鉴频器与鉴相器共20页

合集下载

鉴相器原理与分类

鉴相器原理与分类

鉴相器原理及分类更新于2010-05-13 03:52:41 文章出处:与非网鉴相器取样鉴频鉴相器-原理特性使输出电压与两个输入信号之间的相位差有确定关系的电路。

表示其间关系的函数称为鉴相特性。

鉴相器是锁相环的基本部件之一,也用于调频和调相信号的解调。

常见的鉴相特性有余弦型、锯齿型与三角型等。

鉴相器特性用ud(t)=kdf【θe(t)】表示。

式中kd为鉴相器的增益系数;θe(t)=θ1(t)-θ2(t),表示两个输入信号之间的相位差。

函数f【·】表示鉴相特性,它反映鉴相器的输出电压ud(t)与相位差的关系。

常见的鉴相特性有余弦型、锯齿型与三角型等。

鉴相器-分类鉴相器可以分为模拟鉴相器和数字鉴相器两种。

二极管平衡鉴相器是一种模拟鉴相器。

两个输入的正弦信号的和与差分别加于检波二极管,检波后的电位差即为鉴相器的输出电压。

其鉴相特性通常为余弦型的。

鉴频鉴相器是一种数字鉴相器。

两个输入信号是脉冲序列,其前沿(或后沿)分别代表各自的相位。

比较这两个脉冲序列的频率和相位即可得到与相位差有关的输出。

这种鉴相器的鉴相特性为锯齿形。

因它兼具鉴频作用,故称鉴频鉴相器二极管平衡鉴相器这是一种模拟鉴相器,原理电路如图1。

二极管D1、D2和C1R1、C2R2构成两个峰值检波器。

两个输入的正弦信号u1(t)=U1sin(ωt+θ1)、u2(t)=U2sin(ωt+θ2)的和与差分别加于检波二极管D1和D2,检波后的电压差即为鉴相器的输出电压ud。

当U2U1时,ud∝U1cos(θ1-θ2)。

在这种情况下,它的鉴相特性是余弦型的(图2a)。

鉴频鉴相器这是一种数字鉴相器。

两个输入信号是脉冲序列,其前沿(或后沿)分别代表各自的相位。

比较这两个脉冲序列的频率和相位即可得到与相位差有关的输出。

图3是一种鉴频鉴相器的框图。

比相器可由触发器构成。

当两个输入信号u1和u2同频同相时,触发器没有输出,充电电流等于零。

当u1脉冲序列超前于u2时,触发器产生一个其宽度与相位差成正比的正脉冲,充电电路被充电,其输出电压为正值,大小与充电脉冲宽度成正比。

第5章第3讲_鉴频器

第5章第3讲_鉴频器
u e 3 K 1 U 1 KU 1 u e 4 K 2 U 2 KU 2 , 其中 K K 2 K 为检波器的传输系数 斜率鉴频器 1
u1
u2
u e 3 , u e 4 分别加到差分对T ,T 的输 5 6
入端,经放大后由T6集电极单端输出
u o A u ( u e 3 u e 4 ) A u K (U 1 U 2 )
而 (t ) k P u (t )
ur (t )
而另一输入信号 u r ( t ) 为 u s ( t ) 的同频正交载波。
即: r ( t ) U r cos( o t u 则相乘器的输出信号
uo (t )

2
)
为:
u o ( t ) ku s ( t ) u r ( t ) kU 1 2
u C
C
o1
2
. U
- - u o2
uo
2
RL - V
D2
C +

E
c
分析C0和L3不能开路也不能短路的原因
斜率鉴频器 1/3/2013 9:01 PM 34
第5章 角度调制与解调
斜率鉴频器
1/3/2013 9:01 PM
35
第5章 角度调制与解调
一 电路结构和基本原理 1.移相网络:互感为M 的初,次级双调谐耦合 回路组成的移相网络。 FM波经移相网络生成 FM-PM波 2.平衡式鉴相器: 上下检波器的输入端高频电压为:
斜率鉴频器
1/3/2013 9:01 PM
18
第5章 角度调制与解调
单元电路_双失谐电路仿真结果
斜率鉴频器
1/3/2013 9:01 PM

