走进我们的生活。
【9A文】物理化学傅献彩下册第五版课后习题答案.doc

【MeiWei_81 重点借鉴文档】 【MeiWei_81 重点借鉴文档】
【MeiWei_81 重点借鉴文档】 【MeiWei_81 重点借鉴文档】
【MeiWei_81 重点借鉴文档】 【MeiWei_81 重点借鉴文档】
【MeiWei_81 重点借鉴文档】 【MeiWei_81 重点借鉴文档】
【MeiWei_81 重点借鉴文档】 【MeiWei_81 重点借鉴文档】
【MeiWei_81 重点借鉴文档】 【MeiWei_81 重点借鉴文档】
【MeiWei_81 重点借鉴文档】 【MeiWei_81 重点借鉴文档】
【MeiWei_81 重点借鉴文档】 【MeiWei_81 重点借鉴文档】
【MeiWei_81 重点借鉴文档】 【MeiWei_81 重点借鉴文档】
【MeiWei_81 重点借鉴文档】 【MeiWei_81 重点借鉴文档】
【MeiWei_81 重点借鉴文Wei_81 重点借鉴文档】 【MeiWei_81 重点借鉴文档】
【MeiWei_81 重点借鉴文档】 【MeiWei_81 重点借鉴文档】
【MeiWei_81 重点借鉴文档】 【MeiWei_81 重点借鉴文档】
【MeiWei_81 重点借鉴文档】 【MeiWei_81 重点借鉴文档】
【MeiWei_81 重点借鉴文档】 【MeiWei_81 重点借鉴文档】
【MeiWei_81 重点借鉴文档】 【MeiWei_81 重点借鉴文档】
【MeiWei_81 重点借鉴文档】
物理化学傅献彩下册第五版课后习题答案
第九章可逆电池的电动势及其应用
【MeiWei_81 重点借鉴文档】
【MeiWei_81 重点借鉴文档】 【MeiWei_81 重点借鉴文档】
最新南京大学物理化学下册(第五版傅献彩)复习题及解答

第八章电解质溶液第九章1.可逆电极有哪些主要类型?每种类型试举一例,并写出该电极的还原反应。
对于气体电极和氧化还原电极在书写电极表示式时应注意什么问题?答:可逆电极有三种类型:(1)金属气体电极如Zn(s)|Zn2+ (m) Zn2+(m) +2e- = Zn(s)(2)金属难溶盐和金属难溶氧化物电极如Ag(s)|AgCl(s)|Cl-(m), AgCl(s)+ e- = Ag(s)+Cl-(m)(3)氧化还原电极如:Pt|Fe3+(m1),Fe2+(m2) Fe3+(m1) +e- = Fe2+(m2)对于气体电极和氧化还原电极,在书写时要标明电极反应所依附的惰性金属。
2.什么叫电池的电动势?用伏特表侧得的电池的端电压与电池的电动势是否相同?为何在测电动势时要用对消法?答:正、负两端的电势差叫电动势。
不同。
当把伏特计与电池接通后,必须有适量的电流通过才能使伏特计显示,这样电池中发生化学反应,溶液浓度发生改变,同时电池有内阻,也会有电压降,所以只能在没有电流通过的情况下才能测量电池的电动势。
3.为什么Weslon标准电池的负极采用含有Cd的质量分数约为0.04~0.12的Cd一Hg齐时,标准电池都有稳定的电动势值?试用Cd一Hg的二元相图说明。
标准电池的电动势会随温度而变化吗?答:在Cd一Hg的二元相图上,Cd的质量分数约为0.04~0.12的Cd一Hg齐落在与Cd一Hg固溶体的两相平衡区,在一定温度下Cd一Hg齐的活度有定值。
因为标准电池的电动势在定温下只与Cd一Hg齐的活度有关,所以电动势也有定值,但电动势会随温度而改变。
4.用书面表示电池时有哪些通用符号?为什么电极电势有正、有负?用实验能测到负的电动势吗?答:用“|”表示不同界面,用“||”表示盐桥。
电极电势有正有负是相对于标准氢电极而言的。
不能测到负电势。
5.电极电势是否就是电极表面与电解质溶液之间的电势差?单个电极的电势能否测量?如何用Nernst方程计算电极的还原电势?5.电极电势是否就是电极表面与电解质溶液之间的电势差?单个电极的电势能否测量?如何用Nernst 方程计算电极的还原电势?答:电极电势不是电极表面与电解质溶液之间的电势差。
物理化学课后答案傅献彩第五版南京大学化学化工学院

热 力 学 第L 如果-个系统从环境吸收了如J 的热,而系统的热力学能却增加r 200 n 问系统从环境得到r 妾少 功?如果该系统<t 膨脈过程对环境作了 10 KJ 的功•同时收了 2« KJ 的热*求系统的热力学施变化值. 解;根据∆U=Q^W 热力学第一定律.可知W r -=∆Lf -Q (系统从环境吸热,QAo)= (200-40)J = 16OJΔΠ=Q÷W (系筑对环境做功MVtD= (28-10)kJ≡18kJ,2, 冇10 πκl 的气体(设为理想气休)■压力为Kx)O kP 酣温度为300 K •分别求出等温时下列过程的功' O )在空气压力为IoOkP 日时.体积胀大I dm½(2) 在空气压力为100 kPa 时•膨胀到气体压力也是IOO kPa ;(3) 等温可逆膨胀至气体的压力为IOo kPa.解:(D 外压始终维持恒定'系统对环境做功W-=-A∆V1(X)XlO J PaXlX 10^3m 3= — 100」*一 E 牛由沖«*>--IOmoixa. 314 J * mol~, ∙ K-I X300KXln IOmOl,300 K IOOokl⅛.V 1 IOmOL 300 KIOOkPa ⅛V;S 2-6^-PΛV 1~VOTIRTI \4 )=-1OnlO1XB, 314 * J ∙ TnOr I ∙ K^l ×30°KX 100^(i⅛-ιδ⅛)=-^ 25XIQ 4J*&尊温可≡K --f : MV一 PE nRT 2 = ~nRT In= -5. 74XIO 4 J. ■3. 1 mcl 单原子理想气体,Cv"∙∣R.始态⑴的温度为273 K,体积为22.4 dπ?,经历如下三步•又叵 到始态•请计算每个状杰的压力、Q ・W 和2.(1) 等容可逆升温由始态(1〉到546K 的状态(2卄(2) 等温(546K)可逆膨胀由状态(2)到44. 8 dm j 的状杰(3卄(3) 经等压过程由状态(3)回到始态(1).解,(1)尊容可逆升温过程如图2-7. 546k,lmol. 44.8×10⅛5图2-7W-~A∆V=0∆L∕=Q÷W≡=Q = J : nCv.m <lT=lmol×-∣-×& 314 ・ J ・ mol"・ KTX(546-273)K=34O4. 58J.(2)等温可逆膨胀过程∆U=0 W≈-∏RT In^ = -ITnol×& 314 J ・ mol^, ∙ K~, Xln ∣∣r ∣×546K=-3146. 