开关电源同步整流电路设计与应用实例

合集下载

第4章 同步整流(开关电源)

第4章 同步整流(开关电源)

第4章同步整流技术•内容——意义;基本原理;驱动方式——同步整流电路;同步整流技术的应用•目标——电路的结构及工作原理、电路分析及应用4.1 概述•高速超大规模集成电路的尺寸的不断减小,功耗的不断降低,要求供电电压也越来越低。

•在低电压(低于3V)大电流输出DC-DC变换器的整流管,其功耗占变换器全部功耗的50~60%。

•用通态损耗低的功率MOS管-同步整流管代替整流二极管,可提高DC-DC变换器的效率。

•同步整流技术的优点:正向压降很小,阻断电压高,反向电流小等4.2 同步整流技术的基本原理•功率MOS管反接作为整流管使用:源极S相当于二极管的阳极A,漏极D相当于二极管的阴极K。

在门极和源极(GS)间加驱动信号。

•门极电压与漏源极间电压变化同步,因此称为同步整流。

功率MOS管用做同步整流,三个关键参数:1. SR的功耗:损耗因数K:2. SR的体二极管恢复时间trr 3.SR的阻断电压22 SR Frms on in GS P I R C V f =+on inK R C=4.3 同步整流驱动方式•驱动电路性质:电压型驱动、电流型驱动•驱动电压的来源:外驱动(控制驱动)、自驱动1.外驱动同步整流技术•驱动电压:来自外设驱动电路•同步信号:主开关管的驱动信号来控制•优点:控制时序精确,SR效率较高•缺点:驱动电路复杂,有损耗,价格贵,开发周期长2.电压型自驱动同步整流•驱动电压:SR所在回路中的某一电压•要求:波形转换快,时序准确,无死区•优点:简单,实用•缺点:驱动方式随电路结构而不同;受输入电压变化范围的影响;受变压器漏感影响;不能用于并联工作的SR-DC/DC变换器中;对变换器轻载时的工作有影响。

3.电流型自驱动同步整流•驱动电压:SR中的电流通过电流互感器产生•优点:驱动波形无死区,不受输入电压影响,不受电路结构的影响,可用于并联运行的DC-DC变换器。

•缺点:电流检测元件有损耗,能量回馈的电流型自驱动SR方案4.4 同步整流电路1. 全波SR电路2.倍流SR电路4.5 SR-Buck变换器4.6 SR-正激变换器1.有磁复位绕组的SR-正激变换器2.SR-有源钳位正激变换器4.7 SR-反激变换器。

开关电源新技术--同步整流

开关电源新技术--同步整流

第五章开关电源新技术5-1电源PFC技术5-2 同步整流技术同步整流的概念整流电路是DC/DC变换器的重要组成部分,传统的整流器件采用功率二极管。

由于功率二极管的通态压降较高(压降最小的肖特基二极管也有0.55~0.65 V),因此整流损耗较大。

由于集成电路已逐渐采用微功耗设计,供电电压逐渐降低,某些工作站和个人电脑要求有3.3 V甚至低至1.8 V的供电电压[1]。

显然,DC/DC变换器在输出如此低的电压时,整流管的功耗占输出功率的比重将更大,致使变换器效率更低。

另一方面,仪器设备的小型化设计要求尽量缩小其电源的体积,但耗散功率大恰成为电源小型化、薄型化的障碍。

80年代初,高频功率MOSFET刚开始得到发展,NEC公司的S.IKEDA等人就提出了一种新的整流管[2],即采用功率MOSFET代替功率二极管作为整流元件,从而实现了输出整流管通态压降小、耗散功率低,效率高的DC/DC变换器。

功率MOSFET是一种电压型控制器件,它作为整流元件时,要求控制电压与待整流电压的相位保持同步才能完成整流功能,故称为同步整流电路。

为满足更高频率、更大容量的同步整流电路的需要,人们不断地探索并提出更新的功率MOSFET结构[3]。

5-2-1 自控制同步整流电路拓扑分析图1为倍流同步整流有源箝位DC/DC变换器的主电路拓扑图。

变换器采用有源箝位电路,Vin 为直流输入电压,S1为主开关,S2为辅助开关,S 3和S4为同步整流管(S1~S4均为N型MOS管),T为隔离变压器,S2和C组成有源箝位网络。