鉴频器与鉴频方法

鉴频器与鉴频方法

2)斜率鉴频法 双离谐鉴频器的输出是取两个带通响应之差,即该鉴频器的传输特性或鉴频特性,如图9-33中的实线所示。其中虚线为两回路的谐振曲线。从图看出,它可获得较好的线性响应,失真较小,灵敏度也高于单回路鉴频器。
图9―30 单回路斜率鉴频器
图9―31 双离谐平衡鉴频器
(7―66)
图9―49 移相网络机器相频特性
9.2.4 其它鉴频电路 1.差分峰值斜率鉴频器 差分峰值斜率鉴频器是一种在集成电路中常用的振幅鉴频器。图9―50(a)是一个在电视接收机伴音信号处理电路(如D7176AP ,TA7243P)等集成电路中采用的差分峰值斜率鉴频器。
图9―37 直接脉冲计数式鉴频器
9.2 鉴频电路
9.2.1 叠加型相位鉴频电路 1.互感耦合相位鉴频器 互感耦合相位鉴频器又称福斯特―西利(Foster―Seeley)鉴频器,图9-38是其典型电路。相移网络为耦合回路。
图9―38 互感耦合相位鉴频器
(7―59)
(7―60)
当f=fc时,UD1=UD2, i1=i2,但以相反方向流过负载RL,所以输出电压为零; 当f>fc时,UD1>UD2, i1>i2,输出电压为负; 当f<fc时,UD1<UD2, i1<i2,输出电压为正。
图9―46 比例鉴频器电路及特性
自动频率控制系统中要特别注意。当然,通过改变两个二极管连接的方向或耦合线圈的绕向(同名端),可以使鉴频特性反向。另一方面,输出电压也可由下式导出:
(7―61)
3.自限幅原理 (1)回路的无载Q0值要足够高,以便当检波器输入电阻Ri随输入电压幅度变化时,能引起回路Qe明显的变化。 (2)要保证时常数(R1+R2)C大于寄生调幅干扰的几个周期。比例鉴频器存在着过抑制与阻塞现象。

7.4鉴频器与鉴频方法(精)

7.4鉴频器与鉴频方法(精)

再经过低通滤波器后的输出电压为:
KU1U 2 2Q0 Δf uo sin arctan 2 f0
KU1U 2Q0 f 当 1时 ,u0 f0 f0
可见鉴频器输出与输入信号的频偏成正比。
f
这种电路既可以实现鉴频,也可以实现鉴相。通常情况 下,其中的乘法器采用集成模拟乘法器或(双)平衡调制器实 现。当两输入信号幅度都很大时,由于乘法器内部的限幅作 用,鉴相特性趋近于三角形。
鉴频器的工作原理是先将频率变化的调频波转换成与音频 信号相应的幅度变化的调频-调幅波,再经过幅度检波,检 出音频信号。
2. 鉴频器的主要技术指标
描述鉴频方法的质量好坏的指标主要有:
① 鉴频特性:表示为输出电压uo与瞬时频率f 或频偏Δf 之间 的关系曲线,称为鉴频特性曲线。在线性解调的理想情况 下,此曲线为一直线,但实际往往有弯曲,呈“S”形,简 称“S”曲线。
U2 U1 U ( t ) U2 1 sin t 或 U ( t ) U 1 sin t e 1 e U U1 2
设: 2 1 ,则:
U1 cosc t 1 U 2 cos us us t c 2 2 U1 cosc tcos 1 sinc tsin 1 U 2 cosc tsin 2 sinc tcos 2 U1cos 1 U 2 sin 2 cosc t U1 sin 1 U 2 cos 2 sinc t Ucosc t
4) 回路参数的选择
鉴频特性与耦合因子A有很大关系。因为A=KQ,所以 改变K和Q都会使鉴频特性发生改变。
鉴频特性的一般表达式:
uo Kd Re I 4 2 A 4 2 A

第18讲鉴频方法

第18讲鉴频方法

u FM
ui
Uo
u FM
ui
Uo
0
0
0
t
t
tபைடு நூலகம்
工作 区(线 性区)
(a)
Ui
Ui
0
f
0
t
fc
f0
f (t)
fm
t (b)
图18-9 单失谐回路斜率鉴频器
f01 =fc uFM Ⅰ
f02
++
Ⅱ u1
Uo1
- -
Uo
Ⅲ u2
Uo2


f03
(a)
ωc处于ω1与 ω2的中点
图18-10 双失谐平衡鉴频器
鉴频电路
直接时域微分法
设调制信号为uΩ=f(t),调频波为
t
uFM (t) U cos[ct k f 0 f ( )d ]
对此式直接微分可得
u
uFM (t) dt
U[c
k
f
f
(t)]sin[ct
k
f
t 0
f ( )d ]
鉴频电路
uFM d u 包络检波 uo dt
图18-3 微分鉴频原理


f03 fc f02
f f (t)
(b) t
uFM 0
Uo
t
(a)
弯曲部分互相补偿
Uo1
0 (b)
Uo2
0 (c)
Uo
0
(d)
图18-11 各点波形
t
0 fA
f
t
线性鉴频范围增大
t
Bm
图18-12 双失谐鉴频器 的鉴频特性
鉴频电路
18.3 已调波信号在发送、传输和接收过程中, 信