50JQ=-W=3146∙ 50J∙ (3〉等压过程W = -P t ∙ ∆V=-vΓ(VI_v :)1I∏212⅛J14 J_LmQLL∙ K J ×273K χc22 4_44 S)X 10-3rn J = 2269. 72J nC fi .m dT ="(∙∣∙R+R)X(273 K -546 K)∆LΓ=Q*W= (-5674. 31+2269. 72)J = -3404. 59J.4. 在29】K 和IOO kPa 下・1 mol Zn(S)溶于足就稀盐酸中•置换出1 mol H, (g).并放热152 kJ.若以Zn和盐酸为系统,求该反应所做的功及系统热力学能的变化. 解:Zn(S)+2HCl —ZnCl 2 ÷ H 2 (g)22∙4X10fQ= -y×8∙314J ∙ moΓ, XK*1 X(-273)KXlmol≡-5674. 31J 5461ςlmol,22,4×10W [T]在291 K-IOOkPa的条件下发生以上反应•产生Hz(g)W=-P r(V J-V I )== — />, =_ p. τ^~ = -nRT(.p,≈ p= IOOkl,a)≡ - Imol X & 3)4 J ∙ moΓ,•KTX291 K=-2419. 37J该反应为放热反应>Q<0.Q=-152X103J∆σ=Q÷W=-(152× IO3+2439. 37)J = -154∙ 42X103J∙5在298 K时,有2 mol N2(g),始态体积为15 dm3.保持温度不变•经下列三个过程膨胀到终态体积为50 dn?,计算各过程的∆U f^H t W和Q的值.设气体为理想气体.(1)自由膨胀;(2)反抗恒定外压100 kPa膨胀;(3)可逆膨胀.解:(1)自由膨胀过程为尊熔过程AH=O由于A=O W=-P.V=O同理∙∆H=Δl7+∆(pV)可推出∆LΓ=O又根据∆U=Q÷W可知Q=O.(2)反抗恒定外压膨胀W=-P e(V2-V l) =-100×103 Pa(50-15) × 10^8m3 = -3500J因为理想气体的U和H都只是温度的函数•等温下∆U=0.∆H-0,Q- W=35OOJ.(3)等温可逆膨胀W =-∫pdV = 一HRT In 普=一2τnol X & 314 J ・moΓ1・ K-I X 298 KXIn 誇=-5965. 86 J2=Q÷W,等温过程∆L∕=O.∆H=OQ=-W=5965. 86 J.6•在水的正常沸点(373. 15 K,101. 325 kPa),有1 mol H2CXD变为同温、同压的H l O(g),已知水的摩尔汽化焙变值为‰=40. 69 kJ・TnOrLiS计算该变化的Q∆U,∆H的值各为多少.解:相变在373.15K,101. 325kPa等温等压下进行,AH=QQ= H. =40. 69kJ ∙ moΓ1×lmol≡=40. 69kJW--^(V g-V r)--TtPT--ImoIX& 314J ∙ mol 订∙ Kβl×373K≡-3. IkJ ∆U=Q÷W=(40. 69-3.1)kg=37. 59kJ.7.理想气体等温可逆膨胀,体积从匕膨胀大到】0匕,对外作f 41.85 kJ的功,系统的起始压力为202.65 kPa⑴求始态体积VZ(2)若气体的Ift为2 mol.试求系统的温度.解,1)等温可逆过程W≈-nRT In^V r)理想气体状态方程pV=nRT两式联合求解PVI =InV =0. 089m ∖202. 65×103Pa41.85×1O 3J Vl=曲(2)同理根据笥温可逆过程中W=-nRTIn存W 41.85 × IO3J "iz可得T= ------------V- ------------------------------------------- :一i∩v;-1°93∙ 05K.nR In 护2mol× & 314 J ∙ mol 1∙ K In&在100 kPa及423 K时閑1 mol NH j(g)等温压缩到体积等于10 dm3,求最少需做多少功?(1)假定是理想气体,(2)假定符合Van der WaHIS 方程式.已知Van der WaaIS 常数α = 0∙ 417 Pa ∙ m4∙ moL"=3∙ 71X 10"5m3∙ moΓ6.解:(1)假定为理想气体,那么气体在等温可逆压缩中做功最小W≈-nRT In 务= -ltnoI×& 314 J ・moΓ,∙ K-l×4Z3 KXIn 35 χ lo⅞'=MQ5, ?4J可根据理想气体状态方程V严警=—X8,314wop√κ—23 K =s35X Io-Jm3 代入上式方可求解.(2)假定符合Van der WaalS方程•方程整理后•可得(6÷T)÷V-7-⅞≡0代入数据Vi-3. 472×10∙t Vl÷4.17× IO-6V flt-L 547×lO',o=O解三次方程后得V m=35×10-3m3= 疑三篇一曲(炳一吉)=0. 417Pa ・m∙ ∙ moΓ> ×12× (5⅛厂5⅛?)4385. 21J.9.巳知在373 K和100 kPa压力时,1 kg H2O(I)的体枳为1. 043 dm∖ 1 kg H20(g)的体积为1677dm3,H2O(I)的摩尔汽化熔变值JpH fn=MO. 69 kJ・moΓ1.当1 mol HQ(I)在373 K和外压为】00 kPa时完全蒸发成H2O(g).试求:(1)蒸发过程中系统对环境所做的功;(2)假定液态水的体积可忽略不计,试求蒸发过程中系统对环境所做的功•并计算所得结果的相对谋3假定把蒸汽看作理想气体,且略去液态水的体积,求系统所做的功;解:<1)«发过程中系统对环境做功W=-A(V<-½)= -100×10,Pa×(1677×10-,-1.043×10"s)m s・⅛~,×(18.0×10^3)kg=-3016. 72J.5解释何故蒸发的熔变大于系统所作的功.6 求(1)中变化的^U a和(2) 假设水的体枳可忽略∙W!J ½=0W=-P •匕= -100X103P8X1677XKΓ'kgT ∙ ∏? X18XlO -'kg=-3O18∙ 6OJ (二眇鹫盍嚮 72)J X ]00% =0 062%.(3) 把水蒸气看作理想气体•则可使用理想弐体状态方程PV=HRT且忽略液态水的体积,则V Z =OW≈-p^V g ≈-nRT= -lmol×8.314J ∙ moΓ, ∙ R -,×373 K= 一3101. 12J.(4) Q ,ιa = ∆r MI Hm = 40. 69kJ ∙ πx>Γ1A ” _Q-J rW 40. 