D1~D4代表S1~S4的体二极管,C1~C4代表S1~S4的等效结电容,Llk为T的漏感,Lm 为T的励磁电感,T1为理想变压器,变比为N∶1。

工作时S1和S 2轮流导通,当S1关断时,S2导通,箝位电容C被并联到T的原边,为漏感电流提供一个低阻抗的无损耗的通路,从而在每个开关周期中以最小的损耗来吸收和回放电能,同时变压器T铁心磁通又可自动复位。

同步整流电路

同步整流电路

随着现代电子技术向高速度高频率发展的趋势,电源模块的发展趋势必然是朝着更低电压、更大电流的方向发展,电源整流器的开关损耗及导通压降损耗也就成为电源功率损耗的重要因素。

而在传统的次级整流电路中,肖特基二极管是低电压、大电流应用的首选。

其导通压降基本上都大于0.4V,当电源模块的输出电压随着现代电子技术发展继续降低时,电源模块的效率就低得惊人了,例如在输出电压为3.3V时效率降为80%,1.5V输出时效率不到70%,这时再采用肖特基二极管整流方式就变得不太可能了。

为了提高效率降低损耗,采用同步整流技术已成为低电压、大电流电源模块的一种必然手段。

同步整流技术大体上可以分为自驱动(selfdriven)和他驱动(controldriven)两种方式。

本文介绍了一种具有预测时间和超低导通电阻(低至2.8mΩ/25℃)的他驱动同步整流技术,既达到了同步整流的目的,降低了开关损耗和导通损耗,又解决了交叉导通问题,使同步整流的效率高达95%,从而使整个电源的效率也高达90%以上。

1SRM4010同步整流模块功能简介SRM4010是一种高效率他激式同步整流模块,它直接和变压器的次级相连,可提供40A的输出电流,输出电压范围在1∽5V之间。

它能够在200∽400kHz 工作频率范围内调整,且整流效率高达95%。

如果需要更大的电流,还可以直接并联使用,使设计变得非常简单。

SRM4010模块是一种9脚表面封装器件,模块被封装在一个高强电流接口装置包里,感应系数极低,接线端功能强大,具有大电流低噪声等优异特性。

SRM4010引脚功能及应用方式一览表引脚号引脚名称引脚功能应用方式1CTCHCatch功率MOSFET漏极接滤波电感和变压器次级正端2FWDForward功率MOSFET漏极接变压器次级负端3SGND外控信号参考地外围控制电路公共地4REGin内部线性调整器输入可以外接辅助绕组或悬空5REGout5V基准输出可为次级反馈控制电路提供电压6PGND同步整流MOSFET功率地Catch和Forward功率MOSFET公共地7CDLY轻载复位电容端设置变压器轻载时的复位时间8CPDT同步整流预测时间电容端Catch同步整流管设置预置时间9SPD振铃鉴别端区分CatchMOSFET导通和振铃2SRM4010同步整流模块的应用实例及其工作原理分析SRM4010模块仅和C2、C3两只电容就完成了同步整流功能,其工作原理如下:在初级开关管(V3)导通期间,模块中的CatchMOSFET截止,电流从变压器次级正端流经输出电感、输出电容和负载,在经ForwardMOSFET回到变压器次级负端;当初级开关管截止时,变压器中电流回零,模块的1脚因输出电感的电流因素也下降到0V,在这种情况下,电流流经CatchMOSFET的体二极管,随即Catc hMOSFET导通以减小电压降,体二极管的导通时间要特别短。

【电源电路及线路方案】同步整流应用说明

【电源电路及线路方案】同步整流应用说明

同步整流应用说明如第一图A所示,其系一般返驰式交换电源供应器之电路装置。

其中Q1为金氧半场效晶体管具有小信号控制其on/off作用之开关组件。

而D1于导通时会产生0.4V-1.5V不等之电压降(此为二极管之特性),因此当输出电压(Vo)低时常发生效率低,二极管(D1)消耗功率过大需大面积之散热片等情事。

例如当Vo为5Vdc,D1之压降为0.4V,D1反向耐压为30Vdc,电源供5应器之输出为50w(5v/10A),因此于D1上的消耗功率为0.4V*10A=4W,不计其它组件之消耗,此电源供应器之效率(Efficiency)为50w/(50w+4w)=92.6%。

