正态总体的参数检验简讲义单总结

合集下载

数理统计17:正态总体参数假设检验

数理统计17:正态总体参数假设检验

数理统计17:正态总体参数假设检验现在,我们对正态分布的参数假设检验进⾏讨论,这也是本系列的最后⼀部分内容。

由于本系列为我独⾃完成的,缺少审阅,如果有任何错误,欢迎在评论区中指出,谢谢!⽬录Part 1:基本步骤正态总体N (µ,σ2)参数的假设检验不外乎遵循以下的步骤:找到合适的统计量,⽤统计量的取值范围设计拒绝域。

假定原假设为真,考虑这个条件下统计量的分布。

根据统计量的分布,根据检验的⽔平要求设置拒绝域的边界值。

设计检验的核⼼在于假定原假设为真,这是因为检验的⽔平是基于弃真概率定义的,也就是说,要在第三步中写出检验的⽔平,就必须在H 0成⽴的情况下找出⼩概率事件的发⽣条件。

⽐如,对于均值的检验⼀共有三种:1.H 0:µ=µ0↔H 1:µ≠µ0;2.H 0:µ≥µ0↔H 1:µ<µ0;3.H 0:µ≤µ0↔H 1:µ>µ0.每⼀种⼜可以细分为⽅差σ2已知和⽅差σ2未知两种情况,但显然不论⽅差是否已知,最核⼼的统计量都应该是¯X,如果⽅差未知可能还要⽤到⽅差的替代:S 2。

以下,对于这三种问题,拒绝域分别应该是这样的:如果H 0被接受,则¯X 既不应该太⼤,也不应该太⼩,拒绝域的基础形式应该是{¯X >c 1}∪{¯X <c 2}.如果H 0被接受,则¯X 不应该太⼩,⽆论多⼤都可以,拒绝域的基础形式应该是{¯X <c }.如果H 0被接受,则¯X 不应该太⼤,⽆论多⼩都可以,拒绝域的基础形式应该是{¯X>c }.当然,这只是拒绝域的基础形式,实际情况下可能不⽌使⽤¯X,但基本思想应该是这样的。

对于⽅差的检验,则将检验统计量换成了S 2,或者均值已知情况下的离差平⽅和Q 2,步骤也和上⾯的差不多。

单个正态总体参数的假设检验

单个正态总体参数的假设检验

X -0 取统计量 t ~ t (n 1) S/ n
x -0 拒绝域为 t t (n 1) s/ n
由已知可得 x 5.34 , n 5 , s 2 0.631,
5.34 5 0.9570 得 t 0.631 / 5
查表 t0.05 (4) 2.1318 t t0.05 (4)
Hale Waihona Puke x -0 14.2-14 0.375 计算 u / n 3.2/ 36
查表 z z0.05 1.645 u z0.05 所以未落在了拒绝域之内,故接受 H 0 : 14, 即不能认为这批木材的小头直径在14cm以上。
例7 已知某压缩机的冷却用水,其升高温度 X ~ N ( , 2 ),
z
2. σ2未知,检验μ (t 检验法)
右边假设检验 H 0 : 0
H1 : 0 ,拒绝域为

x -0 t t (n 1) s/ n
左边假设检验 H 0 : 0
t (n 1)
H1 : 0 ,拒绝域为

x -0 t t (n 1) s/ n
x
例4 某次统考后随机抽查26份试卷,测得平均成绩:
2 样本方差 x 75.5分, s 162 ,已知该次考试
成绩 X ~ N ( , 2 ) ,试分析该次考试成绩标准差 是否为σ=12分左右?(=0.05) 解: 提出假设 H 0 : 0 12, H1 : 12 取统计量
三、单个正态总体均值的假设检验(单边检验) 1. 已知σ2,检验μ (U 检验法) 右边假设检验 H 0 : 0
H1 : 0 ,拒绝域为

概率论与数理统计72正态总体的均值和方差的假设检验

概率论与数理统计72正态总体的均值和方差的假设检验
0.19, 0.04, 0.08, 0.20, 0.12 假定处理前后含脂率都服从正态分布,且相互独立, 方差相等.问处理前后含脂率的均值有无显著差异
( = 0.05)?
解 以X表示物品在处理前的含脂率,Y表示物品在
处理后的含脂率,且 X ~ N ( μ1,σ12 ),Y ~ N ( μ2,σ22 )
样本(Y1,Y2, ,Yn2 )来自总体Y .
1. 已知方差时两个正态总体均值的检验
σ12,σ22为已知, μ1, μ2未知的检验(U检验法)
1 假设 H0 : 1 2 , H1 : 1 2;
2 取检验统计量为
U (X Y)/
σ12 σ22 n1 n2
~ N (0,1)
(当H0成立时)
3 取显著性水平为 α. P{ U u/2 } ,
~
t(n1 n2
2),
(当H0成立时)
其中 Sw2
( n1
1)S1*n21 (n2 1)S2*n22 n1 n2 2
.
3° 给定显著水平 ( 0< < 1)
P{ | T | t /2(n1 n2 2) } ,
查表可得 tα / 2(n1 n2 2). 拒绝域:
W1 {( x1, x2,, xn1; y1, y2,, yn2 ) :| t | t/2(n1 n2 2)}
X
~
N
(
1
,
2 1
),Y
~
N
(
2
,
2 2
),
为了考察温度对材料断裂强力的影响,在70 C与80 C
下,分别重复作了8次试验,得数据如下:
选择统计量
U X 800 9 40
当H0成立时,U~N(0,1).对于 = 0.05,由正态分布函