69kJ ・ moL XlmolX103 + (-3016. 72)J 4U in - ---------------- T=S J ------------------------- = 37. 67 X IO 3J ・ moΓl .(5)仝蕉发过程中•用于系统对环境做膨胀功的部分很少•吸收的夬部分热量用于提岛系统的热力学10. 1 mol 单原子理想气体,从始态:273 K.200 kPa,到终态323 K,100 kAu 通过两个途径:(1〉先等压加热至323 K,再尊温可逆膨胀至IOO kPa,(2)先等温可逆膨胀至IOO kPa,再等压加热至323 K.请分别计算两个途径的Q∙W,2和AH,试比校两种结果有何不同•说明为什么.解:⑴因为单原子理想气体Gj=∙∣R,C,rn =今R 过程如图2—&①等压升温W I =_P ,(S_S=_P (呼^_呼^)= -M ∕?(^-T I ) = -ImOlX8. 314 J ∙ moΓl ∙ KrX (323—273)K= — 415∙ 7JHC Arni dT=Imol×γ×8. 314 J ∙ moΓl ∙ K l (323-273)K=1039. 257 心=J : MCv,m dT=ImolXyX8.314 J ・ moL ・ KTM623.55J.②等温可逆总=-叔Tl 唸= -hnolX8. 314 J ・ moL ・ KU 323 KXln 需= -1861∙ 39 J∆LΛ ≡O∙∆Hf =Of Q 2 =-W 2 = 1861. 39JW = W 】+WZ =-2277∙ 09JQ=Ql 卜Q=29OO∙ 64J ∆U=∆IΛ+∆IΛ = 623∙ 55J ∆H=∆Wι +∆H 2 = 1039. 25J.Wz≈~nRT InImOl323 KIOOkPa①等温可逆Vy I =^Tln⅛ = →T Ing≡-lmol×& 314 J ∙ moΓ, ∙ KTX273KXln 需=一 1573∙ 25J∆Uι ==0∙∆Hι =0Q=-Wl= 1573∙ 25J.②等压升温VV 2 = -A (½-V 1) =-n ^(T 2-T 1 J--ImolX& 314 J ∙ mcΓ, ∙ K "】(323—273)K≡= — 415∙ 7J△H2=Q" = J ;: nC pt .dT=1 TnOlX 孑X8.314 J ∙ moΓ1 ∙ KTX(323—273)K=IO39∙ 25J∆U t ≈ P rtC v .m dT=l mo ∣X⅜×& 314 J ∙ moΓl ∙ K^,=623. 55J 儿 2W=W l ÷W 2 = -198& 95J Q=Q+Q = 2612∙ 5J∆U=∆LΓ1 +∆IΛ =623. 55J∆H≡∆Hι ÷∆H 2 = 1039. 25J.比较两种结杲・2和'H 值相同•而Q 和W 值不同.说明Q 和W 不是状态函数•它们的数值与所经 过的途径和过程有关.而2和3H.是状态函数,无论经过何种途径•只要最终状态相同.2和∆H 的数 值必相等.11.273 K,压力为5×10s Pa^.N 2(g)的体积为2.0 dπ?.在外压为IOO kPa 压力下等温膨胀•宜到M (g >的压力也等于IOO kPa 为止.求过程中的Vy,∆M,∆H 和Q 假定气体是理想气体•解:该过程为恒定外压等温膨胀∆U=0∙∆H=0W=-PAVZ-VX y )Q=-W=800J.12.0.02 kg 乙醇在其沸点时蒸发为气体.巳知蒸发热为85E kJ ・kg",蒸气的比容为0. 607 m j ・ 治一'.试求过程的∆U,AH∙W 和Q(计算时略去液体的体积).H IGHSOH(I)I [p],[τ] ∣C 2H 5OH(g)p 、Tb图 2-10P∙Tb 图2-9(理想气体状态方稈PV=HRT)此蒸发过程为等温等压可逆过程∆H=Q Λ≡O. 02kgX858kJ ∙ kg -l =17.16kJ=-p f v g (忽略液体的体积)=-IOOX IO 3PaXO. 02kgX0. 607 m 3 ∙ kgT = -1214JMJ=Q+W= 17. 16×103 + (-1214J) = 15946J∙13. 373 K∙压力为100kI⅛时,LOgH 2O(I)经下列不同的过程变为373 KJOokPa 的出0@〉•请分别 求出各个过程的∆LΓ.∆H,W 和Q 值.⑴在373 KJoO kPa 压力下H 2O(I)变成同温、同压的汽;(2) 先在373 K ・外压为50 kPa 下变为汽,然后加压成373 KJOO kPa 的汽$(3) 把这个H 2O(I)突煞放进恒温373 K 的真空箱中•控制容积使终态压力为100 kPa 的汽.已知水的 N 化热为 ZZ59 kJ ∙ kg l .解:(1)水住同温同压的条件下蒸发∆H≈Q, = l×10-1kg×2259kJ ∙ kg 1=2∙26kjW≈-pV β (忽略液体体积)= _nRT∆U=Q+W=2∙ 26 × IO 3 J+(~ 172J) ≡2088J.图 2-11 [p] AHl=Q 、= 1 × IoTX 2259kJ ∙ k f Γl =2. 26kJWl = -PY l = -WRT= -172J∆Uι =Ql ÷W ∣ =2088J[C AU 2 = 01 ∆H 2 ≡0. W*≡ ~ n RT In^ = - nRT In y ∖PI 一⅛⅛¾X3∙314 J ・ mol- ∙ KT X373 KXln 鑰= 119J、 Q=-W2 = -119JW≈W l ^W z ~-53JQ=Q+Q=214U∆U=NΛ+∆IΛ=2088J∆H=∆H 3 ÷∆H: =2. 26X ]03J.(3) 在真空箱中"∙=0∙故W=O由∆U.∆H 为状态函数•即只奥最终状态相同,则数值相等 ∆H=2. 26×103J∙ W=Q+W=Q= 2088J.14. 1 mol 单原子理想气体•始态为200 kPa. 11. 2 dn?,经PT=储数的可逆过程(即过程中PT=誉數)■ 压缩到终杰为400 kPa.已知气;体的CV tm = -IR 试求 l∙0X107⅛g 18×10β,kg∙ moΓlX&314 J ∙ moΓx ∙ K -I X373KH-172J (2)373K∙ H 2CXD [/>] 50kPa 373K> H 2CXg) CTJ 50kPa373K>H 2O(g) IOOkPa(1) 终态的体积和温度;(2) ∆L r 和 M(3)所做的功•解:(1)根据PT ■常数,则PITI-P I T2丁 =ATl __________________ _________ _____ ______________2 PZ PZ 400ICPaF =航乃_ ImolX& 314 J ・ moL ・ KTXl34.7K gχ 10-3m3PZ Zd • •⑵单原子理想气体CV.,m =J-R2=J ; nCv,m dT=nC v ,m (.T z -T l ) = ImolXyX& 314J ・ mol~,・ KTX(134. 