如第一图B所示,其系目前返驰式交换电源供应器之电路装置。

为了提高返驰式电源供应器之效率,若于D1位置改以Q2金氧半场效晶体管代替,以今日科技水准MOSFET可轻易做到10毫欧姆左右之RDS (on),如SI4410,可将消耗功率降低甚多,克服上述困扰。

以上例做为比较,Vo10为5Vdc,Q2以SI4410(RDS =11毫欧姆,VDS=30V)取代,输出功率为50W(5V/10A)则Q2之压降为10A*11毫欧姆=110mVdc,Q2之消耗功率为110mV*10A=1100mW=1.1W不计其它组件之消耗功率之效率为50W/(50W+1.1W)=97.8%较使用二极管之效率提升5.2%,此为目前工程人员追求之目标,惟,以Q2取代D1的过程中仍有其技术瓶颈存在。

如第二图所示,其系习知之返驰变压器各点之电压波形及电流波形。

Q2必须很精准的控制15在t1周期导通,同时在t2,t3来临前截止,通常t1较易控制,吾人可利用VN2为触发信号,延迟少许时间(DELAY TIME)后令Q2导通即可,但返驰变压器t2,t3之周期则随负载(IO)之变化而改变,相当难以预测,且t3产生前需将Q2截止,否则,Co将经由Q2对次极线圈N2放电,而于Q1再次导通时产生一逆向电流而可能致使Q1烧毁。

平板电视同步整流电路分析(一)

平板电视同步整流电路分析(一)

平板电视同步整流电路的原理及电路分析(一)郝铭一、什么是同步整流?在开关电源电路中,同步整流就采用导通电阻极低的专用功率MOSFET,来取代整流二极管以降低整流损耗的一项新技术,这项技术的主要内容是:如何解决单独本身并不具有像整流二极管一样的单向导电性的MOSFET,来完成整流的工作。

图1所示;是传统的开关电源整流电路,图1中Q是开关管;T是开关变压器;D是整流二极管;C是滤波电容。

图1 图2图2所示;是用MOS管Q2代替整流二极管D的开关电源整流电路。

从图2中可以看到;原图1中的整流二极管D被MOS管Q2所取代。

在图1中,二极管D是具有单向导电性,可以独立的完成开关变压器次级L2两端的交变电势的整流工作。

而图2中的Q2是一个MOS管,是一个受栅极电压控制的双向导通的开关元件,独自本身并不具有单向导电性,在图2中用Q2(MOSFET)取代整流二极管作为单向导电的整流工作,就必须在Q2的栅极施加一个和被整流电压振幅同步变化的同步激励信号,就能起到和整流二极管相同的整流效果,如图3所示。

图3二、同步整流电路的工作原理及过程:在T1时间,图4所示:L2上端为“正”,Q2的激励电路给Q2提供一个控制Q2导通的高电平,Q2导通输出为“正”对电容C充电,并输出对负载供电。

在T2时间,图5所示:L2上端为“负”,Q2的激励电路给Q2提供一个控制Q2截止的低电平,Q2截止输出为“零”,这时由电容C在T1时间所充的电能维持对负载的供电。

可以看出;用MOSFET取代普通具有单向导电性能整流二极管的整流电路,其电路的作用、效果完全一样,但是在电路上必须要增加一个控制Q2 (MOSFET)“导通/关闭”和被整流电压相位同步的激励电路,所以采用MOSFET取代普通二极管的整流电路称为同步整流电路。

图4 图5三、为什么要采用同步整流电路1、开关电源采用普通整流二极管在大电流负载时的弊端大家都知道,由于数字技术大规模的应用与各个领域,特别大规模数字集成电路的普片应用,这些电路工作电源的提供也和过去的模拟电路发生了巨大的变化,过去的半导体模拟电路、模拟集成电路对信号的处理要考虑到非线性失真的问题,所以VCC供电一般都是8V—12V左右,电流都不大,最多1A左右。

