--220KV 变电站电气主接线设计

合集下载

220KV_变电站电气主接线设计

220KV_变电站电气主接线设计

220KV 变电站电气主接线设计目录一、原始材料 (2)二、变电所主变压器台数和容量及主接线方案的选择 (5)三、负荷计算 (6)四、短路电流的计算 (7)五、变电所一次设备的选择与校验 (8)六、变电所高、低压线路的选择 (10)原始资料1.1.1变电所规模及其性质:电压等级220/110/35 kv线路回数220kv 本期2 回交联电缆(发展1 回)110kv 本期4 回电缆回路(发展2 回)35kv 30 回电缆线路,一次配置齐全本站为大型城市变电站2.归算到220kv 侧系统参数(SB=100MVA,UB=230)KV近期最大运行方式:正序阻抗X仁0.1334;零序阻抗X0=0.1693近期最大运行方式:正序阻抗X仁0.1445;零序阻抗X0=0.2319远期最大运行方式:正序阻抗X仁0.1139;零序阻抗X0=0.14883.110kv 侧负荷情况:本期4回电缆线路最大负荷是160MW 最小负荷是130MW远期6 回电缆线路最大负荷是280MW 最小负荷是230MW4.35kv侧负荷情况:(30回电缆线路)远期最大负荷是240MW 最小负荷是180MW近期最大负荷是170MW 最小负荷是100MW5.环境条件:当地年最低温度-24 C,最高温度+35C,最热月平均最高温度+25C,海拔高度200m气象条件一般,非地震多发区,最大负荷利用小时数6500小时。

主接线设计本变电站为大型城市终端站。

220VKV为电源侧,110kv侧和35kv侧为负荷侧。

220kv和110kv采用SF6断路器。

220kv 采取双母接线,不加旁路。

110kv 采取双母接线,不加旁路。

35kv 出线30 回,采用双母分段。

低压侧采用分列运行,以限制短路电流。

电气主接线图第二章主变压器选择和负荷率计算原始资料1.110kv 侧负荷情况:本期4 回电缆线路最大负荷是160MW 最小负荷是130MW远期6 回电缆线路最大负荷是280MW 最小负荷是230MW 2.35kv 侧负荷情况:(30 回电缆线路)远期最大负荷是240MW 最小负荷是180MW近期最大负荷是170MW 最小负荷是100MW3 •由本期负荷确定主变压器容量。

220kV变电站电气主接线的设计及探讨

220kV变电站电气主接线的设计及探讨

220kV变电站电气主接线的设计及探讨本文对220kV变电站电气主接线的设计进行了深入的分析和研究,并对其设计的关键要点进行了详细的阐述。

同时对电气主接线的设计、典型的形式以及主要装置的作用做了详细的介绍,并且也对其配置的原则作了阐述。

通过计算无功率补偿作用以及电流短路现象来对电气设施的选择提供有效的依据,并对一次主接线的流程进行了设计,从而完成了220kV变电站电气主接线的设计。

标签:220kV;变电站;电气主接线;设计;探讨1 规划系统在变电站的电气主接线设计中,系统规划主要是基于经济发展以及规划电力使用的基础上,从整个变电站的电力体系出发,从而制定出设计系统的详细的规划方案。

在进行系统方案的设计时,首先要确保其具有较高的安全性、可靠性,并且还要保证其所涉及到的技术具有良好的先进性以及过渡性,并且还要达到切实可行以及应用灵活的目的,只有这样才能有效的促进国民经济的提升,以及达到提高的人们生活质量的目的。

其次就是在进行能源的布局时,需要结合当前的市场发展方向来则作为指导,并在优化能源结构的基础上,将电力开发与节约能源有机的结合起来,从而实现环保节能的发展目标。

并且还要将可持续的开发理念,做到总量有效控制、合理布局能源。

最后还要结合国内的资源分布的情况,以及当前的经济发展的趋势进行综合的考虑,并根据提升电力开发质量和水平以及调整能源和机组组成的基本要求,来研发变电站的设计系统的输入与输出的方式方法、网络以及等级。