7—269. 4)K=-1679. 84J △H = r nC^dT=nC,.m (T 2-Tχ>JT I= ImoIX--X& 314 J ∙∙tnoΓ, ∙ KTX(134. 7—269. 4)K=-2799∙ 74J.⑶由/「D 丁两式可推出V=曙∖pV^nRT eW=PdVM-J ; £ ・?^XdT=-2nR(7⅛-T 1)= -2×lmol×& 314 J ∙ TnOr l ∙ KTX(134.7—269・ 4>K=2239∙ 79J.15. 设有压力为IOO kPa 、温度为293 K 的理想气体3.0 Bm 3 ,在尊压下加热,直到最后的温度为353 K 为止•计算过程中W.3l7.∆H 和Q.已知该气体的等压摩尔热容为:Q lnI = (27. 28÷3. 26×10^3T∕K)J ・ K~1 ∙ πκ>Γ,.解:该过程为等压升温过程△H=Qp — J ; n C,.m ATC,ιn =(27. 28+3. 26X10-J T)J ・ KT ・ moΓ,∆H =∏Γ27. 28(T 2-T 1)+y×3. 26×10^,(7l-71)]=0.123×[27. 28X(353—293>+* X3. 26X10^X(3532—293J]=209. IJIOO XlO 净X 3 X10Tm3 _8?314 j~∙ τnoΓ1 ∙ K*1 ×^93K理想气体等压过程普=书 ,3X¾^353K =3 6χ 10-3m3(½-V 1 ) = -100× 10, Pa× (3.6-3) X 10-1m 3≡-6DjQ=Q+W=209∙ 1J -6OJ=149∙ 1J∙16. 在1200 KaOO kPa 压力下,有1 mol CaCO (S)完全分解为CaO(S)和CO 2(g),吸热180 kJ.计算过 程的W,∆L ∖∆H 和Q 设气体为理想气体.AV l "c 1 c 2θOX103Pa×11.2×10-3m 3 匕 ⅛ 2°OkP a 石拠314 J=TnO 产T0 = ^. IK400X10讥 RT l =0.】23mol解:CaCO3(S)-^-Cao(S)+CO2(g)⅛化学方程式可知ImOl OCO J(S)分解可生成ImOI CQ(g),计算过程中忽略CaCOa (s)> CaCXs)的体积.w≈ -P f V g≡ -HKT=≡ -ImolX& 314 J ∙ moΓl∙ K*1×12∞K=-9976. 8JQ=180×103J=∆H∆L∕≡Q÷H r=180× IO j J÷(-9976. 8)J≡170×103kJ・17 •证明:(霁),=—〃(霁)「并证明对于理想气体有(黑)广0・(勞)广0・证W:(l)已知H"¾7+z>U •U=H-PV(紮广(霁)厂(锡辽理想气体CP仅是温度函数C产(黑)*故(畀)广G-P(霁)严立.(2)dH-(IH)Vdτ+(IH)Td V理想气体等温过程∆H=O,∆T=O,故dH=O,d:T= O故(霍)∕V=0 等温彩胀或等温压缩∙dVHO所以(黑)广O 成立.⑶ Λ7=(S)V dr÷(^)Λ理想G体等温过程∆LΓ=O,∆T=O,同理ΛJ=O,dT=O由(2)可知dV≠O所以(需)广O成立.由于S(霁)v故,(寫)T=S陽(畀)J = [齐(影)订严他证明:(需),=C,(黑)厂〃—歌[(制厂町证明:(1)U=U(P t V)H⅛J÷∕>V dH=ΛJ÷pdV÷Vdp =(韵严+ (黑)严+ pdV-hVdp 等圧过程dH=(5V)/V+pdV两边同除以dT (霁)广(軌(歌+P(歌提取相同的(霁),収因为C严(霁力所以Cr執[(韵,+打所叫執“-/>(執成立•⑵ H=H[75 dH-(W)∕τ÷(lj)Λ同上题,可知dH=dU÷∕xlv÷VdΛ=dU÷VdZ>(等体积过程)联立等式•两边同除以Crr又由于C 严(黑), CV=(^)V 代人上式,整理后得—3 = -(霁)』(制广可故・证明完毕・19.在标准压力下•把一个极小的冰块投人0.1 kg.268 K 的水中•结栗使系统的温度变为273 K,并有 一定数槓的水凝结成冰•由于过稈进行得很快•可以看作是绝热的•已知冰的溶解热为333. 5 kJ ・kg-> •在 268〜273 K 之间水的比热为4. 21 kJ ・K"・kg^Λ(1) 写出系统物杰的变化•并求出∆H, (2) 求析出冰的质fit.解:(1)在p∙的条件下•此过程为绝热尊压过程故AH=Qp=O. ⑵设析出冰为∙rkg∙那么水为(0∙ l -χ)kg t 如图2-12.268 kQN kg HI O(D图 2-12∆H=∆H ∣ +∆H2 + ∆H3同种物质同温同压下变化AHs ・0・故∆H -∆H ∣ +∆H: ∆Hι +∆W2i =0O. IkgX<2IkJ ∙ K -I ∙ kg ∙,×(273-268)K+(-333.5kJ ∙ kg*1)Xkg=O x=6. 31kg.20.1 mol N 2(g)∙在298 K 和IookPa 压力下•经可逆绝热过程压缩到5 dm 3.试计算(设气体为理想气 (DN√g )的遇后温度, (2) N 2(g )的最后压力; (3) 需做多少功・C解:(1)Imol N 2为双原子分子7=沙= W- = I.42KImOl 气体为理想气体•符合理想气体状态方程 V_迟石 JmoIM& 314 J ∙ mo ∣τ ∙ KTX298 心“心心 VL 例- IOoXlO 3Pa-0.02448m理想气体绝热可逆过程中的过程方民式:TV-I =^数 T I v I L ^I = T 2v 2,4*1298K×<0. 02448)(M = Tl (0. 005)°∙4 Γ2=b62. SK. (2) 同理=X k« H J o(J) [ (0.1∙x)kg H I o(O 273K I 273 K0.1kg H j 0(∕)273IOOxIo j Pa×<O. 02448)1∙4= ∕>2×(0. 005)I∙4∕⅛=924×103kPa.(3)理想气体绝热可逆过程中的功:W "仇S-PlV F]LI■= nCv.m(T2-T)) = ImolXy X& 314 J ・ moL ・ K^1 X(562. 