同步buck整流电路

同步buck整流电路

同步buck整流电路同步buck整流电路是一种常见的电力转换电路,用于将输入电源的直流电压转换为较低的输出电压。

它具有高效率、稳定性好、体积小等优点,在各种电子设备中得到广泛应用。

同步buck整流电路由开关管、同步整流二极管、电感和电容等元件组成。

其工作原理是通过周期性地打开和关闭开关管来控制电源输出的电压。

当开关管关闭时,电感中储存的能量会导致电感两端电压升高,此时同步整流二极管导通,将电感中的能量传递给负载。

当开关管打开时,电感中的能量会导致电感两端电压降低,此时同步整流二极管关闭,避免反向电流对电源造成损害。

同步buck整流电路的整流效率高于传统的非同步整流电路,主要原因是同步整流二极管能够减小开关管的导通压降。

在传统的非同步整流电路中,二极管的导通会引起较大的正向压降,导致能量的损失。

而同步整流二极管具有较低的导通压降,减小了能量的损失,提高了整流效率。

同步buck整流电路还可以实现输出电压的稳定调节。

通过调整开关管的导通时间比例,可以控制输出电压的大小。

当需要降低输出电压时,增加开关管的导通时间比例;当需要提高输出电压时,减小开关管的导通时间比例。

这种调节方式可以在较宽的范围内实现输出电压的精确控制。

同步buck整流电路在实际应用中还需要考虑一些问题。

首先是开关管和同步整流二极管的选择。

开关管需要具有较低的导通压降和开关损耗,同步整流二极管需要具有较低的反向导通压降和导通时的导通压降。

其次是电感和电容的选择。

电感需要具有较低的内阻和较高的饱和电流,电容需要具有较低的ESR值。

这些元件的选择对于整流电路的性能和稳定性具有重要影响。

在设计和布局同步buck整流电路时,还需要考虑电磁干扰和散热等问题。

由于开关管的高频开关动作会产生较大的电磁干扰,因此需要采取一些措施来减小干扰的影响。

例如,在布局时要合理安排元件的位置,尽量减少回路面积;在设计时要注意选择合适的滤波电容和屏蔽措施。

同时,由于开关管在导通和关断过程中会产生较大的功耗,需要设计合理的散热系统来保证元件的工作温度不超过允许值。

开关电源原理、设计及实例[陈纯锴][电子教案(PPT版本)]第6章

开关电源原理、设计及实例[陈纯锴][电子教案(PPT版本)]第6章

6.1 输出整流管及稳压管
6.1.1二极管的性能参数和计算
(7)关断损耗PiD 随着工作频率的提高,反向恢复时间在周期中占有的比例 亦随之增大,关断损耗亦增大,因而,反向恢复时间在一定程度 上限制了电路工作频率的提高。关断损耗平均值可以由下面公式 近似计算: trr 1
PiD
其中IRM为反向峰值电流,VR为稳态时施加的反向电压,trr 为反向恢复时间,T为周期。 开关电源用开关整流二极管不仅应有短的反向恢复时间和 小的反向恢复电流,而且反向电流的恢复以缓慢为好,即所谓软 恢复,以降低噪声。
6.1 输出整流管及稳压管
6.1.1二极管的性能参数和计算
(5)反向恢复时间 反向恢复时间是衡量高频整流及续流器件性能的重要技 术指标。 图6-3给出二极管从导通 到完全关断的过渡过程中 电流iD、电压VD变化曲线。 其中t1≤t≤t3为二极管的反 向恢复过程。图中,IF为 正向电流,IRm为最大反 向恢复电流,Irr为反向恢 复电流。
6.1 输出整流管及稳压管
2.超快恢复二极管 超快恢复二极管(Ultra-Fast Recovery Diode,缩写为 UFRD)则是在快恢复二极管基础上发展而成的, 其反向恢复电 荷进一步减小,反向恢复时间更短,trr值可低至几十ns。UFRD 的优点是正向导通损耗小,结电容小,运行温度可较高,允许的 结温在175℃左右。UFRD一般用于开关频率在50kHz以上的整 流模块的输出整流。 用在开关电源中输出整流的快速及超快速恢复整流二极管, 是否需要加装散热器,要根据电路的最大输出功率来决定。 型 号为1N6620-1N663l的高电压超快恢复二极管(PIN≈l000v)trr为 35或50ns,并且在高温下反向电流小、正向恢复电压低,适用 于高电压输出(要求PIV为600v)的开关变换器。型号为1N58021N5816,1N6304-1N6306的UFRD,其PIV≤400V,可用于24V 或48V输出(要求二极管的反向额定电压分别为150V和400V)的 开关变换器。