2 主变压器在变电站电气主接线的设计系统中,向电气设备以及用电居民传送功率的压力转换器则为主变压器。

而用于等级相同的两种类型的电压转换器则为联络压力转换器。

只能用于本发电站或者是发电所的压力转换器则为站用压力转换器或者是自用的压力转换器。

在变电站,主要进行电压转变的就是主变压器,它不仅能够起到良好的电能分配的作用,同时还能起到经济输送电能的作用。

因此选择合适的主变压器对与变电站的发展具有重要的作用和意义。

220kV变电站电气主接线的设计及探讨

220kV变电站电气主接线的设计及探讨

电, 可靠 :检 修 出线断 路嚣 , 可以 不睁 施 电植 髂,供 毫 可靠性 高 当一 回线 路 故 障对 分段 断 路 器 自动 将 当 一回 线路 故 簿 时. 段断 路嚣 自动将 故 分 故 障 段氍 离 保证 难 常段 母 鲮 间 断供 障段 黼 氍 缳证 正常 段母绒 不问 断供 电, 下
量大 期间, 润滑保养 随着 机器 的工作 频率增 加保养 次数 , 做好 护理, 在施 工修整 及间 断期, 工作人 员要定 时的检 查机 器, 照说 明书给机 器进 行简单 的清洗 : 按 定 时给机 器 涂擦润 滑 油, 防止 零件 的老 化 生锈, 不会 影 响正常 的工 作 。而且 其 就

路 。工作母 线 故障时 ,所有 回路 能迅 速 饿复 工作 .


用断 路 器把 母 线势 段 后, 重 要用 户 可 用 断路 嚣 把母 线 分段 后 重 要用 户 可从 对 对
娥 下 周段 引 出两个 回蹴 保证不 问 断供 不 同段 引出两 千回 路. 保证 不问 断 供电, 可
前 言 电气主接线 是 由高压 电器通过连 接线 , 按其功 能要求 组成接 受和 分配 电能 的 电路, 为传 输 强 电流 , 成 高电压 的 网络, 它要 求用 规定 的 设备 文字 和 图形符 号, 按工作 顺序排 列 , 细地 表示 电气 设备 或成 套装 置全 部基本 组 成和连 接 并 详 关系, 代表 该变 电站 电气 部分 的主 体结 构, 电力系统 结 构 网络 的 重要组 成部 是
( 包括 单母 线 、单 母线 分段 、双 母线 、双 母线 分 段和增 设 旁路 母线 的接 线):
可靠 、调 度 灵 活 、满 足 各项 技 术 要 求 的前 提 下 、 兼顾 运 行 、维 护 方便 , 尽

220kV变电站主接线设计

220kV变电站主接线设计

220kV变电站主接线设计摘要本毕业设计以220kV枢纽变电站的设计为例,论述了电力系统工程中变电站一次部分电气设计的全过程。

本文介绍了电力系统、变电站的一些基础知识,分析了变电站常用的主接线类型、变压器的选择方法、隔离开关和断路器的选择与校验方法、母线和输电线路的选择方法。

本文通过假定一些参数模拟设计了220kV枢纽变电站的主接线,对变电站的变压器进行了数学建模,并选择出了合适的变压器、断路器、隔离开关、母线及导线,较为详细地完成了电力系统中变电站一次侧的设计。

前言随着社会的不断发展人民对电力供应的要求越来越高,特别是供电稳定性,可靠性和持续性,然而电网的稳定性可靠性和持续性往往取决于变电站的合理设计和配置一个典型的变电站要求,电力设备运行可靠操作灵活经济合理扩建方便,处于这几个方面的考虑,本毕业论文一220KV变电站为例,论述了电力系统工程中变电站部分电气设计的全过程。

变电站电气主接线设计是根据变电站的最高电压等级和变电站的性质,选择出一种与变电站在系统中的地位和作用相适应的接线方式,变电站的电气主接线是电力系统接线的重要部分,它表明变电站内的变压器,备电压等级的线路,设备以最优化的接线方式与电力系统连接,同时也表明在变电站内各种电气设备之间的连接方式。