5-298)K=5497. 63J.21.理想气体经可逆多方过程膨胀•过程方程式为PV =C•式中C,”沟为常数.n>l.⑴若/J=2,l mol气体从W膨胀大到匕•温度由T, ≡573 K到T2≈m K •求过稈的功W:(2〉如果气体的Cv.w = 20.9 J・C・moΓ,•求过程的Qz和∆H.解:(】)过程方程式PS=Cm=2∙p=磊W=-[: NV=―匸:翁dV=C(舟一#)=野一響=0S-PX=HR耳一“R蘇=HR(T-T I) = ImoIx & 314 J∙ πκ)Γl∙ K'1 (473~573)K=-831. 4J(2)∆U^ F » C^dT= n Cv.m(T2 ~T3) == 1 molX20. 9J ∙ KT∙(473—573)K=-2090jJ T lC"=G∙u n+R=(20∙9+& 314)J ∙ TnoIτ ∙ Kβl=29.21J ∙ moΓ1∙ K l△H= f 2n C p.f∏dT=n CP^ (T2— Ti)J T I= ImOlX29.21 J ・ moL ・ KTX(473-573)K=-2921J∆U=Q+W(热力学第一定律)Q=∆U-W≡=-2090j-(-83L 4j)≡=-125& 6J.22.在298 K时•冇一定量的单原子理想气体(CV.m = 1.5/?),从始态2000 kPa及20 dm3经下列不同过程,膨胀到终态压力为100 kFa・求各过程的M∕,AH,Q及附. |(1)等温可逆膨胀;(2)绝热可逆膨胀;(3〉以5= I. 3的多方过程可逆膨胀•试在P-V图上画出三种膨胀功的示意图•并比较三种功的大小.解:单原子理想气体・3=号R∙C,m=号R,Z=詮=号I图2—13F a相U圧分大卡砂,_內匕_ 2000X103P8X20X107∏?_, 1, I理想气体状心方程n- RTI-8. 314 J ・moΓl∙ K1X298K~"∙ 14m°1(L)等温可逆膨胀∆U=0,∆H=0W≈-nRT∖n^≈-tιRT In^ (理想气体状态方Spι⅛=p2V2) P2= -16. 14mol×& 314 J ・ mol~,・ K^1×298K -119. 79kJ2=Q+W r=O Q=-W==I19. 79kJ.(2)绝热可逆膨胀Q=O理想气体绝热可逆过程方程式Pi-j TV = P2-TVp1<H>τJ=p1<ι-4>τ3(2000)∙i (298T =(IoO)一专T2IΓ2=89.91K理气绝热过程中W ≡nCv.m<T2-Tι)= 16∙ 14 molXyX8.314 J ∙ moΓ,∙ K*,(89. 91-298)K--4L 88X10,J ∆U≈Q+W≈W≈-41.88X1O3J *∆H=n C h^(-T i) = I6.14 mol×y X& 314 J ∙ moΓl∙ KT ×(89. 91-298)K=-69. 81XIO3J.(3〉多方可逆过程与绝热可逆过程方程式相似故aτ√≡z>21-*τ/(2000)73 (298)】」=(IOO) ^3T2k3T2 = 149. 27KW=器(号一TJ= 16.14molX 普詔]•型T匕KT(149. 27-298)Kn—66. 53kJ∆U=n CV t m ( T: ^~ Ti) = 16.14mol×-∣∙×8. 314 J ・moΓ 1•KTX(149. 27-298)K=-29. 94kJ∆H=nCn.m(T2-T l) = l6.14mol×y X& 314 J ∙ moΓ,•KTX(149. 27-298)K=-49∙ 89kJQ=Q+W(热力学第一定律)Q=∆U-W r=-29. 94kJ一(一66∙ 53kJ) = 36∙ 59kJ.(4)等温可逆膨胀∕>∣½≡p2½求出V2=0. 4m3绝热可逆膨胀∕>1V ∣4 =∕>2v 2i 求出V 2=O. 12m 3 多方过程可逆膨胀Zh⅛, s = ^V 2, 3求出V 2=O. 2 通过0(1)〜(3)的计算,可知杯,如图2-14.23.1 mol 单原子理想气体从始态298 K∙200 kPa.经下列途径使体积加倍•试计算每种途径的终态圧 力及各过程的Q ,W 及 W 的值,画出P-V 示意图,并把2和W 的值按大小次胖排列.(1) 等温可逆膨胀) (2) 绝热可逆膨胀;(3) 沿着^∕Pa=1.0×10*V.∕(dm j ・moΓl )÷6的途牲可逆变化. 解:1 mol 单原子理想气体 C^.β = -∣R.Q.1B = -I-R(1)等温可逆膨胀W=OW=—nRT In^ = -ImQIX& 314 J ・ moL ・ KTX298KXln 孝=-1717. 32J Q=-W=I717. 32J. (2)绝热可逆膨胀Q=OPIVI r ≡P J V J Z *故 Q= ”】(令)≡=200×103Pa伕X2χ連21-镇=鬻=7.7K= ImOlX 售 X8∙314 J ∙ InOr l ∙ K*1 (187. 7-Z98)K= -1375. 55J.V2=2Vι=24.78X10"3m 3p∕Pa≡ 1. OXIO 4V fII (Clm 3 ∙ TnOr l )+6代入数值•求解 6 值 2OOX1O 3 = 1.O× IO 4 × 12. 39+6 6=76100p 2=l× IO 4 XV 2 +∂=1 XIO 4 X24. 78+76100= 32390O(Pa)T =AV2=3239OQFaX24∙ 78X1OT 2~ nR -ImOIx& 314 J ∙ moL ∙ K -'W =_匸 PdV=-£2 (1.0×104V w +6)dV= -[y ×1. 0×104× (Vl-V4)÷76100× (V 2-⅛ )]=^3245. 56J∆U≡ΛCv,m (T 2-Tι)(3)V 1=讐=S 喙蘇3—2.咖E= 965. 4KK 2-15=63. OOXlO 3Pa=1 mol×4×&314 J ∙ moΓl ∙ KTX(965∙ 4-298)K=8323∙ 15J∆LΓ=Q÷H rQ≈∆U -W≈↑1. 57×1O 3J.(4)比较可得W3>W l >W 2f>随丁变大而变大p 3>∕h>p2册力学能变化 4>A3>∆LL,如图2 — 16. 24.某一热BL 的低温热源为313 K,若高温热源分别为: (1) 373 K (在大气压力下水的沸点”(2) 538 K (是压力为5. OXlO 6Pa 下水的沸点)・ 试分别计算热机的理论转换系数.解:(1)热机效3-⅞-I 1-κ=16.08%.T^TX298 K-273 K “一“ ^LT T Wl 273 K 八 33DkJ ∙ I QJ 人 1ICg —30. 