开关电源中同步整流

开关电源中同步整流

全橋整流電路 全桥整流比其它三种整流方式多用两个整流管,使导通损耗大大增加, 全桥整流比其它三种整流方式多用两个整流管,使导通损耗大大增加,因 而不太适合用于低压/大电流输出场合 大电流输出场合。 而不太适合用于低压 大电流输出场合 不作介紹
P&C SBG Peripherals SBU
MOSFET半波整流(SR)原理波形
P&C SBG Peripherals SBU
两电感磁芯集成示意
P&C SBG Peripherals SBU
磁通脉动互消作用示意
三个分立磁性元件的集成
P&C SBG Peripherals SBU
同步整流MOSFET驱动方式 驱动方式 同步整流 驱动
同步整流驱动方式主要分自驱动型和外驱动型两类,而自驱动型又 分为电压型和电流型两种。 电压型自驱动同步整流电路简单,驱动信号多直接取自主变压器,其 缺點是: 門極驅動電壓Vg未必是常數,它與占空比幾輸入電壓有關.黨占 空比幾輸入電壓變化範圍太大時, Vg太大,或太小. 电流型自驱动同步整流电路较复杂,但驱动同步性好(说俗点:该通 肯定通;该关马上关),除纯直流场合没有优势外,只要该用低压整流 管的场合,都可以直接使用。 其中外驱动型是以外部驱动信号(如驱动开关管的PWM波;專用IC,经 驱动变压器产生)来驱动MOS管,做同步整流管驱动信號;其缺點是:需要 有控制檢測,定時邏輯,同步變換器以及高速驅動電路等,比較複雜,價格貴, 開發週期長等,一定程度上限制了外驅動同步整流方式的廣泛應用.
P&C SBG Peripherals SBU
电感电流纹波互消作用示意
P&C SBG Peripherals SBU
特别需要指出的是,倍流整流拓扑这一电路形式特别适合于应用磁集 成技术。一般可采用两种集成思路:两只电感集成在一只磁芯上,以 及两只电感和变压器集成在一只磁芯上。在倍流整流拓扑中,虽然由 电感电流交错合成后的电流纹波较小,但分别流过分立电感L1、L2 上的电流纹波却较大,因此在采用分立电感元件时,对应每只电感的 磁通脉动量较大,引起较大的磁芯损耗,影响整机效率;把电感L1、 L2集成在一只磁芯上(如EE或EI型),电感绕组分别绕制在两只外 腿上,对应的磁通在中心柱上交叠,可以实现磁通脉动量的互消作用, 从而大大减小中心柱的磁芯损耗和磁芯体积。对应的示意图如图9所 示 更进一步,可把三个分立磁性元件集成在一只磁芯上[10],如图10所 示,同时实现了磁芯和绕组的集成,从而大大减小了磁性元件所占的 总体积,简化了布局及封装设计,与半波、全波整流相比,具有显著 的优越性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Q1 Gate Q2 Gate
IP
ID
ISR1
VSR2
2*Vo
APPLICATION NOTE
Im ISR2
SR On-time
Figure 2. 采用SR的LLC谐振变换器的原理图
2.0 Q=0.25
1.8
fo = 2π
1 Lr Cr
Region II (Below Resonance)
Region I (Above Resonance)
RP管脚还具有两个内部阈值,用于管脚开路与 短路保护。采用RP管脚短路保护,可以实现远程通/断 控制,如图13所示。
Figure 9. DETL管脚的应用电路
RP管脚配置
借助RP管脚上的电阻,可以编程死区时间。RP 管脚上电阻取值不同时,死区时间与SR导通时间(tDETL) 之间的关系如图10和图11所示。当tDEAD 小于125ns时, 在保护功能(门极收缩功能)作用下,SR导通时间收缩, Rp 应正确选择,以使在最高开关频率时门极收缩功能不 起作用。
FAN6208测量SR导通时间(tDETL),在此期间, DETL电压保持低于2V,采用该信息确定下一开关周期 中SR门极的关断时刻,如图7所示。通过将前一开关周 期中被测SR导通时间减去死区时间(tDEAD),可以得到关 断时刻。
APPLICATION NOTE
Figure 6. FAN6208的应用电路
1.6 Q=0.50
1.4
1.2 Q=0.25
1.0 Q=1.0
0.8
Q = Lr / Cr
Rac
0.6
40
50
60
70
80
90 100 110 120 130 140
Frequency (kHz)
Figure 3. LLC谐振变换器的典型增益曲线
SR1 Gate Figure 4. 欠谐振工作时的基本波形
在LLC谐振变换器中,整流二极管被典型地采 用来从变压器次级绕组获得直流输出电压。在LLC谐振 变换器中,二极管整流器的导通损耗占整个功耗的比重 相当大,尤其当输出电压低时更是如此。整流器的导通 损耗与它的正向压降和导通电流的乘积成正比。对于同 步 整 流 (SR) , 由 于 采 用 具 有 较 低 导 通 电 阻 (RDSON) 的 MOSFET取代二极管,同步整流的正向压降远低于二极 管整流器的正向压降,因此整流器的导通损耗大大降 低。
1. RP 管脚具有一个内部恒流源(41.5µA),因此该
管脚电压取决于 Rp 电阻。根据 Rp 管脚电压不同,tDETL
© 2010 Fairchild Semiconductor Corporation
Rev. 1.0.1 • 4/27/11
4
当检测到前一个开关周期中的死区时间不足时. 在SR门极关断后,在检测窗口的125ns内,如果
主要系统参数清单如表1所示,材料单 (BOM)总结如表2所示。
采用了FAN6982的两级PFC输出电压功能,其 中典型的PFC输出电压为390V。低电源电压和轻载条件 下,PFC输出电压减少到360V,可以提升PFC电路的效 率。对于PFC电路,典型的开关频率(fs)为65kHz。
APPLICATION NOTE
Figure 7. SR导通时间的确定
© 2010 Fairchild Semiconductor Corporation Rev. 1.0.1 • 4/27/11
Figure 8. SR导通的时序图
DETL 管脚配置
DETL管脚的允许电压为-0.3V~7V。鉴于SR漏极-源极 电压的最高值为输出电压的2倍,为了防止高压,DETL 管脚需要一只二极管 (DDETL)。DDETL一般选择二极管 1N4148 。 由 于 DETL 管 脚 的 内 部 电 流 源 为 50µA , 确 定 RDETL时,应留足裕量,确保当SR导通时DETL电压低于 低检测阈值(2V)。如果SR电流很小,鉴于SR的正向压 降可以低至零,则DETL电阻应满足:
Figure 16. 反馈检测引起的门极收缩
3. 当DETL电压在零附近振荡时。如图17所示,在轻 载条件下,在初级开关状态切换后,SR的漏极电压 在零附近振荡。在DETL电压跌落至零之后的350ns 之内,DETL电压上升高于2V,并且保持时间高于 150ns , 则 门 极 收 缩 1.2µs (tSHRINK-RNG) , 如 图 17 所 示。
Figure 12.RP管脚的工作原理
Figure 10. 不同 RP 时tDEAD 相对 tDETL 的关系(低开关频率)
Figure 13.用于远程通/断的RP管脚应用电路
门极收缩功能
Figure 11. 不同 RP 时tDEAD 相对 tDETL 的关系(高开关频率)
在正常操作中,关断时刻决定于上一开关周期