目录摘要 (III)前言 (III)1 本论 (1)1.1 研究的背景与意义 (1)1.1.1研究背景 (1)1.1.2研究意义 (1)1.2 国内外相关研究综述 (2)1.2.1国外研究现状 (2)1.2.2国内研究现状 (2)1.3 本文的研究内容与基本框架 (3)1.4本文的研究方法与创新 (3)2 同城化的概念、条件以及机制研究 (5)2.1.1同城化的概念 (5)2.1.2同城化的基本内涵 (5)2.2 同城化的条件 (9)2.2.1地域相邻经济发展水平较高的同一个城市群 (11)2.2.2具有以高铁为主的快速发达的交通网络 (11)2.2.3城市间存在着经济的差异性且联系紧密 (11)2.2.4文化和历史相近且民众有较强的认同感 (11)3 我国同城化现象的研究 (11)3.1我国同城化的整体状况 (11)3.1.1京津同城化 (18)3.2 我国城市同城化的特征 (17)3.2.1从属型城市 (15)3.2.2互补型对等型城市 (15)3.2.3同城化发展的初级阶段 (17)4 高铁作用下同城化效应及其影响因素 (5)4.1高铁作用下同城化效应 (5)4.1.1居住与就业的同城化:人口快速流动下生活圈的扩大 (5)4.1.2城市群化:网络化、多中心化城市形成 (9)4.2.影响高铁开通区域同城化进程的其他主要因素 (11)4.2.1城市产业同构现象严重以及分工合作差 (11)4.2.2缺乏良好的制度环境和法律保障 (11)4.2.3缺乏统一的规划理念和举措 (11)5 依托高铁的城市与区域整合与一体化对策 (5)5.1实施交通走廊化与网络化 (5)5.1.1推进城市的网络化建设 (5)5.2促进同城化城市在不同阶段的竞争与合作 (11)结语 (5)参考文献 (19)1本论1.1电力系统概述1.1.1电力系统基本概念电能的生产、输送、分配、使用是同时进行的所用设备构成一个整体。

220kv变电站电气主接线设计说明书

220kv变电站电气主接线设计说明书

第一章概述本变电站为大型城市终端站。

220VKV为电源侧,110kv侧和35kv侧为负荷侧。

220kv 本期2回交联电缆(发展1回);110kv本期4回电缆回路(发展2回);35kv30回电缆线路,一次配置齐全。

其中110KV本期4回电缆线路最大负荷是160MW ,最小负荷是130MW;远期6回电缆线路,最大负荷是280MW,最小负荷是230MW;35kv侧负荷情况:(30回电缆线路)远期最大负荷是240MW,最小负荷是180MW;近期最大负荷是240MW,最小负荷是180MW。

本站是重要的地区变电所,位于网络的终端,高压侧以交换和接收功率为主,中压侧供给地区电能,低压侧供给附近用户。

随着居民用电水平的急剧提高,市区中电力供应将日益紧张,规划论证结果表明,将220KV电压等级引入市区、市中心区是提高供电能力有效、合理的方案。

将220KV电压等级引入市区,并以110KV 和35KV电压等级配电,既能与市区现有的35KV和110KV电网紧密配合,对不同容量规模的用户以合理的电压供电,提高供电能力,改善电网结构,提高供电可靠性,又能节约电网整体投资。

市区中心的土地资源非常宝贵,电力设施属于城市基础设施之一,变电站在选址上应结合需要和可能多方案来优化选址,减小占地并提高土地综合利用率是市区中建设变电站的客观需要一味的减小占地而不顾安全运行等客观需要是不适宜的,应在综合利用土地方面多做考虑,总布置还应考虑工艺合理,满足城市规划、消防、换保、大件运输等要求。

所以城市变电站设计的最基本的要求即:设备无油化,小型化,高参数,不检修,尽量压缩占地满足较高的环保,消防,及城市规划的要求,具有较高的供电可靠性和运行安全性,并提高变电站用地的综合利用率。

总布置需认真考虑出线问题,变电站进出线均为电缆,规模庞大,变电站占地小,出口集中,如何与规划允许的条件相结合较为困难。

本站35KV-------220KV进出线电缆共36回,考虑投资因素电缆设施全部采用沟槽、排管方式尽量分散由站的三面引出,回避了采用电缆隧道的方式。

220kv变电站电气主接线系统设计--优秀毕业设计[管理资料]

220kv变电站电气主接线系统设计--优秀毕业设计[管理资料]

摘要本说明书以220KV地区变电站设计为例,论述了电力系统工程中变电站部分电气设计(一次部分)的全过程。

通过对变电站的主接线设计,站用电接线设计,短路电流计算,电气设备动、热稳定校验,主要电气设备型号及参数的确定,运行方式分析,防雷及过电压保护装置的设计,电气总平面及配电装置断面设计和无功补偿方案设计,较为详细地完成了电力系统中变电站设计。

