高二数学选修2-1第一章测试【高考题精华版-附详细解答】

合集下载

最新人教A版高中数学选修2-1测试题全套含答案解析

最新人教A版高中数学选修2-1测试题全套含答案解析
(3)﹁s:∀x∈R,x3+3≠0,假命题.这是由于当x=-时,x3+3=0.
18.(本小题满分12分)指出下列命题中,p是q的什么条件?
(1)p:{x|x>-2或x<3};q:{x|x2-x-6<0};
(2)p:a与b都是奇数;q:a+b是偶数;
(3)p:0<m<;q:方程mx2-2x+3=0有两个同号且不相等的实根.
【解】(1)因为{x|x2-x-6<0}={x|-2<x<3},
所以{x|x>-2或x<3}{x|-2<x<3},
而{x|-2<x<3}⇒{x|x>-2或x<3}.
所以p是q的必要不充分条件.
(2)因为a,b都是奇数⇒a+b为偶数,而a+b为偶数a,b都是奇数,所以p是q的充分不必要条件.
(3)mx2-2x+3=0有两个同号不等实根⇔⇔⇔⇔.
【解析】当x=2且y=-1时,满足方程x+y-1=0,即点P(2,-1)在直线l上.点P′(0,1)在直线l上,但不满足x=2且y=-1,∴“x=2且y=-1”是“点P(x,y)在直线l上”的充分不必要条件.
【答案】A
5.“关于x的不等式f(x)>0有解”等价于()
A.∃x0∈R,使得f(x0)>0成立
【答案】B
3.已知抛物线C1:y=2x2的图象与抛物线C2的图象关于直线y=-x对称,则抛物线C2的准线方程是()
A.x=-B.x=
C.x=D.x=-
【解析】抛物线C1:y=2x2关于直线y=-x对称的C2的表达式为-x=2(-y)2,即y2=-x,其准线方程为x=.
【答案】C
4.已知点F,A分别为双曲线C:-=1(a>0,b>0)的左焦点、右顶点,点B(0,b)满足·=0,则双曲线的离心率为()

选修2-1数学课后习题答案(全)

选修2-1数学课后习题答案(全)

新课程标准数学选修2—1第一章课后习题解答第一章 常用逻辑用语1.1命题及其关系练习(P4)1、略.2、(1)真; (2)假; (3)真; (4)真.3、(1)若一个三角形是等腰三角形,则这个三角形两边上的中线相等. 这是真命题.(2)若一个函数是偶函数,则这个函数的图象关于y 轴对称. 这是真命题.(3)若两个平面垂直于同一个平面,则这两个平面平行. 这是假命题.练习(P6)1、逆命题:若一个整数能被5整除,则这个整数的末位数字是0. 这是假命题. 否命题:若一个整数的末位数字不是0,则这个整数不能被5整除. 这是假命题. 逆否命题:若一个整数不能被5整除,则这个整数的末位数字不是0. 这是真命题.2、逆命题:若一个三角形有两个角相等,则这个三角形有两条边相等. 这是真命题. 否命题:若一个三角形有两条边不相等,这个三角形有两个角也不相等. 这是真命题. 逆否命题:若一个三角形有两个角不相等,则这个三角形有两条边也不相等.这是真命题.3、逆命题:图象关于原点对称的函数是奇函数. 这是真命题.否命题:不是奇函数的函数的图象不关于原点对称. 这是真命题.逆否命题:图象不关于原点对称的函数不是奇函数. 这是真命题.练习(P8)证明:若1a b -=,则22243a b a b -+--()()2()2322310a b a b a b b a b b a b =+-+---=++--=--=所以,原命题的逆否命题是真命题,从而原命题也是真命题.习题1.1 A 组(P8)1、(1)是; (2)是; (3)不是; (4)不是.2、(1)逆命题:若两个整数a 与b 的和a b +是偶数,则,a b 都是偶数. 这是假命题. 否命题:若两个整数,a b 不都是偶数,则a b +不是偶数. 这是假命题.逆否命题:若两个整数a 与b 的和a b +不是偶数,则,a b 不都是偶数. 这是真命题.(2)逆命题:若方程20x x m +-=有实数根,则0m >. 这是假命题.否命题:若0m ≤,则方程20x x m +-=没有实数根. 这是假命题.逆否命题:若方程20x x m +-=没有实数根,则0m ≤. 这是真命题.3、(1)命题可以改写成:若一个点在线段的垂直平分线上,则这个点到线段的两个端点的距离相等.逆命题:若一个点到线段的两个端点的距离相等,则这个点在线段的垂直平分线上.这是真命题.