鉴频器工作原理

鉴频器工作原理

鉴频器工作原理
鉴频器是一种用于测定信号频率的仪器,下面将介绍其工作原理。

鉴频器的工作原理基于振荡原理和电路的共振现象。

鉴频器通常由一个LC振荡电路和一个检波器构成。

LC振荡电路包括一个电感器和一个电容器,当给电路加以直流电源时,电感器和电容器会相互作用,形成一个谐振电路。

此时,当输入信号与谐振频率相等或非常接近时,电路中将会产生较大的交流电流。

然后,检波器将交流电流转换为直流电压进行测量。

检波器通常采用二极管,当交流电流通过二极管时,二极管将只允许电流的一个方向通过,并将其转换为相应的直流电压。

通过测量这个直流电压的大小,我们可以确定输入信号的频率。

鉴频器的精确度和灵敏度取决于振荡电路的谐振频率和检波器的性能。

因此,在设计鉴频器时需要考虑到振荡电路的参数选择以及检波器的特性。

一般来说,使用高质量的电感器和电容器可以提高鉴频器的精确度和灵敏度。

总结来说,鉴频器通过电路的振荡和共振现象,将输入信号转换为交流电流,并通过检波器将其转换为直流电压进行测量,从而确定信号的频率。

无线电通信-8.3-相位鉴频器及比例鉴频器ppt课件

无线电通信-8.3-相位鉴频器及比例鉴频器ppt课件
压。
21
相位鉴频器和比例鉴频器的比较
相位鉴频器:输出比比例鉴频器大一倍,线性更好 比例鉴频器:能提供一个适合自动增益控制的电压
抗干扰好
22
式中, 是Z2的模,其值为
9是Z2的相角,其值为
将Z2的关系式代入上式,得
该式表明,当信号频率高于中心频率时, Z2呈感性, θ>0 , 次级回路电压
超前于初级回路电压 一个小于 的角度

12
③ 当fin<f0时, Z2呈容性, θ<0
Z2呈容性, θ<0即
的相角

超前于
一个大于
13
根据式(8.8.1)、式(8.8.2)和上面的相位关系的分析, 画出图所示的矢量图。
方 单位时间内的数目正比于调频波的瞬时频率;
法 ③第三类鉴频方法:利用移相器与符合门电路配合实现。
实用的鉴频器:
①振幅鉴频器(斜率鉴频器) ②相位鉴频器
③比例鉴频器
④脉冲计数器鉴频等
1
鉴频器的主要技术指标:
鉴频特性曲线 1、鉴频跨导S
中心频率附近,单位频偏引起的输出电压的变化量:
鉴频跨导越大,鉴频特性曲线越陡峭,鉴频能力越强
(8.8.1) (8.8.2)
8
为了使分析简单起见,先作两个合乎实际的假定:
1) 初次级回路的品质因数均较高; 2) 初、次级回路之间的互感耦合比较弱。 这样,在估算初级回路电流时,就不必考虑初级回路 自身的损耗电阻和从次级反射到初级的损耗电阻。
近似得到右图所示等效电路,
(8.8.3)
初级电流在次级回路中感应产生串 联电动势
17
频正 曲极 线性
鉴频负 曲极 线性鉴 Nhomakorabea原因:当频率超过一定范围,超出了输入电路通频带,耦 合回路的频率响应曲线的影响变得显著,导致输出电压大 小也随着频移的加大而下降,最后反而使鉴频器的输出电 压下降。因此, S型鉴频特性曲线的线性区间两边的边界 应对应于耦合回路频率响应曲线通频带的两个半边界点, 即半功率点。