限于毕业设计的具体要求和设计时间的限制,本毕业设计只对变电站电气一次部分做了较为详细的理论设计,而对其电气二次部分并没有涉及,这有待于在今后的学习和工作中进行研究。

关键词:变电站短路电流动稳定热稳定过电压保护装置无功补偿ABSTRACTThe statement about the 220kv transformer area substation design, discussed some electrical transformer stations design (one part) in power systems engineering of the entire process. Through the main transformer stations wiring design, stations wiring design stations, short circuit current calculations, check electrical equipment moving and thermal stability, set the main electrical equipment models and the parameters, the operating mode, design over-voltage protection and mine devices , design general electric graphic and distribution devices flood, and without power compensation. Lastly,completed substation design in power system.Limited to the specific design requirements and design time of constraints, The design only is a part of the electrical transformer stations, and its second part did not involve, which research it in future study and work.KEY WORDS: Substation, Short circuit currents , Moving stability,Thermal stability,Over-voltage protection devices,Without power compensation目录摘要 (I)ABSTRACT (II)第1章引言 (4)第2章 .主接线设计 (5). (6). (7). (7). 方案拟定及技术比较 (7). 方案的经济性比较 (9). (13).2. 3. 4. 1选择原则 (13). (14)本章小结 (15)第3章站用电接线及设备用电源接线方案 (15).所用电源数量及容量 (15). (16).所用变压器低压侧接线 (16). (16). (17)本章小结 (17)第4章短路计算 (18). (18).短路故障的危害 (19).短路电流计算的目的 (20). (21).短路电流计算方法 (21). (21). (21). (22). (22)本章小结 (26)第5章设备的选择及动、热稳定校验 (26). (26). (27).断路器、隔离开关的选择原则 (29). (31). (32). 电压互感器的选择 (33). 熔断器的选择 (34). (35) (37). 一般要求: (37). (37). 截面的选择 (37). (41)本章小结 (41)第6章配电装置 (42).: (42). (43). (43).配电装置设计的基本步骤 (45). (45). (46)本章小结 (47)第7章防雷及过电压保护装置设计 (47). (47). (49). (49). (50). (51).接地装置 (51)本章小结 (52)第8章无功补偿 (52).提高功率因数的意义 (52).补偿装置的确定: (53). (54). (54). (55)本章小结 (56)第5章结束语 (57)致谢 (59)参考文献 (60)附录 (61)第1章引言电力工业是国民经济的重要部门之一,它是负责把自然界提供的能源转换为供人们直接使用的电能的产业。

220kV变电站电气主接线设计分析

220kV变电站电气主接线设计分析

220kV变电站电气主接线设计分析摘要:我国智能、坚强公共电网建设成绩斐然,在电网中220kV变电站规模、数量不断扩大,并对其电气主接线设计提出了更高的要求。

220kV变电站是电力系统的重要组成部分,其电气主接线设计方案关系着220kV变电站的稳定性和可靠性。

介绍了电气主接线设计原则与220kV变电站电气主接线结构,分析了电气主接线设计依据与步骤,为电网保证供电稳定性、可靠性和电能质量提供了参考。

关键词:220kV变电站;电气主接线;设计步骤1电气主接线设计原则1.1可靠性原则电力系统建设的核心即供电可靠性,保证供电质量可以满足生产生活需求。

因此在对变电站电气主接线设计分析时,必须要遵循可靠性原则,即在检修断路器时,不能对系统整体供电质量产生影响;检修断路器与母线故障时,要尽量减少系统停运的时间,和停运回路数,且要求能够满足一级负荷和大部分二级负荷的供电。

另外,还要最大程度上来避免变电所出现全部停运的情况。

1.2经济性原则除了要保证电力系统供电可靠性外,还需要从经济性角度进行分析,减少成本的投入,尽量降低主接线复杂程度,对于隔离开关、节约断路器、避雷器等一次设备来说,要降低控制保护的复杂度,采购不影响系统运行且成本较低的二次设备与控制电缆。