否命题:若一个点到不在线段的垂直平分线上,则这个点到线段的两个端点的距离不相等. 这是真命题.逆否命题:若一个点到线段的两个端点的距离不相等,则这个点不在线段的垂直平分线上. 这是真命题.(2)命题可以改写成:若一个四边形是矩形,则四边形的对角线相等.逆命题:若四边形的对角线相等,则这个四边形是矩形. 这是假命题.否命题:若一个四边形不是矩形,则四边形的对角线不相等. 这是假命题.逆否命题:若四边形的对角线不相等,则这个四边形不是矩形. 这是真命题.4、证明:如果一个三角形的两边所对的角相等,根据等腰三角形的判定定理,这个三角形是等腰三角形,且这两条边是等腰三角形,也就是说这两条边相等. 这就证明了原命题的逆否命题,表明原命题的逆否命题为真命题. 所以,原命题也是真命题.习题1.1 B 组(P8)证明:要证的命题可以改写成“若p ,则q ”的形式:若圆的两条弦不是直径,则它们不能互相平分.此命题的逆否命题是:若圆的两条相交弦互相平分,则这两条相交弦是圆的两条直径. 可以先证明此逆否命题:设,AB CD 是O 的两条互相平分的相交弦,交点是E ,若E 和圆心O 重合,则,AB CD 是经过圆心O 的弦,,AB CD 是两条直径. 若E 和圆心O 不重合,连结,,AO BO CO 和DO ,则OE 是等腰AOB ∆,COD ∆的底边上中线,所以,OE AB ⊥,OE CD ⊥. AB 和CD 都经过点E ,且与OE 垂直,这是不可能的. 所以,E 和O 必然重合. 即AB 和CD 是圆的两条直径.原命题的逆否命题得证,由互为逆否命题的相同真假性,知原命题是真命题.1.2充分条件与必要条件练习(P10)1、(1)⇒; (2)⇒; (3)⇒; (4)⇒.2、(1). 3(1).4、(1)真; (2)真; (3)假; (4)真.练习(P12)1、(1)原命题和它的逆命题都是真命题,p 是q 的充要条件;(2)原命题和它的逆命题都是真命题,p 是q 的充要条件;(3)原命题是假命题,逆命题是真命题,p 是q 的必要条件.2、(1)p 是q 的必要条件; (2)p 是q 的充分条件;(3)p 是q 的充要条件; (4)p 是q 的充要条件.习题1.2 A 组(P12)1、略.2、(1)假; (2)真; (3)真.3、(1)充分条件,或充分不必要条件; (2)充要条件;(3)既不是充分条件,也不是必要条件; (4)充分条件,或充分不必要条件.4、充要条件是222a b r +=.习题1.2 B 组(P13)1、(1)充分条件; (2)必要条件; (3)充要条件.2、证明:(1)充分性:如果222a b c ab ac bc ++=++,那么2220a b c ab ac bc ++---=.所以222()()()0a b a c b c -+-+-=所以,0a b -=,0a c -=,0b c -=.即 a b c ==,所以,ABC ∆是等边三角形.(2)必要性:如果ABC ∆是等边三角形,那么a b c ==所以222()()()0a b a c b c -+-+-=所以2220a b c ab ac bc ++---=所以222a b c ab ac bc ++=++1.3简单的逻辑联结词练习(P18)1、(1)真; (2)假.2、(1)真; (2)假.3、(1)225+≠,真命题; (2)3不是方程290x -=的根,假命题;(3)1≠-,真命题.习题1.3 A 组(P18)1、(1)4{2,3}∈或2{2,3}∈,真命题; (2)4{2,3}∈且2{2,3}∈,假命题;(3)2是偶数或3不是素数,真命题; (4)2是偶数且3不是素数,假命题.2、(1)真命题; (2)真命题; (3)假命题.3、(1不是有理数,真命题; (2)5是15的约数,真命题;(3)23≥,假命题; (4)8715+=,真命题;(5)空集不是任何集合的真子集,真命题.习题1.3 B 组(P18)(1)真命题. 因为p 为真命题,q 为真命题,所以p q ∨为真命题;(2)真命题. 因为p 为真命题,q 为真命题,所以p q ∧为真命题;(3)假命题. 因为p 为假命题,q 为假命题,所以p q ∨为假命题;(4)假命题. 因为p 为假命题,q 为假命题,所以p q ∧为假命题.1.4全称量词与存在量词练习(P23)1、(1)真命题; (2)假命题; (3)假命题.2、(1)真命题; (2)真命题; (3)真命题.