68kj系统和环境中得到30. 68kJ 的功.26.有如下反应,设都在298 K 和大气压力下进行,请比较各个反应的2与的大小,并说明这差 别主要是什么因素造成的.(1) C lZ H 22C>1(蔗糖)完全燃烧;(2) CI O H ft (蔡,s)完全氧化为苯二甲酸 C βH 4(COOH 2)(S)I (3) 乙醇的完全燃烧;(4) FbS(S)完全氯化为 Eb(XS)和 5(⅛(gλ解:反应条件为 298 K, 100× IO 3Pa 压力下进行 Δ.H ro (T) = Δ<LΓm (T)+∆^T (1) C 12Hno ne + 1202(g>^12CO l (g)+llH2θ(l) An= 12—12=0 ∆H -∆L∕. (2) Δn<0∆H<∆U.(3) C 2 H 5OH÷3(⅛ (g)-2O⅛ (g) +3H 2O Δn<0 ∆H<∆L7.(4) 2Pbs÷3(⅛ ------- 2PbO+2SC⅛ Δn<0 ∆H<∆L7差别的主要因索在于反应前后气体的物质的虽差M fiiB 当 Δn<0 时.∆H<ΔU 当 Δn>0 时,∆H>∆U.27.0. 500 g 正庚烷放在弹形热量计中,燃烧后温度升高2. 94 K.若热量计本身及其附件的热容量为8. 177 kJ ・K-I •计算298 K 时正庚烷的摩尔燃烧焙(凰热计的平均泯度为298 K).解:GHw(l) + llQ(g)竺 7CO⅛(g)+8H2θ<l)TA373 K(2)热机效率 7=¾^ = 538KzpJS =41 82%.T K 538 K25某电冰箱内的温度为273 K ・空温为298 K ・今欲使1 kg 273 K 的水变 成冰,何最:少需做多少功?已知273 K 时冰的融化热为335 kJ ・kg-*.解:冷冻系数尸籌 W=丑匚耳Q 图 2-16止庚烷燃烧放热反应 ∆U=Q =—& 177kJ ∙ K 1 ×298 K=-24.0lkJ A f U =—= --------- 二?4. O^jeJ --------- = —4817 6kJ ・ mol 勺 d5 π 0∙5X]07⅛g 4*∙wu Inol100. 2 XIr rJ kg ∙ moΓl 正庚烷摩尔燃烧熔ΔcH w (GHιβ∙298K∙z>∙) = Δet∕ιn +∆zιRT= -4817.6kJ ∙ moΓ,+(7-ll)×8.314 kJ ∙ mol"1 ∙ X 10~ X298K=-4827. 5kJ ∙ moΓ,.2&根据下列反应在298.15 K 时的熔变值•计算AgCI(S)的标准摩尔生成给Δ H 紅AgChS,29& 15 K). (1) Afco(4+2HCl(g)—2AgCl(s) + H 2O(l) Δr W∙.ι(29& 15 K) - 32l.9 kJ ∙ moΓ,∣ (2) 2Ag(S)+*Q f (g)-Ag 2(Xs) (3) -∣ H 2 ⅛)+∙∣CI 2 <g)_HCKg) (4) H 2(g)+yO 2(g)-H 2CXI) 解:Ag( S) ÷~-C ∣2( g)—AgCl(S)经(I)Xy+(2)×y÷(3)-(4)×-∣这个计算过程方可得到Δl HX(AgCl,s.29& 15K) = *Δ,H"298. 15K)+*ΔJ H^(29& 15K) + ∆r ‰ 入、吐=×(-324.9)÷y ×(-30. 57) + (-92.31)—*(-285. 84) JkJ ・ mol~, = -127. 13kJ ・ moΓ1.29. 在29& 15 K 及IookPa 压力时•设环丙烷、石零及氢气的燃烧熔∆r ^(298.15 K)分别为一2092 kJ ・moΓ∖-393.8 kJ ・moL 及一285. 84 kJ ・moL.若已知丙烯QH<(g)的标准摩尔生成焙为Δl Hl <298. 15 K) = 2O. SO kJ ・ mol~l .试求:(1) 环丙烷的标准摩尔生成焙4HS,(29& 15 K)I(2) 环丙烷异构化变为丙烯的摩尔反应焙变值Δr HX(298. 15 K). 解:(1 )3C( 5)+3H 2 (g)-C 3 H e (g) ∆r Ht(C 3He,298.15K) = - Y vH∆c Wζ(β)B= -[∆C H; (GHs(g)∙29 & 15K)—3'H :MC(S) .29 & 15K)-3∆eW(H t (g)∙29 & 15K)] = -[-2092-3X(-393. 8) — 3X( — 285∙ 84)]kJ ∙ moΓl =53.08kJ ∙ moΓ∖ (2)C 1H β =GCH=CH2XHl =3(GCH=CH?・298∙ 15K)-Δ(Hζl (GHχ298∙ ISK)= 20. SokJ ∙ moΓ1 —53. 08kJ ∙ moΓ1 = —32. 58kJ ∙ mol~,.30. 根据以下数据•计算乙酸乙商的标准摩尔生成焙(CH J C(XXZ 2H 5.1.29& 15 K) CH3αX)H(l)÷G H 5OH(I)=CH 3CCXX^ H S (1) + H 2O(1) Δf Hζ(29& 15 K) = -9. 20 kJ ∙ TnOr l乙酸和乙醉的标准障尔燃烧席Δt Hζ(298∙15 K)分别为:-874. 54 kJ ・moL 和一1366 kJ ・TnOΓ,, CO z (g),HτO(l)的标准摩尔生成熔分别为:一393・51 kJ ・moL 和一285. 83 kJ ・moΓ,.解:先求出ClhCCKJH(I)和GHsOH(I)的标准摩尔生成焙. CH 3C∞H+2Cλ —2CQ+2Hg∆r‰(29 8. 15 K)--30. 57 kJ ・ moL) ∆r‰(298. 15 K>-92. 31 kJ ・ m 。
(完整版)南京大学物理化学下册(第五版傅献彩)复习题及解答

答:对电解质瀋液来说电导G 是其呆电的能力,以1 1型电解质洛腋为例.第八章电解质溶液L Faraday 电解定律的基本内容是什么?这定律在电牝学中有何用魁?答:拉第电解定律的基本内容込:通电于电解质溶液之后,(1)在电楼上(聘相界面八发生化学窘化的物质的駅勻通入电荷成正比.(2)若 将几亍电解池申联■通人一定的电荷議后•衽各个电解池的电极卜.发生化学变比的物质的帚祁相等.Qf-i> —z^-eL —z± F根据Faraday 定律,通过分析电解过程中反应物在电极上物质的址的变化,就可求出电的址的数值•在 电化学的定駁研究和电解工业上有車要的应用.2. 电池中正极、负极、阴极、阳极的定义分别晶什么?为什么盘煤电池中负极是阳极而正极是阴极? 笞:给出陀了•到外电路的电极叫做电池的负极,在外砲路中电勢*低. 从外电路接受电子的电极叫做电池的止槻•在外电路中电势较高.发生氧化柞用的电极称为阳极■发生还原作用的一极称为阴极•原电池杓阳扱发生麵化作用•阴橈发生 还甌作用.内电路的电子由阳极运动到阴极.所械电池的阴彊是正彊,阳极是负极.3*电解质涪液的电导車和摩尔电导率与电解质溶液浓度的关采有何不同。