正态总体参数的假设检验

正态总体参数的假设检验
n
W1 ( 12 , )
统计量
2
(X
i 1
i
0 )
2 0
2

~ (n)
2
2、单个总体,未知, 的检验
统计量
2
2 (n 1) Sn 1

2 0
2
~ (n 1)
2
2
2 2 和 双侧检验:临界值 1
2 单侧检验:临界值 或 12
a) H 0 : 0 , H1 : 0 ; b) H 0 : 0 , H1 : 0
a), b) 为左单侧检验
x 0 H 0成立 统计量U ~ N (0,1) 0 / n
临界值为 u1 u
拒绝域W1 (, U 1 ) ,接受域 W0 [ U 1 , )
例 7.1.1 某药厂包装硼酸粉,规定每袋净重为 0.5 ( kg ) ,设每袋重量服从正态分布,标准差
0.014 (kg) 。为检验包装机的工作是否正常,随
机抽取 10 袋,称得净重分别为: 0.496 0.510 0.515 0.506 0.518 0.512 0.524 0.497 0.488 0.511 问这台包装机的工作是否正常
解:1)检验假设 H0 : 0; H1 : 0
2)统计量 t x 0 s/ n 3)计算观测值
H 0 成立
~ t (4)
x 45 . 98 , s 1 . 535
| 45 . 98 48 | | t | 2 . 942 1 . 535 / 5
4)与临界值比较 | t | 2 . 942 2 . 7764 t 0 .025 ( 4 ) (统计量的值落在拒绝域内) 结论:拒绝原假设,即认为 48 。

7-2正态总体参数的检验

7-2正态总体参数的检验
第二节 正态总体参数的假设检验
一、单个正态总体均值的检验 二、两个正态总体均值差的检验 三、正态总体方差的检验
同上节) 标准要求长度是32.5毫米 毫米. 例2(同上节 某工厂生产的一种螺钉 标准要求长度是 同上节 某工厂生产的一种螺钉,标准要求长度是 毫米
实际生产的产品,其长度 假定服从正态分布N( σ 未知, 实际生产的产品,其长度X 假定服从正态分布 µ,σ2 ) ,σ2 未知, 现从该厂生产的一批产品中抽取6件 得尺寸数据如下: 现从该厂生产的一批产品中抽取 件, 得尺寸数据如下
(1)与(4); (2)与(5)的拒绝域形式相同 与 的拒绝域形式相同. 与 的拒绝域形式相同
一、单个正态总体均值的检验
是来自N( σ 的样本 的样本, 设x1,…,xn是来自 µ,σ2)的样本 关于µ的三种检验问题是 (µ0是个已知数 是个已知数)
(1) H0 : µ ≤ µ0 vs H1 : µ > µ0 (2) H0 : µ ≥ µ0 vs H1 : µ < µ0 (3) H0 : µ = µ0 vs H1 : µ ≠ µ0
对于检验问题 对于检验问题
(2) H0 : µ ≥ µ0 vs H1 : µ < µ0
x − µ0
仍选用u统计量 u = 选用 统计量 相应的拒绝域的形式为: 相应的拒绝域的形式为
取显著性水平为α 取显著性水平为α,使c满足 P 0 (u ≤ c) = α 满足 µ
由于μ = μ 0时,u ~ N(0,1),故 c = uα,如图 故 , 因此拒绝域为: 因此拒绝域为 或等价地: 或等价地 φ(x)
检 H0 : µ = µ0 vs H1 : µ ≠ µ0 验
x − µ0 s/ n
接受域为: 接受域为

8.2正态总体的参数检验

8.2正态总体的参数检验

x 140.6, y 125.8,
s12 16.93, s22 72.62,
电子科技大学
正态总体参数假设检验
Nov-19
t n(x y) 10 (140.6 125.8) 4.9457
s12 s22
16.93 72.62
查t 分布表得: t0.025(18)= 2.1009
465.13万/mm3,样本标准差为54.976万/mm3;
女性红细胞平均数为422.16万/mm3,样本标准
差为49.536万/mm3.
试检验该地正常成年人的红细胞平均数是否
与性别有关(α=0.01).
电子科技大学
正态总体参数假设检验
Nov-19
解 设X表示正常成年男性的红细胞数, Y表示正常成年女性的红细胞数, 假定X~N(μ1,σ2), Y~N(μ2,σ2)
拒绝域为:
u u
2
见例8.1.1 “包装机工作正常与否的判断”
电子科技大学
正态总体参数假设检验
Nov-19
2) 双样本u 检验法
X
1
,
X
2
,,
X
n1
来自正态总体N
(
1
,