AN-6208
FAN6208在LLC谐振变换器的次级同步整流(SR)中的应用
引言
近来,LLC谐振变换器引起了更多的关注,这 是因为这种变换器具有超越传统串联谐振变换器和并联 谐振变换器的优势:宽负载范围内频率变化范围窄、输 入电压可变、整个负载范围内零电压切换(ZVS)。
中被测SR导通时间与死区时间(tDEAD)的差值,如图7所 示。当变换器处于稳态和开关频率变化也不大时,这样
做可以保证SR MOSFET 具有正确的驱动时序,。但 是,当开关频率快速增加以及当初级MOSFET的开关转 换发生在SR发出关断命令之前时,这种控制方法会引起 SR MOSFET的直通。为了防止直通问题,FAN6208设 计了门极收缩功能。门极收缩发生具有以下三种条件:
图3 中给出了半桥LLC谐振变换器的典型增益曲 线。为了实现初级开关的零电压切换(ZVS),必须采 用具有感性阻抗特性的增益曲线,在该区间中随着频率 上升,增益下降。谐振网络的谐振频率决定于Lr 与 Cr之 间的谐振。当开关频率低于谐振频率时(即欠谐振), 在初级开关关断之前,次级电流(二极管电流)反射的 半个谐振完成,如图4所示。当开关频率高于谐振频率 时(即过谐振),在次级电流(二极管电流)反射的半 个谐振完成之前,初级开关关断,如图5所示。
本使用说明书描述了采用FAN6208实现SR电路 的设计过程,也提供有印刷电路板(PCB)布局指南和 带有实验结果的设计范例。图1中给出了FAN6208的典 型应用电路。
Figure 1. 典型应用
© 2010 Fairchild Semiconductor Corporation Rev. 1.0.1 • 4/27/11
RDETL ⋅
<
(2 −VFD 50μ A
)
(1)
式中,VFD 指DETL二极管的正向压降。
为了能够实现DETL管脚上正确的低压检测,一般不建 议RDETL 大于20kΩ。
当SR两端出现最大压降时,确定RDETL时应使DETL电压 高于-0.3V,例如:
RDETL
>
I
max SR
RDS .ON
− VFD
FAN6208是一款专用于隔离型LLC或LC谐振变 换器的同步整流控制器,它可以同时驱动两只独立的SR MOSFET来仿效整流二极管的性能。通过监测每只SR漏 极-源极之间的电压,FAN6208能够测量每个开关周期 中 SR 的 导 通 时 间 , 并 能 够 确 定 SR 门 极 驱 动 的 最 优 时 机。FAN6208还能根据光耦中二极管电流的变化,在负 载瞬变时自适应地收缩SR门极驱动信号的持续时间,防 止直通发生。为了提高轻载下的效率,绿色模式禁用SR 驱动信号,最大限度地降低轻载条件下门极驱动功耗。
Figure 15. FD管脚的应用电路
Figure 17.DETL电压振荡引起的门极收缩
© 2010 Fairchild Semiconductor Corporation
Rev. 1.0.1 • 4/27/11
5

