第3章简单电力系统潮流计算总结

合集下载

第三章 简单电力系统的潮流计算

第三章 简单电力系统的潮流计算

X
R
QX U U
1
PX U U
U1
U1
2
U
O

U1
U
U2
U 2
U2
在纯电抗元件中,电压降落的纵分量是因传送无功功率而产生, 电压降落的横分量则因传送有功功率产生。 元件两端存在电压幅值差是传送无功功率的条件,存在电压相角 差则是传送有功功率的条件。 感性无功功率总是从电压幅值较高的一端流向电压幅值较低的一 端,有功功率则从电压相位超前的一端流向电压相位滞后的一端。 注意: ② 高压输电线路,

A
U2
jIX
D
U
I
IR
2. 线路的电压降落
O
U1
B
j2

I
(a)
U1 U 2 U j U
电压的有效值和相位角:
U2 A
j XI
D
RI
U1 U 2 U 2 U 2 PR QX PX QR U2 j U2 U2 U1
U1 (U 2 U 2 )2 ( U 2 ) 2
第三章
简单电力系统的潮流计算
电力系统的潮流计算
定义 根据给定的运行条件(网络结构、参数、负荷等)求取给 定运行条件下的节点电压和功率分布。 意义 电力系统分析计算中最基本的一种:运行方式安排、规划 和扩建等。
简单电力系统潮流计算
复杂电力系统潮流计算
3.1
单一元件的功率损耗和电压降落
最基本的网络元件:输电线路、变压器
U1 U2
U1 U 2
1
U1
U1
2
U
O

U1
U
U2

第三章 简单电力系统的潮流计算

第三章 简单电力系统的潮流计算
LANZHOU RESOURCES&ENVIRONMENT VOC-TECH COLLEGE
电力系统应用
第三章 简单电力系统的潮流计算
S T
—— 三相变压器总损耗,MVA;
RT+jXT—— 变压器一相的阻抗,Ω; P、Q —— 变压器阻抗上的首端或末端三相有功及三相无功 功率,MW、Mvar; U —— 对应于功率的变压器等值电路首端或末端的线 电压,kV; I——流过变压器阻抗上的电流,A; ΔP0+jΔQ0——变压器励磁导纳中的总有功损耗和总无功损耗, MVA。
电力系统应用
第三章 简单电力系统的潮流计算
二、潮流计算的意义 1.对规划中的电力系统,通过潮流计算可以检验所提出的 电力系统规划方案能否满足各种运行方式的要求; 2.对运行中的电力系统,通过潮流计算可以预知各种负荷 变化和网络结构的改变会不会危及系统的安全,系统中所有 母线的电压是否在允许的范围以内,系统中各种元件(线路、 变压器等)是否会出现过负荷,以及可能出现过负荷时应事先 采取哪些预防措施等。
提供必要的数据。
LANZHOU RESOURCES&ENVIRONMENT VOC-TECH COLLEGE
电力系统应用
第三章 简单电力系统的潮流计算
1. 线路的功率损耗
1
Q j C 2
U1

R+jX
P+jQ
I U2
2
j QC 2


图3-2 线路的Π型等值电路
2 2 P Q 3I 2 R jX 106 jQ R jX jQC S C 2 U2
电力系统应用
第三章 简单电力系统的潮流计算
1

3章简单电力系统的潮流计算

3章简单电力系统的潮流计算

∑ Li Si L∑
电力系统分析
• 例:如下图所示,已知闭式网参数如下: 1 = 2 + j 4Ω Z
Z 2 = 4 + j8Ω
Z 3 = 4 + j8Ω

负荷参数 S B = 10 + j5MVA Sc = 30 + j15MVA • 电源参数 U A = 110kv 试求闭式网上潮流分布及B点电压值
• 当两端供电网两端电压相等时,就得到环网 • 对于电压等级为35kv及以下的两端供电地 方网,由于可以忽略阻抗和导纳中的功率损 耗,因此初步潮流分布也就是最终潮流分布 • 当电力网各段线路采用相同型号的导线,且 导线间的几何均距也相等,这时各段线路单 位长度的阻抗都相等,供载功率可简化为
n i =1
电力系统分析
• 某35kv变电所有两台变压器并联运行,其归算 至高压侧的参数如下 RT 1 = 1.11Ω X T 1 = 11.48Ω RT 2 = 7.53Ω X T 2 = 39.81Ω ,两台变压器均忽略励磁支 ~ 路,变压器低压侧通过的总功率为 S = (8.5 + j5.3) MVA 试求(1)当变压器变比为 KT 1 = KT 2 = 35 / 11kv 时, 每台变压器通过的功率为多少? (2)当 KT 1 = 34.125 / 11kv K T 2 = 35 / 11kv 时, 每台变压器通过的功率为多少?
电力系统分析
3.3 简单闭式网络的电压和功率分布计算
3.3.1 两端供电网的计算 3.3.2 多级电压环网的功率分布
电力系统分析
3.3.1 两端供电网的计算
两端供电网是由两个电源给用户或变电所供电, 供电可靠性高。 它的功率分布通常分两步进行。 1.两端供电网的初步功率分布 2.两端供电网的最终功率分布