为什么?答匕蹑电解质漳液的电导率随若浓度的增大而升高(导电粒子数但大到一定程度以后,由于 正、负禹子之间的相f 作用增大•因而使离子的运动速率降低.电导率反而下降•弱电解质的电导率随故度 的变化不显蒼•浓度增加电离度减少.离子数目变化不天•摩尔电导率随灌廈的变化与电导率不同•浓度降 低,粒子之闾相互作用减弱・正、负薦子的运动速率因而增加•故摩爼电导率增加*4. 怎样分别求强电解嵐和弱电解质的无限稱降摩尔电錚率?为什么翌用车同的方袪?答:庄低威度尸,强电解陪液的摩尔电导率*枚线性关慕.Am*銘(1 一0Q在一定温度下,一定电解质溶液来说甲是定偵.通过作阳•宜线勺纵坐标的交点即为无限稀秫时落液 的辱尔电导率AS 1,即外推袪.弱电解质的无限廉释摩尔电导率A ;・跟据离了独立移动迄律•可由强电解质溶薇的无限稀释摩尔电 导率A 計设计求算,不能由外惟陆求出,由于购电解质的幡涪液在很低报度F ,Am 与丘不垦总线关系.并且 浓度的変化对的值影响很大.实验的谋差很大•由实验值直接求弱电解质的厲:很困难.5. 离子的摩尔电导率、离子的迁移速率、离子的电迁移率和离P 迁移数之间有哪些建址关系式?答,定図关系式*j uit* dE/dl r- = — dE/'dl牛t r_离子迁移連率*+川一厲产的电迁移率*A ;=(«7+u-)E6・在某电解质落液中•若丫门种离『疗在’则溶液的总电导应该用下列哪牛公式表示’(1) G =臣 +臣 + …*〔2〉G■无限稀释强电解质溶液十A :,G=M A// te —Am • c稀电解质溶液 Am =At + A 二(Am 4-Am )c = /lm * c+Am • CC4- ~Am * C 则 G+ =K+A// ・•・G 厂G+G 亠盒+斤…=》越7.电解质与非电解质的化学势表示形式冇何不同?活度因子的表示式有何不同? 答:非电解质的化学势的表示形式.阿=閔(T ) +RHny“・B 箫=山(T ) +RTlnu*R 电解质 抄=必(丁)+尺力皿8=川(7。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章电解质溶液第九章1.可逆电极有哪些主要类型?每种类型试举一例,并写出该电极的还原反应。
对于气体电极和氧化还原电极在书写电极表示式时应注意什么问题?答:可逆电极有三种类型:(1)金属气体电极如Zn(s)|Zn2+ (m) Zn2+(m) +2e- = Zn(s)(2)金属难溶盐和金属难溶氧化物电极如Ag(s)|AgCl(s)|Cl-(m), AgCl(s)+ e- = Ag(s)+Cl-(m)(3)氧化还原电极如:Pt|Fe3+(m1),Fe2+(m2) Fe3+(m1) +e- = Fe2+(m2)对于气体电极和氧化还原电极,在书写时要标明电极反应所依附的惰性金属。
2.什么叫电池的电动势?用伏特表侧得的电池的端电压与电池的电动势是否相同?为何在测电动势时要用对消法?答:正、负两端的电势差叫电动势。
不同。
当把伏特计与电池接通后,必须有适量的电流通过才能使伏特计显示,这样电池中发生化学反应,溶液浓度发生改变,同时电池有内阻,也会有电压降,所以只能在没有电流通过的情况下才能测量电池的电动势。
3.为什么Weslon标准电池的负极采用含有Cd的质量分数约为0.04~0.12的Cd一Hg齐时,标准电池都有稳定的电动势值?试用Cd一Hg的二元相图说明。
标准电池的电动势会随温度而变化吗?答:在Cd一Hg的二元相图上,Cd的质量分数约为0.04~0.12的Cd一Hg齐落在与Cd一Hg固溶体的两相平衡区,在一定温度下Cd一Hg齐的活度有定值。
因为标准电池的电动势在定温下只与Cd一Hg齐的活度有关,所以电动势也有定值,但电动势会随温度而改变。
4.用书面表示电池时有哪些通用符号?为什么电极电势有正、有负?用实验能测到负的电动势吗?答:用“|”表示不同界面,用“||”表示盐桥。
电极电势有正有负是相对于标准氢电极而言的。
不能测到负电势。
5.电极电势是否就是电极表面与电解质溶液之间的电势差?单个电极的电势能否测量?如何用Nernst方程计算电极的还原电势?5.电极电势是否就是电极表面与电解质溶液之间的电势差?单个电极的电势能否测量?如何用Nernst 方程计算电极的还原电势?答:电极电势不是电极表面与电解质溶液之间的电势差。
单个电势是无法测量的。
用Nernst 方程进行计算:6.如果规定标准氢电极的电极电势为 1.0V ,则各电极的还原电极电势将如何变化?电池的电动势将如何变化?答:各电极电势都升高1,但电池的电动势值不变。
7.在公式Δr G m Θ=-zE ΘF 中,Δr G m Θ是否表示该电池各物都处于标准态时,电池反应的Gibbs 自由能变化值?答:在公式Δr G m Θ=-zE ΘF 中,Δr G m Θ表示该电池各物都处于标准态时,在T,p 保持不变的条件下,按电池反应进行1mol 的反应时系统的Gibbs 自由能变化值。
8.有哪些求算标准电动势E Θ的方法?在公式中,E Θ是否是电池反应达平衡时的电动势?K Θ是否是电池中各物质都处于标准态时的平衡常数?答:求算标准电动势E Θ的方法较多,常用的有: 公式 是由Δr G m Θ联系在一起,但E Θ和K Θ处在不同状态,E Θ处在标准态,不是平衡态(在平衡态时所有的电动势都等于零,因为Δr G m Θ等于零)。
K Θ处在平衡态,而不是标准态(在标准态时平衡常数都等于1)。
9.联系电化学与热力学的主要公式是什么?电化学中能用实验测定哪些数据?如何用电动势法测定下述各热力学数据?试写出所设计的电池、应测的数据及计算公式。
答:联系电化学与热力学的主要公式是:Δr G m =-zEF ,Δr G m Θ=-zE ΘF电化学中用实验能测定E ,E Θ,。
用电动势法测定热力学数据的关键是能设计合适的电池,使电池反应就是所要求的反应,显然答案不是唯一的。
现提供一个电池作参考。