练习(P26)1、(1)00,n Z n Q ∃∈∉; (2)存在一个素数,它不是奇数;(3)存在一个指数函数,它不是单调函数.2、(1)所有三角形都不是直角三角形; (2)每个梯形都不是等腰梯形;(3)所有实数的绝对值都是正数.习题1.4 A 组(P26)1、(1)真命题; (2)真命题; (3)真命题; (4)假命题.2、(1)真命题; (2)真命题; (3)真命题.3、(1)32000,x N x x ∃∈≤; (2)存在一个可以被5整除的整数,末位数字不是0;(3)2,10x R x x ∀∈-+>; (4)所有四边形的对角线不互相垂直.习题1.4 B 组(P27)(1)假命题. 存在一条直线,它在y 轴上没有截距;(2)假命题. 存在一个二次函数,它的图象与x 轴不相交;(3)假命题. 每个三角形的内角和不小于180︒;(4)真命题. 每个四边形都有外接圆.第一章 复习参考题A 组(P30)1、原命题可以写为:若一个三角形是等边三角形,则此三角形的三个内角相等. 逆命题:若一个三角形的三个内角相等,则此三角形是等边三角形. 是真命题;否命题:若一个三角形不是等边三角形,则此三角形的三个内角不全相等. 是真命题; 逆否命题:若一个三角形的三个内角不全相等,则此三角形不是等边三角形. 是真命题.2、略.3、(1)假; (2)假; (3)假; (4)假.4、(1)真; (2)真; (3)假; (4)真; (5)真.5、(1)2,0n N n ∀∈>; (2){P P P ∀∈在圆222x y r +=上},(OP r O =为圆心);(3)(,){(,),x y x y x y ∃∈是整数},243x y +=;(4)0{x x x ∃∈是无理数},30{x q q ∈是有理数}.6、(1)32≠,真命题; (2)54≤,假命题; (3)00,0x R x ∃∈≤,真命题;(4)存在一个正方形,它不是平行四边形,假命题.第一章 复习参考题B 组(P31)1、(1)p q ∧; (2)()()p q ⌝∧⌝,或()p q ⌝∨.2、(1)Rt ABC ∀∆,90C ∠=︒,,,A B C ∠∠∠的对边分别是,,a b c ,则222c a b =+;(2)ABC ∀∆,,,A B C ∠∠∠的对边分别是,,a b c ,则sin sin sin a b c A B C==.新课程标准数学选修2—1第二章课后习题解答第二章 圆锥曲线与方程2.1曲线与方程练习(P37)1、是. 容易求出等腰三角形ABC 的边BC 上的中线AO 所在直线的方程是0x =.2、3218,2525a b ==. 3、解:设点,A M 的坐标分别为(,0)t ,(,)x y .(1)当2t ≠时,直线CA 斜率 20222CA k t t -==-- 所以,122CB CA t k k -=-= 由直线的点斜式方程,得直线CB 的方程为 22(2)2t y x --=-. 令0x =,得4y t =-,即点B 的坐标为(0,4)t -. 由于点M 是线段AB 的中点,由中点坐标公式得4,22t t x y -==. 由2t x =得2t x =,代入42t y -=, 得422x y -=,即20x y +-=……① (2)当2t =时,可得点,A B 的坐标分别为(2,0),(0,2)此时点M 的坐标为(1,1),它仍然适合方程①由(1)(2)可知,方程①是点M 的轨迹方程,它表示一条直线.习题2.1 A 组(P37)1、解:点(1,2)A -、(3,10)C 在方程2210x xy y -++=表示的曲线上;点(2,3)B -不在此曲线上2、解:当0c ≠时,轨迹方程为12c x +=;当0c =时,轨迹为整个坐标平面. 3、以两定点所在直线为x 轴,线段AB 垂直平分线为y 轴,建立直角坐标系,得点M 的轨迹方程为224x y +=.4、解法一:设圆22650x y x +-+=的圆心为C ,则点C 的坐标是(3,0).由题意,得CM AB ⊥,则有1CM AB k k =-.所以,13y y x x⨯=--(3,0)x x ≠≠ 化简得2230x y x +-=(3,0)x x ≠≠当3x =时,0y =,点(3,0)适合题意;当0x =时,0y =,点(0,0)不合题意.解方程组 222230650xy x x y x ⎧+-=⎪⎨+-+=⎪⎩, 得5,3x y == 所以,点M 的轨迹方程是2230x y x +-=,533x ≤≤. 