电力系统教学 3 简单电力网络潮流的分析与计算

电力系统教学 3 简单电力网络潮流的分析与计算

L1
1 S~ 1
L2
T
2
~ S2
整P理2 课件jQ2
RL1 j BL1
2
jX L1 j BL1 2
1 j QyL2 2 ~ S1
j QyL1 2
等值负荷
RL2 j BL2
2
jX L2 j BL2 2
RL1
j BL1 2
由于母线电压在额定电 压附近,因此,线路对 地电容所消耗的功率近
似固定
RL1
S~1 U1
1
则:首端电压为
Y 2
U1 U2
3IZZ U 2
3(
S
' 2
)* Z
3U 2
电压降落 纵分量
U 2
( P2'
j
Q
' 2
)* ( R
U2
jX )
(U 2
P2' R
Q
' 2
X
U2
)
j ( P2' X
Q
' 2
R
)
U2
(U 2 U ) j ( U )
即: U1 (U2U)2(U)2
Sy1
Y2)*U12
1 2
(G
jB)U12
1 2
GU12
j
1 2
BU12
Py1 jQy1
整理课件
无功功率损耗为负 值,意味着发出无
功功率
III.电力线路中的功率损耗计算
流出线路阻抗支路功率
S2' S2 Sy2 流入线路阻抗支路功率
S1' S2' SZ
流入线路的功率
110/10.5
整理课件

第3章简单电力系统的潮流计算

第3章简单电力系统的潮流计算

第3章简单电力系统的潮流计算简单电力系统的潮流计算是电力系统运行中的重要环节,主要用于分析电力系统中各节点的电压、功率等参数的分布和变化情况,以保证系统的稳定运行和优化调度。