高频电子电路_8.4.3_相位鉴频器

高频电子电路_8.4.3_相位鉴频器

1 )] C 2
L2 (3)当f < fo 时,
1 0 次级回路呈电容性。 C 2 M u1 M u1 (900 ) 所以: u2 j L1 Z 2C 2 L | Z 2 | C 2 1 u2 1 ud 1 2 Z 2 r2 j(L2 ) 其中: C 2 u1 1 | L2 | C 2 arctg 1 r2 u2
oC 2 M u1 M u1 u j 900 则有: 2 L1 0C 2 r2 L1 0C 2 r2
u1
1 u2 2
即有:u2 超前u1 相位差π/2,由矢量图 可得:|Ud1|=|Ud2| 若设检波器的传输系数为Kd1=Kd2=Kd。
则有:uo1 K d 1 | ud 1 | kd U d 1 所以: uo
uo ( t )
us (t ) ud 2 (t )

而 o 利用三角函数公式: o1 o 2 d d1 d2 仿真 ( t ) k u ( t ) u ( t ) U sin[ t ( t )] x x u ( t ) 设输入调相波 s 为: s s o p 1 si n x cos si n 讨论:(1)当 U U r s uss ( t ) ud 1 ur ( t ) U 而同频正交载波信号为: ur ( t ) Ur 2 sin[ o t 2 ] 则: Us 2 Us U : U d 2 U r [1 sin ( t )] s ( t ) 2 同 理 ( t ) U U 1 ( ) 2 sin ( t ) U 1 2 sin ( t ) 利用矢量图可得合成电压振幅 u(dt2) | ) U urs ( t ) u ( t的范围内, d1 r r | | 而当 , | 所以: uo ( t ) U 2 2K drU s si n U U 6 2 12 r r U U 2 U 2 2U 2 (t ) uo ( t ) 2 K d Us sin ( t ) s r sU r si n d1 U ( t ) s ( t ) U r [1 sin2( t )] 所以: sin 2 uoU (t )si n 2 K d U s (t ) ,可实现线性鉴相。 U U U 2 U ( t ) U 2 2 d 2 s r s r r
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如图7.7.2谐振曲线AB或CD段,看成以载频fC为中心的线 性区,当调频信号通过该电路时,对不同的频率,失谐回路阻 抗不同,回路电压振幅就会随调频信号的瞬时频率f而变化。
u
A
C
B
D
fC f0
f
谐振特性曲线
常用的斜率鉴频器有两种——1)单回路斜率鉴频器; 2)双回路斜率鉴频器。
1)单回路斜率鉴频器
2)当调频信号的载频fC受调制信号控制时,频偏Δf按的变化规律 在Δf = 0的两边正、负范围内变动,鉴频器就检出了调频
信号中所包含的频率变化信息,从而还原了原始调制信号
鉴频器的主要性能指标均可从鉴频特性曲线上得出。
1. 鉴频灵敏度——指在调频信号的中心频率fC附近单位频偏所产
2.
生的输出电压的大小,又称为鉴频跨导,
7-7-2 鉴频电路
分类——1)斜率鉴频器(振幅鉴频器); 2)比例鉴频器; 3)正交鉴频器。
1.斜率鉴频器(振幅鉴频器) ——利用幅频特性曲线的线性段进行频率-幅度变换,将调 频波变换为调频-调幅波,再用包络检波器将调制信号 恢复出来。 如果把并谐回路的谐振频率f0选得高于或低于调频信号的 载频时,调频信号工作在并联谐振回路的失谐区.
相位鉴频器框图如下所示
ui 调频波
线性网络 频率-相位
us
相位检波器