同时,还要对短路电流进行有效控制,所选电气设备与轻型电器价格均要合理,且要对终端配备简单电器。

另外,电气主接线设计方案要为配电装置的设置提供方便,控制设备占地面积,减少用地、导线、绝缘子以及安全成本的投入。

对于部分处于特殊地区的变电站,供电系统应选择用三相变压器,尽量以简单形式布置。

基于经济性原则对电气设备和变压器进行选择,并设计其容量与数量,可以有效避免两次变压情况,减少系统运行电能损失产生的费用。

1.3灵活性原则电气主接线设计应确保其在调度、检修以及扩建等阶段均具有较高的灵活性。

调度时能够灵活操作,对某些变压器或线路进行切除处理,根据需求调配电源与负荷,确保系统可以在事故运行方式、特殊运行方式以及检修方式状态下的调度需求。

220kV变电站主接线设计

220kV变电站主接线设计

220kV变电站主接线设计1.项目背景2.设计原则主接线设计需要遵循一系列原则,包括:(1)安全性:确保主接线的可靠性和安全性,避免火灾和电击等事故的发生。

(2)经济性:合理选择设备和布局,减少投资成本。

(3)可操作性:布线方便,设备易于操作和维护。

(4)可扩展性:预留足够的接头和空间,方便后期扩建。

3.设计步骤主接线设计包括以下步骤:(1)确定主接线线路:根据变电站的功率需求和布局要求,确定主接线线路的数量和位置。

(2)选取主接线材料:根据电流、电压和其他参数,选择适合的主接线材料,如铜、铝或铜铝复合线等。

(3)计算主接线尺寸:根据电流负载和电压降低要求,计算主接线的尺寸,确定主接线的截面积和长度。

(4)设计主接线布局:根据变电站的布局要求,设计主接线的布局,确保电力各部分的连接正常。

(5)考虑主接线故障:在设计中,要考虑可能发生的主接线故障,并选取合适的保护措施,如断路器和隔离开关等。

(6)进行电磁场仿真:对主接线进行电磁场仿真分析,评估主接线的电磁兼容性。

4.设计要点主接线设计需要注意以下要点:(1)电流负载平衡:主接线应根据负载平衡原则进行设计,尽可能保证各相电流平衡,减少不均衡带来的负荷不平衡和潮流过载。

(2)电压降低:主接线的设计应保证电压降低在允许范围内,避免影响负荷供应。

(3)绝缘均衡:主接线应注意绝缘均衡,避免因一相绝缘损坏而引发的事故。

(4)接线方式:主接线可以采用单环形、双环形、单网段和半单网段等接线方式,具体根据变电站的布局和特点进行选择。

(5)火灾防护:主接线应采取一些防火和防爆措施,如选用阻燃绝缘材料和安装灭火系统等。

5.设计案例以变电站为例,该变电站采用双环形主接线方式,总共有4条主接线。

主接线材料为铜铝复合线,根据电流负载和电压降低要求,计算得到主接线的尺寸为150mm²,长度为100m。

在设计过程中,预留了足够的接头空间,并选用了断路器和隔离开关等保护设备。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所以每台主变压器可以带总负荷的60%。
SLMAX/SN=1.62
经查表知事故过流允许负荷在过负荷1.6倍时为15分钟,过负荷2.0倍的允许时间为4分钟。
2.2.2变压器参数列表:
表2-1变压器参数列表
容量MVA
调压范围
电压KV
空载损耗(KW)
短路损耗(KW)
阻抗电压
UI-2%
U1-3%
U2-3%
240
每台主变压器负荷
110kv侧:93.3 MW
35kv侧:80MW
按最优负荷率0.87选主变压器容量。
SN=PL/(0.85×η)=(93.3+80)/(0.85×0.87)=234 MVA
选SN=240MVA,容量比100/50/50
负荷率计算
110kv最大负荷率:η=93.3/(0.85×120)=91.4%
第3.2节短路点选择
F1点220kv进线断路器内侧
F2点220kv母联断路器
F3点220kv母线
F4点主变压器高压侧
F5点主变压器中压侧
F6点110kv母线
F7点110kv出线
F8点主变压器低压侧
F9点35kv出线
第3.3节短路计算
按近期最大运行方式所给参数进行短路计算:
X1=2XS1=2×0.1334=0.2668
有:IK1=IK1×IB1=3.748×0.2510=0.941KA
3.3.2短路点F2:(220kv母联断路器)
标:IK2=E/XS1=1/0.1334=7.496
有:IK2=E×IB1=7.496×0.2510=1.88KA
XT1=0.06042
XT3=0.0396
IB1=SB/ UB1=100/230 =0.2510
IB2=SB/ UB2=100/115 =0.5020