本章主要介绍了简单电力系统的潮流计算的基本原理和方法。

首先,简单电力系统的潮流计算是基于电力系统节点电压相等、功率平衡和潮流方向一致的基本假设。

在计算过程中,需要对电力系统进行建模和等效处理。

电力系统的节点可以分为发电节点、负荷节点和平衡节点。

发电节点表示电力系统的发电机节点,负荷节点表示电力系统的负载节点,平衡节点表示电力系统的节点电压保持不变。

潮流计算主要通过节点潮流方程和支路潮流方程进行求解。

节点潮流方程是基于潮流方向一致和功率平衡的基本原理,用于计算电力系统的节点电压。

支路潮流方程用于计算电力系统的支路电流。

节点潮流方程和支路潮流方程可以通过潮流计算矩阵的形式表示。

潮流计算的求解方法主要有迭代法和直接法两种。

迭代法是将潮流计算问题转化为非线性方程组的求解问题,常用的迭代法有高斯-赛德尔迭代法和牛顿-拉夫逊迭代法。

直接法是通过高斯消元法或LU分解法直接求解潮流计算矩阵的方程组,计算速度较快但适用范围较窄。

在潮流计算中,还需要考虑电力系统中的各种约束条件,如节点电压范围、支路功率限制等。

这些约束条件可以通过潮流计算的目标函数中引入惩罚项的方式来处理,最终得到满足约束条件的潮流计算结果。

总之,简单电力系统的潮流计算是电力系统运行和调度中的重要环节,通过对电力系统的节点电压、功率等参数进行分析和计算,可以保证电力系统的稳定运行和优化调度。

潮流计算的基本原理和方法主要包括节点潮流方程和支路潮流方程的求解,以及迭代法和直接法的计算方法。

同时,需要考虑电力系统中的各种约束条件,以保证潮流计算结果的合理性和可行性。

电力系统分析第03章简单电力系统潮流计算

电力系统分析第03章简单电力系统潮流计算

= U&p
*
Ip
= Up Ip∠(ϕu
−ϕi )
= Up Ip∠ϕ
=
Sp (cosϕ
+
j sin ϕ )
=
Pp
+
jQp
S%p为复功率,U&p = Up∠ϕu为电压相量,I&p = Ip∠ϕi为电流相量,
*
ϕ = ϕu −ϕi为功率因数角, I = I∠ − ϕi ,为电流相量的共轭值,
Sp、Pp、Qp分别为视在功率、有功功率和无功功率
¾ 电压损耗:线路始末两端电压的数值差,常以线路额定电压百分数表示
电压损耗(%)= U1−U 2 ×100% UN
¾ 电压偏移:线路始端或末端电压与线路额定电压的数值差
始端电压偏移(%)= U1 −U N ×100% UN
末端电压偏移(%)= U2 −U N ×100% UN
¾ 电压调整:线路末端空载与负载时电压的数值差
较短线路两端电压相角差一般都不大,可略去δU , 则:
U1
=
U2
+
P2
R + Q2 U2
X
4
始端电压做参考,用始端的功率求末端电压
若以U&1为参考相量,即U&1 = U1∠0°可求出末端的电压U&2

U2
= U1 − I&( R + jX ) = U1 −
P1
− jQ1 U1
( R + jX ) = U1 − ΔU ′ − jδU ′
上即可计算线损率或网损率。设线路始端输入的年电能 为W1,线路末端输出的年电能为W2,线路上的年电能损 耗仍为△Wz,则线损率或网损率为

第三章简单电力系统的潮流计算



~ S LDc

j
B2 2
U
2 N
S~b

S~LDb

j
B1 2
U
2 N

j
B2 2
U
2 N
由此将问题转化为:已知
U A ,
j
B1 2
U
2 N
,
S~b ,
S~c
的潮流计算。
~
A SA
~ S1
S~1
S~1
b
~ S2
S~2
S~2
c
U A
Z1
Z2
a.反推功率:

j
B1 2
UHale Waihona Puke 2 NS~bS~c
~ S1

S~1
S~2
I1
I1 Z
B j
S~Y 1
2
S~2 ②
I2
B j
2
~ S2
U 2
S~Y 2
求导纳中的功 率损耗S~Y1,S~Y 2;
末端:S~Y 2

U 2
(
j
B 2
U 2 )


j
B 2

U
2 2
首端:S~Y 1

U 1

(
j
B 2
U1 )
jB
~ S LD

30
j15MVA
2
~ SY 2
已知 r1 0.27 / km, x1 0.423 / km
b1 2.69 106 s / km, l 150km, 双回线路
解:R 1 0.27150 20.25 X 1 0.423150 31.725