调相-调频波
调制信号
ui 调频波
例如,互感耦合叠加型相位鉴频器电路,调频广播接收机中应用
CC
V D1
M
+
u1 -
C
1
L1
+ u2 L3 R1
L2
R2
C2 -
C3 C4
+ uo1
+
-
uo
+
uo2
-
V D2
要求:有前置限幅放大器(未画出),将输入信号限幅去除干 扰信号(干扰会影响解调性能),形成输入信号u1
u u
o1 o2
有关,
故称之为比例鉴频器。
优点:由图(b)可知,双失谐回路鉴频器的鉴频特性在频带宽 度、线性范围、灵敏度等方面都有很大的改进。
2. 相位鉴频器 ——用鉴相方法完成鉴频
调相原理——首先通过移相网络将调频信号转化为调频-调相 信号,使相位的变化与瞬时频率的变化成正比; 再将调频信号和调频-调相信号送入相位检波器 (即鉴相器),检测出两信号的相位差,从而将 调制信号恢复出来。
Tr
VD
+
+
+
C1
u1
L1
u2 R C2
uO
-
-
-
VD、R、C2:组成大信号包络检波器(功能是将调频-调幅
波u2变成调制信号输出)。 讨论:(1)当f>fC时,回路失谐↓→输出电压振幅↑;
(2)当f<fC时,回路失谐↑→输出电压振幅↓; (3)当调频波的瞬时频率随调制信号变化时,使回路输出
电压振幅变化,这时的并联回路L1C1电压u2是一个 调频-调幅波,它的包络变化规律已反映了调制信号
的变化,通过包络检波器的振幅检波便可还原出调
制信号。
缺点:幅频特性的倾斜部分线性幅频特性还是较窄,解调后 失真也较大。
2)双回路斜率鉴频器
VD1
+ u1
C1 L1
+ u21
-
R1
C3
+ uo1
-
+ uo
-
L2 C2
+ u22 R2
-
C4
+ uo2 -
V22
V21
f02 fC f01
f
VD2
(a)
(b)
图(a)中上边L1C1回路的谐振频率f01>fC, 下边L2C2回路的谐振频率f02<fC。
为保证工作的线性范围,可调整f01、f02使(f01-f02)大于输入调 频信号最大频偏Δfm的两倍。
为了使鉴频曲线对称,还应使f01-fC = fC-f02。将上、下两个 单失谐回路鉴频器输出之差作为总输 出,即u0=u01-u02,与输入调频信号 中携带的调制信号呈比例。
荡的频率变化之中,所以鉴频器输出的信号必须与输入调频波的 瞬时频率保持一致,即成线性关系。描述这种变换关系的特性曲 线称为“鉴频特性曲线”,它是鉴频器的输出电压uo与输入调频 信号的频偏Δf(或瞬时频率f)之间的关系曲线,也称为‘S’曲线。 鉴频特性曲线如下图所示。
uo
0
Δf
Δ fmax
1)Δf =f-fC=0时,调频信号的瞬时频率f=调频信号的中心频率 (载频)fC,对应的鉴频输出电压uo=0;
3. 比例鉴频器 互感耦合相位鉴频器不具有自限幅能力,为了抑制寄生调
幅的影响,要求前级中放有限幅器。限幅器要求有较大的输入 信号,这就导致鉴频器前中放、限幅级数的增加,对那些要求 简化线路、缩小体积、降低成本的一般调频广播接收机是不希 望的。
比例鉴频器就是一种类似于互感耦合相位鉴频器,而又有自 动限幅能力的鉴频器,如下图所示电路。
§7-7 鉴频器与鉴相器
学习要点: •了解鉴频特性曲线的含义 •鉴频电路的工作原理 •鉴相器的应用:琐相环
鉴频器与鉴相器
7-7-1 概述 7-7-2 鉴频电路 7-7-3 鉴相电路
退出
——鉴频器主要用于调频接收机和自动频率控制电路; 鉴相器主要用于相位比较电路如相位鉴频器等
7-7-1 概述
鉴频特性曲线—— 调频波(等幅波)所传送的调制信号信息包含在高频振
CC
VD1
A
+
u1 -
C
1
ห้องสมุดไป่ตู้
M + C3 u2 L3
L1
L2
C4
C2 -
+
u_o1 R 1
C
+
_ uo
D
u+_o2 R 2
+ C
-
B
VD2
比例鉴频器的输出电压为
1 uo1
uo=

12E0
uo2uo1 uo2uo1

1 2
E0 1
uo2 uo1
uo2
(其中 Eouo1uo2 )
由上式可见,输出uo与两个检波器负载上的电压比
谐振回路L1C1和L2C2分别调谐在调频信号的中心频率fC上, 当调频信号的频偏不超过谐振回路的通频带时,通过互感耦合回 路的耦合,得到与输入调频信号u1同频但有附加相移的调频-调相 信号u2。调频信号u1通过CC的耦合,加到扼流圈L3上,与经互感 耦合的电压u2线性叠加,其叠加结果产生调频-调相-调幅波,将 此信号送入包络检波器,取出包络,经差动输出,即上、下两个 包络检波器将直流分量抵消,交流成分加倍,从而完成对调频信 号的解调,得到调制信号uo。
3.
其定义为
gD
=
du o df
f 0
要求鉴频器单位频偏所产生的输出电压要大。
2.最大鉴频带宽——指鉴频器近似线性地解调调频信号时所允许 的最大频偏范围。在上面鉴频特性曲线中, 是指uo轴左、右两个峰值之间所对应的频偏 范围,即。此范围应大于输入调频信号最大 频偏的摆动范围2Δfm,即
Bmax 2fmax 2f m
相关文档
最新文档