IB3=SB/ UB3=100/37 =1.560
3.3.1短路点F1:(220kv进线断路器内侧)
标:IK1=E/X1=1/0.2668=3.748
第一章220KV 变电站电气主接线设计
第1.1节原始资料
1.1.1变电所规模及其性质:
电压等级220/110/35 kv
线路回数220kv本期2回交联电缆(发展1回)
110kv本期4回电缆回路(发展2回)
35kv30回电缆线路,一次配置齐全
本站为大型城市变电站
2.归算到220kv侧系统参数(SB=100MVA,UB=230KV)
4.35kv侧负荷情况:(30回电缆线路)
远期最大负荷是240MW最小负荷是180MW
近期最大负荷是170MW最小负荷是100MW
5.环境条件:当地年最低温度-24℃,最高温度+35℃,最热月平均最高温度+25℃,海拔高度200m,气象条件一般,非地震多发区,最大负荷利用小时数6500小时。
第1.2节主接线设计
第2.2节主变压器选择
2.2.1容量选择
(1)按近期最大负荷选:
110kv侧:160MW
35kv侧:170MW
按最优负荷率0.87选主变压器容量
每台主变压器负荷
110kv侧:80 MW
35kv侧:85 MW
按最优负荷率0.87选主变压器容量。
SN=PL/(0.85×η)=(80+85)/(0.85×0.87)=209.6MVA
35kv最大,最小负荷率η=80/(0.85×120)=78.4%
总负荷率:η=(93.3+80)/(0.85×240)=84.9%
所以,综合以上讨论可知,从长远考虑选主变压器容量:SN=240 MVA,容量比100/50/50的变压器。
因为:SN/SLMAX=(240×0.85)/(160+170)=61.8%>60%
近期最大运行方式:正序阻抗X1=0.1334;零序阻抗X0=0.1693
近期最大运行方式:正序阻抗X1=0.1445;零序阻抗X0=0.2319
远期最大运行方式:正序阻抗X1=0.1139;零序阻抗X0=0.1488
3.110kv侧负荷情况:
本期4回电缆线路最大负ຫໍສະໝຸດ 是160MW最小负荷是130MW远期6回电缆线路最大负荷是280MW最小负荷是230MW
本变电站为大型城市终端站。220VKV为电源侧,110kv侧和35kv侧为负荷侧。220kv和110kv采用SF6断路器。
220kv采取双母接线,不加旁路。
110kv采取双母接线,不加旁路。
35kv出线30回,采用双母分段。
低压侧采用分列运行,以限制短路电流。
第1.3节电气主接线图
第二章主变压器选择和负荷率计算
第2.1节原始资料
1.110kv侧负荷情况:
本期4回电缆线路最大负荷是160MW最小负荷是130MW
远期6回电缆线路最大负荷是280MW最小负荷是230MW
2.35kv侧负荷情况:(30回电缆线路)
远期最大负荷是240MW最小负荷是180MW
近期最大负荷是170MW最小负荷是100MW
3.由本期负荷确定主变压器容量。功率因数COSφ=0.85
35kv最大,最小负荷率
η=85/(0.85×120)=83.3%η=50/(0.85×120)=49%
总负荷率:
η=(85+80)/(0.85×240)=80.9%η=(50+65)/(0.85×240)=56.4%
(2)按远期最大负荷选:(远期设三台主变压器)
110kv侧:280MW
35kv侧:240MW
±2×2.5%
220/110/38.5
230
1080
14
24
9
第三章短路计算
第3.1节相关参数计算
等值220kv系统:XS1=0.1134XS0=0.1693
变压器:U1%=0.5(U12%+U13%-U23%)=0.5(14+24-9)=14.5
U2%=0.5(U12%+U23%-U13%)=0.5(14+9-24)=-0.5
或SN=0.6PM/0.85=0.6(160+170)/0.85=232.9 MVA
选SN=240MVA,容量比100/50/50的220kv三绕组无激磁调压电力变压器
负荷率计算
由负荷率计算公式:
η=S/SB
110kv最大,最小负荷率:
η=80/(0.85×120)=78.4%η=65/(0.85×120)=63.7%
U3%=0.5(U13%+U23%-U12%)=0.5(24+9-14)=9.5
所以XT1=U1%×SB/(100×SN)=14.5×100/(100×240)=0.06042
XT2= U2%×SB/(100×SN)=0
XT3= U3%×SB/(100×SN)=9.5×100/(100×240)=0.0396
相关文档
最新文档