电力系统潮流计算课程设计总结

电力系统潮流计算课程设计总结
电力系统潮流计算课程设计是电力系统相关专业的一门重要课程。

通过本次课程设计,我深入学习了电力系统潮流计算的原理、方法和技术,在实践中提高了自己的动手能力和问题解决能力。

首先,本次课程设计中我学习了电力系统潮流计算的基本原理。

潮流计算是电力系统运行和规划的基础,通过对系统中每个节点的功率和电压进行计算,可以判断系统的运行状态和潜在问题。

我了解了功率平衡方程的推导过程,掌握了优化潮流计算的目标和方法。

这些基本原理为后续的潮流计算提供了理论支持。

其次,本次课程设计中我学习了潮流计算的具体方法和技术。

我学会了使用潮流方程和节点电流方程进行潮流计算,掌握了潮流计算中的迭代算法和收敛准则。

我还学习了如何利用潮流计算结果进行系统状态估计和故障分析。

通过实践操作,我熟练掌握了潮流计算软件的使用,能够进行系统数据的输入和结果的分析。

最后,本次课程设计中我还学习了潮流计算在电力系统规划和运行中的应用。

潮流计算可以用于电力系统的负荷分配、可靠性评估、输电能力计算等方面。

我了解了潮流计算在电力系统规划和运行中的重要性,以及其与其他工程的关联和协作。

通过实际案例的分析,我感受到了潮流计算在电力系统实际工程中的应用和意义。

总的来说,本次课程设计让我对电力系统潮流计算有了深入的了解,并提高了我的实践能力。

我通过理论学习和实验操作,掌握了潮流计算的原理、方法和技术,并对其在电力系统规划和运行中的应用有了清晰的认识。

我相信这些知识和能力将对我今后的专业发展产生积极的影响。

电力系统分析第3章 简单电力系统的潮流(power flow)计算


S3 Sd , SL 3
" S3 2 ' " ( ) ( R3 jX 3 ), S3 S3 SL 3 VN " S2 2 ' " ( ) ( R2 jX 2 ), S2 S2 SL 2 VN " S1 2 ' " ( ) ( R1 jX 1 ), S1 S1 SL1 VN
S LDd
S LDb
S LDc
1 2 QBi BiVN 2
Sb S LDb jQB1 jQB 2 Sc S LDc jQB 2 jQB 3 S d S LDd jQB 3
电力系统分析
3.2开式网络的潮流分布
任何一个负荷只能从一个方向得到电能的电力网称
电力系统分析
电力系统在运行时,电流或功率在电源的作用下,
通过系统各元件流入负荷,分布于电力网各处,称为 潮流分布。
潮流计算内容主要包括:
•电流和功率分布计算; •功率损耗计算; •电压损耗和节点电压计算。
电力系统分析
潮流计算的主要目的是:
(1)为电力系统规划提供接线方式、电气设备选择和导 线截面选择的依据; (2)提供电力系统运行方式、制定检修计划和确定电压 调整措施的依据;
电力系统分析
简单闭式网络功率分布的计算步骤: 首先忽略网络阻抗和导纳中的功率损耗,计算 功率分布,称为初步功率分布。目的是确定潮流 方向,找出功率分点; 然后在功率分点将闭式网络拆开,变换成两个开 式网络,根据初步功率分布计算出网络各段阻抗 和导纳中的功率损耗,最后将功率损耗叠加到初 步功率分布上,得到最终功率分布。
实际计算时,变压器的 励磁损耗可直接根据空 载试验数据确定
I0 % ~ S0 P0 j SN 100

第3章 电力系统的潮流计算


= =
P′2 + Q′2 V12
P′2 + Q′2 V12
R X
(2) 并联支路功率损耗 ΔSB
ΔS B1
=

jΔQB1
=

j
1 2
BV12
ΔS B2
=
− jΔQB2
=
−j
1 2
BV22
2
(3) 功率关系 S ′′ = S2 + ΔS B2 S ′ = S ′′ + ΔSL S1 = S ′ + ΔS B1 = S2 + ΔS B1 + ΔS B2 + ΔS L


110kV


3地区变电所
10kV


4终端变电所
110kV ● ● ● 220kV
2中间变电所


35kV

水电厂
电气接线图
火电厂
3.1 网络元件的电压降落和功率损耗
3.1.1 网络元件的电压降落 1. 电压降落的概念:
元件首末两端电压的相量差。
由图可知电压降落: dV = V1 − V2 = (R + jX )I
开就得到两个实数方程,n个节点共2 n个方程每个方
程包含4个变量: Pi、 Qi、Vi、δi,全系统共4 n个变
量。
4
所以,每个节点必须给定2个变量,留下两个待求 变量,根据电力系统的实际运行条件,按给定变量的 不同,一般将节点分为以下三类:
PQ节点、PV节点、平衡节点 (1)PQ节点
这类节点的P和Q给定,节点电压(Vδ)是待求 量一般包括:负荷节点、联络节点、固定出力的发 电机(厂)节点,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 P22 Q2 S Z Z 2 U2
线路的潮流计算实例-结果2
U1 (U 2 U ) 2 U 2 (U 2 X 2 P2X Q2 R 2 P2R Q2 ) ( ) U2 U2
1 1 tan 1
U
U 2 U
1
R X P2X Q2 PR Q2 U2 2 U2 U2



理论计算公式 常用的基本概念 基于年负荷损耗率的工程计算法 基于年最大负荷损耗时间的工程计算法 两个经济性指标:输电效率与线损率
3.1.1.2 电力线路的电能损耗计算
——理论计算公式
Page-76
3.1.1.3 电力线路的电能损耗计算 ——常用的基本概念*
Page-77
3.1.1.3 电力线路的电能损耗计算
第三章 简单电力网络的计算和分析
3.1 电力线路和变压器运行状况的计算 ——思考题与公式要求


基本概念:电压降落、电压损耗、电压偏移、电压 调整、最大负荷利用小时数、年负荷率、最大负荷 损耗时间、年负荷损耗率、线路输电效率。 高压输电线路分别在空载、带纯感性负载和纯有功 负载时,首末端电压的幅值与相位的关系是什么? 什么是变压器的铜耗与铁耗? 必须掌握的公式: 对地导纳的功率损耗公式,串联阻抗的功率损耗与 电压降落(横分量和纵分量)计算公式。
电力线路的电压计算
——电压质量指标* Page-75
电力线路的电压计算
——已知末端功率和电压计算首端电压
dU 3IZ
共轭
.
电压的复数计算, 复杂
电力线路的电压计算
——参考末端电压的电压降落横分量与纵分量
电压的实数计算
Page-74 (3-4)
电力线路的电压计算
——已知首端功率和电压计算末端电压
3.1.2 电力线路运行状况的分析 ——空载线路的首末端电压
U1
R jX
U2
S2
I2
Байду номын сангаас