2 1
)
Y1
,
Y2
,,
Yn2
来自正态总体N
(
2
,

2 2
)
已知σ12与σ22,检验假设
H0: μ1= μ2,(或μ1μ2=0) H1:μ1≠μ2
(
1
,

2 1
)
Y1
,
Y2
,,Yn2
来自正态总体N
(
2

正态总体参数假设检验

正态总体参数假设检验
这里 u 值没有落入拒绝域,故不能拒绝原假设,因而可以认为生产之铁水平均含碳量仍为
4.55。
3,由经验知某零件重量 X ~ N (15, 0.052 ) (单位:克),技术革新后,抽出 6 个零件,
测得重量为: 14.7 15.1 14.8 15.0 15.2 14.6
已知方差不变,问平均重量是否仍为 15 克?(取 α=005)
计算得, x = 928, u = 928 − 950 = −6.6 ,此处 u 值落入拒绝域内,故拒绝原假设,可以判 10 3
断这批枪弹的初速有显著降低。
关于本题说明一点:本题中的一对假设 H0 : µ = µ0 vs H1 : µ < µ0 的检验与另一对假设
H0 : µ ≥ µ0 vs H1 : µ < µ0 的检验有完全相同的拒绝域,这是因为二者的拒绝域形式相同,
解:本题归结为对方差已知时检验正态总体均值 µ = 15 的问题,而且这是一个双侧假
设检验问题,检验的拒绝域为{ | u |≥ u1−α / 2 }。由α=0.05,查表知 u0.975 =1.96。使用样本数
据可算得,
x = 14.9 , u = 6(14.9 −15) / 0.05 = −4.90 ,
|≥
2.5706} ,故应
接受原假设。
4
4,化肥厂用自动包装机包装化肥,每包的重量服从正态分布,其平均重量为 100 千克, 标准差为 1.2 千克.某日开工后,为了确定这天包装机工作是否正常,随机抽取 9 袋化肥, 称得重量如下:
99.3 98.7 100.5 101.2 98.3 99.7 99.5 102.1 100.5 设方差稳定不变,问这一天包装机的工作是否正常? (取 α=005)

概率论与数理统计假设检验正态总体参数的假设检验(2)

概率论与数理统计假设检验正态总体参数的假设检验(2)

概率论与数理统计第7章假设检验第3讲正态总体参数的假设检验(2)01 两个正态总体参数的假设检验02单侧检验03 p 值检验法—简介本讲内容*21μμ-2221σσ检验目的本节将讨论两个相互独立的正态总体,211(,)X N μσ222(,)Y N μσ的参数检验问题.设是来自总体X 的简单随机样本;112,,,n X X X 是来自总体Y 的简单随机样本;212,,,n Y Y Y 样本均值.X Y 、为两为两样本方差. 显著性水平为α .2212S S 、(3) μ1 , μ2 未知,检验.2222012112::H H σσσσ=≠,(1)σ12,σ22已知,检验.012112::H H μμμμ=≠,这些假设检验可细分为许多种情形,这里只介绍3种最常见的类型:(2)σ12,σ22未知但σ12 =σ22,检验.012112::H H μμμμ=≠,两个正态总体的参数检验,主要有比较两个均值μ1与μ2的大小,比较两个方差σ12与σ22的大小.根据已知条件的不同,由样本观测值求出统计量的观测值u ,然后作判断.确定拒绝域2{}U u α>选取检验统计量221212~(0,1)X YU N n n σσ-=+U 检验法建立假设012112::.H H μμμμ=≠,借鉴上一章区间估计(1) 已知,检验.12μμ-2212,σσ1212~(2)11w X Y T t n n S n n -=+-+122{(2)}T t n n α>+-(2) 未知但σ12 =σ22,检验.2212,σσ12μμ-T 检验法建立假设012112::.H H μμμμ=≠,由样本观测值求出统计量的观测值t ,然后作判断.确定拒绝域选取检验统计量211222~(1,1)S F F n n S =--2212121{(1,1)(1,1) 或}F F n n F F n n αα-<-->--2222012112::H H σσσσ=≠,(3) μ1 , μ2 未知,检验.2212/σσF 检验法建立假设由样本观测值求出统计量的观测值,然后作判断.确定拒绝域选取检验统计量在某种制造过程中需要比较两种钢板的强度,一种是冷轧钢板,另一种双面镀锌钢板。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档