AN-6208
印刷电路板布局
在图18中,功率敷线标记为粗线。良好的PCB 布局可以改善功率系统的效率和可靠性,并最大限度地 抑制EMI。

AN-6208
采用SR的LLC谐振变换器
图2 给出了简化后半桥谐振变换器的原理图, 图中Lm 指有分流作用的励磁电感,Lr 指串联谐振电 感,Cr 指谐振电容。由于励续流与功率传 输无关。初级电流 (Ip) 为励磁电流与次级电流反射到初 级的电流之和。
50μ A
− 0.3
(2)
3
AN-6208
式 中 , ISRmax 指 SR 的 最 大 电 流 , RDS.ON 指 高 温 时 SR MOSFET的最大导通电阻。
APPLICATION NOTE
的绿色模式阈值可按照图 12 确定。当 RRP 小于 36kΩ 时 , FAN6208 工 作 在 低 频 模 式 , 如 果 tDETL 小 于 3.75µs,则绿色模式被启用。当 RRP 大于 36kΩ 时,器件 工作在高频模式,如果 tDETL 小于 1.90µs,则绿色模式被 启用。

AN-6208
DETL转变为高,则下一个开关周期中的门极驱 动信号将缩短tSHRINK-DT,大约1.25µs,目的是增 加死区时间,如图14所示。
APPLICATION NOTE
Figure 14. 死区时间不足引起的门极收缩
2. 当反馈信息变化很快时. 通过测量与光耦二极管串联 电阻的压降,FAN6208可以监控流过光耦二极管的 电流,如图15所示。如果流过光耦二极管的反馈电 流增加并超出前一开关周期中反馈电流的20%,则 SR门极信号收缩tSHRINK-FD ,大约为1.4µs,此时tDSHRINK-FD 大约为90µs,如图16所示。
指南 对于反馈检测,FD管脚应该连接到光电二极管的阳
极。通过一只电阻与FD 管脚相连可以改善系统的 浪涌抗扰度。确保敷线1远离任何具有脉冲电流的功 率敷线。
相关文档
最新文档