(1).H 2O(1)的标准摩尔生成Gibbs 自由能Δf G m Θ(H 2O,1);电池:Pt|H 2(p H2) | H +或OH -(aq) | O 2(p O2)|Pt净反应:H 2(p Θ) + 1/2O 2(p Θ) = H 2O(l)Δf G m Θ (H 2O,1)=-zE ΘF(2).H 2O(1)的离子积常数K Θ;电池:Pt|H 2(p H2)|H +(a H+)||OH -(a OH-)|H 2(p H2)|Pt 净反应:H 2O(l) ⇔ H +(a H+) + OH -(a OH-)(3)Hg 2SO 2(s)的活度积常数K sp Θ;电池:Hg(l)|Hg 22+(a Hg22+)||SO 42-(a SO42-)|Hg 2SO 4(s)|Hg(l)净反应:Hg 2SO 4(s) = Hg 22+(a Hg22+)+SO 42-(a SO42-)|(4)反应Ag(s)+1/2Hg 2Cl 2(s)→AgCl(s)+Hg(1)的标准摩尔反应焓变 Δf H m Θ;电池:Ag(s)|AgCl(s)|Cl -(a Cl -)|Hg 2Cl 2(s)|Hg(l) 净反应:Ag(s)+1/2Hg 2Cl 2(s)→AgCl(s)+Hg(1)(Re )(Re )ln B Ox d v B Ox d B RT a zFϕϕΘ=-∏,,ln r m G RT E E E K zF zF ϕϕΘΘΘΘΘΘΘ+-∆=-=-=ln RT E K zF ΘΘ=exp W zE F K RT ΘΘ⎛⎫= ⎪⎝⎭exp sp zE F K RT ΘΘ⎛⎫= ⎪⎝⎭p E T ∂⎛⎫ ⎪∂⎝⎭Δr G m Θ =-ZE ΘF=Δr H m Θ-TΔr S m Θ(5).稀的HCI 水溶液中,HCl 的平均活度因子Y ±;电池:Pt|H 2(p Θ)|HCl(m)|AgCl(s)|Ag(s)净反应:H 2(p Θ) + AgCl(s) = H +(a H +)+Cl -(a Cl -) +Ag(s)(6)Ag 2O(s)的标准摩尔生成焓Δf H m Θ和分解压。
电池:Ag(s)+Ag 2O(s)|OH-(a OH -)|O 2(p Θ)|Pt净反应:Ag 2O(s)→1/2O 2(p Θ)+2Ag(s)(7).反应Hg 2Cl 2(s)+H 2(g)→2HCl(aq)+2Hg(l)的标准平衡常数K a Θ;电池:Pt|H 2(p Θ)|HCl(a HCl )|Hg 2Cl 2(s)|Hg(l)(8).醋酸的解离平衡常数。
电池:Pt|H 2(p Θ)|HAc(mHAc),Ac -(m Ac -),Cl -(a Cl -)|AgCl(s)|Ag(s)净反应:AgCl(s)+H 2(p Θ)→H +(a H +)+Cl -(a Cl -) +Ag(s)10.当组成电极的气体为非理想气体时,公式Δr G m =-zEF 是否成立?Nernst 方程能否使用?其电动势E 应如何计算?答:因为是非理想气体,所以先计算电池反应的Δr G m , ,公式中代人非理想气体的状态方程。
然后根据Δr G m 与电动势的关系,计算电动势Δr G m =-zEF 公式和Nernst 方程能使用。
11.什么叫液接电势?它是怎样产生的?如何从液接电势的测定计算离子的迁移数?如何消除液接电势?用盐桥能否完全消除液接电势?答:在两种含有不同溶质的溶液界面上,或者两种溶质相同而浓度不同的溶液界面上,存在着微小的电位差, 称为液体接界电势。
产生的原因是由于离子迁移速率的不同而引起的。
用r mH =-zE F+zFT pE T ΘΘΘ⎛⎫∂∆ ⎪∂⎝⎭212ln ln H Cl H a a RT RT m E E E zF zF m a γ+-ΘΘ±Θ⎛⎫⋅⎛⎫ ⎪=-=-⋅ ⎪⎪⎝⎭⎝⎭()2212,exp r m pf m r m O p E H zE F zFT T H Ag O s H p zE F K p RT ΘΘΘΘΘΘΘΘ⎛⎫∂∆=-+ ⎪∂⎝⎭∆=-∆⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭exp a zE F K RT ΘΘ⎛⎫= ⎪⎝⎭212_ln H Cl H HH H Ac a HAca a RT E E zF a m a m HAc H Ac a a K a +-+++-ΘΘ+Θ⎛⎫⋅ ⎪=- ⎪⎝⎭=+⋅=21r m G = p p Vdp∆⎰盐桥只能使液接电势降到可以忽略不计,但不能完全消除。
12.根据公式 ,如果 为负值,则表示化学反应的等 压热效应一部分转变成电功(-zEF),而余下部分仍以热的形式放出 。
这就表明在相同的始终态条件下,化学反应的Δr H m 按电池反应进行的焓变值大(指绝对值),这种说法对不对?为什么?答:不对,H 是状态函数Δr H m 的值只和反应的始终态有关,而和反应的途径无关,不管反应经历的是化学反应还是电池反应,始终态相同时Δr H m 值是相同的。
但两种反应的热效应是不一样的。
第十章 电解与极化作用r mpE H zEF zFT T ΘΘΘ⎛⎫∂∆=-+ ⎪∂⎝⎭p E T ∂⎛⎫⎪∂⎝⎭[0]R pE zF T S Q T ∂⎛⎫=∆=< ⎪∂⎝⎭因为第十一章1.请根据质量作用定律写出下列基元反应的反应速率表示式(试用各种物质分别表示)。
(1)A+B=2P (2)2A+B=2P (3)A+2B=P+2S (4)2Cl+M=Cl 2+M()[][][][][]12112d A d B d P r k A B dtdtdt=-=-==()[][][][][]22311222d A d B d P r k A B dt dt dt =-=-==()[][][][][][]23311322d A d B d P d S r k A B dtdt dt dt=-=-===()[][][][][][]2243142d Cl d M d Cl d M r k Cl M dt dt dt dt=-=-===2.零级反应是否是基元反应?具有简单级数的反应是否一定是基元反应?反应Pb(C 2H 5)4= Pb+4C 2H 5,是否可能为基元反应?零级反应不可能是基元反应,因为没有零分子反应。
一般是由于总反应机理中的决速步与反应物的浓度无关,所以对反应物呈现零级反应的特点。
零级反应一般出现在表面催化反应中,决速步是被吸附分子在表面上发生反应,与反应物的浓度无关,反应物通常总是过量的。
基元反应一定具有简单反应级数,但具有简单级数的反应不一定是基元反应,如H 2(g)+I 2(g)=2HI(g)是二级反应,但是一个复杂反应。
Pb(C 2H 5)4= Pb+4C 2H 5,不可能是基元反应。
根据微观可逆性原理,正、逆反应必须遵循相同的途径。