U I Y 3
物理意义
I 2
导纳的共轭
电力线路的功率计算
——串联阻抗支路的功率损耗计算公式选择
Yeq
SZ 3U1 I
* * *
or
3U 2 I
or
3dU12 I
正确?
电力线路的功率计算
——已知末端功率与电压求串联阻抗的功率损耗
电力线路的功率计算
——已知首端功率与电压求串联阻抗的功率损耗
电力线路的电压计算
——参考首端电压的电压降落横分量与纵分量
Page-74 (3-4)
电力线路的电压计算
——参考首端或末端电压的电压降落相量图
滞后角
超前角
负号
U1 U2 dU U1(2 )
U2 U1 dU U2(1 )
相角差中为什么有正负号
线路的潮流计算实例


线路的潮流计算例题 线路的潮流计算实例-结果1 线路的潮流计算实例-结果2
线路的潮流计算例题
S1 P 1 jQ1
Z=R + jX
S 2 P2 jQ2
+
U1
Y 2 Y 2
+
U2

已知:
计算:
U2 11 , S2 1 j1, Y / 2 j1, Z 1 j1
3.1 电力线路和变压器运行状况的计算

3.1.1 电力线路运行状况的计算 3.1.1.1 电力线路上的电压降落和功率损耗 (1)电力线路的等值电路、功率和电压 (2)电力线路的功率计算 (3)电力线路的电压计算 线路的潮流计算实例 3.1.1.2 电力线路上的电能损耗 3.1.2 电力线路运行状况的分析 3.1.3 变压器运行状况的计算
对地导纳支路的功率损耗计算公式(3-1) 串联阻抗支路的功率损耗计算公式选择(3-2) 已知末端功率与电压求串联阻抗的功率损耗 已知首端功率与电压求串联阻抗的功率损耗 电力线路的功率分布计算
电力线路的功率计算
——对地导纳支路的功率损耗计算公式
S 3U I
*
S I 3U
电力线路的功率计算
——电力线路的功率分布计算
支路及节 点的功率 平衡原则 支路首端功 率等于末端 功率加功率 损耗 节点的流入 与流出功率 相等
S z
3.1.1.1 电力线路上的电压降落和功率损耗 ——电力线路的电压计算




电压质量指标 已知末端功率和电压计算首端电压 参考末端电压的电压降落横分量与纵分量 已知首端功率和电压计算末端电压 参考首端电压的电压降落横分量与纵分量 参考首端或末端电压的电压降落相量图
2 P22 Q2 S Z Z U 22 SY 1 U12Y * / 2 S1 S2 SY 2 S Z SY 1 2 P22 Q2 P2 jQ2 Z U12Y * / 2 2 U2
SY 1
S z dU
SY 2
3.1.1.2 电力线路的电能损耗Page-76
U1和S1

线路的潮流计算实例-结果1
公式: X P2R Q2 U , U2 R P2X Q2 U , U2
SYi U i2Y * / 2,
解: U 2 U 2 11 U 2
SY 1
S z dU
SY 2
S2 SY 2 S2 U 2 2Y * / 2 1 j1 U 2 2 ( j1) / 2 P2 jQ2 S2

3.1.1.1 电力线路上的电压降落和功率损耗 ——电力线路的等值电路、功率与电压
(1)已知末端电压 和功率求解首 端电压和功率 (2)已知首端电压 和功率求解末 端电压和功率
SY 1
S z dU
SY 2
3.1.1.1 电力线路上的电压降落和功率损耗
——电力线路的功率计算

——基于年负荷损耗率的工程计算法
年负荷率低时k取小值
3.1.1.3 电力线路的电能损耗计算
——基于年最大负荷损耗时间的工程计算法*
3.1.1.3 电力线路的电能损耗计算
——输电效率与线损率
Page-76
或网损率
Page-78
3.1.2 电力线路运行状况的分析

空载线路的首末端电压 Page-78 纯无功负载线路的首末端电压Page-79 纯有功负载线路的首末端电压Page-79
相关文档
最新文档