解法二:注意到OCM ∆是直角三角形,利用勾股定理,得2222(3)9x y x y ++-+=,即2230x y x +-=. 其他同解法一.习题2.1 B 组(P37)1、解:由题意,设经过点P 的直线l 的方程为1x y a b +=. 因为直线l 经过点(3,4)P ,所以341a b += 因此,430ab a b --=由已知点M 的坐标为(,)a b ,所以点M 的轨迹方程为430xy x y --=.2、解:如图,设动圆圆心M 的坐标为(,)x y . 由于动圆截直线30x y -=和30x y +=所得弦分别为 AB ,CD ,所以,8AB =,4CD =. 过点M 分别 作直线30x y -=和30x y +=的垂线,垂足分别为E, F ,则4AE =,2CF =.ME =,MF =.连接MA ,MC ,因为MA MC =,则有,2222AE ME CF MF +=+所以,22(3)(3)1641010x y x y -++=+,化简得,10xy =. 因此,动圆圆心的轨迹方程是10xy =.2.2椭圆练习(P42)1、14. 提示:根据椭圆的定义,1220PF PF +=,因为16PF =,所以214PF =.2、(1)22116x y +=; (2)22116y x +=; (3)2213616x y +=,或2213616y x +=. 3、解:由已知,5a =,4b =,所以3c ==.(1)1AF B ∆的周长1212AF AF BF BF =+++.由椭圆的定义,得122AF AF a +=,122BF BF a +=.所以,1AF B ∆的周长420a ==.(2)如果AB 不垂直于x 轴,1AF B ∆的周长不变化.这是因为①②两式仍然成立,1AF B ∆的周长20=,这是定值.4、解:设点M 的坐标为(,)x y ,由已知,得直线AM 的斜率 1AM y k x =+(1)x ≠-; 直线BM 的斜率 1BMy k x =-(1)x ≠; 由题意,得2AM BM k k =,所以211y y x x =⨯+-(1,0)x y ≠±≠ 化简,得3x =-(0)y ≠因此,点M 的轨迹是直线3x =-,并去掉点(3,0)-.练习(P48)1、以点2B (或1B )为圆心,以线段2OA (或1OA 为半径画圆,圆与x 轴的两个交点分别为12,F F .点12,F F 就是椭圆的两个焦点.这是因为,在22Rt B OF ∆中,2OB b =,22B F =所以,2OF c =. 同样有1OF c =.2、(1)焦点坐标为(8,0)-,(8,0);(2)焦点坐标为(0,2),(0,2)-.3、(1)2213632x y +=; (2)2212516y x +=. 4、(1)22194x y += (2)22110064x y +=,或22110064y x +=.5、(1)椭圆22936x y +=,椭圆2211612x y +=的离心率是12,12>,所以,椭圆2211612x y +=更圆,椭圆22936x y +=更扁;(2)椭圆22936x y +=的离心率是3,椭圆221610x y +=的离心率是5,因为35>221610x y +=更圆,椭圆22936x y +=更扁.6、(1)8(3,)5; (2)(0,2); (3)4870(,)3737--. 7、7. 习题2.2 A 组(P49)1、解:由点(,)M x y 10=以及椭圆的定义得,点M 的轨迹是以1(0,3)F -,2(0,3)F 为焦点,长轴长为10的椭圆. 它的方程是2212516y x +=. 2、(1)2213632x y +=; (2)221259y x +=; (3)2214940x y +=,或2214940y x +=. 3、(1)不等式22x -≤≤,44y -≤≤表示的区域的公共部分;(2)不等式x -≤,101033y -≤≤表示的区域的公共部分. 图略.4、(1)长轴长28a =,短轴长24b =,离心率e =,焦点坐标分别是(-,,顶点坐标分别为(4,0)-,(4,0),(0,2)-,(0,2);(2)长轴长218a =,短轴长26b =,离心率e =,焦点坐标分别是(0,-,,顶点坐标分别为(0,9)-,(0,9),(3,0)-,(3,0).5、(1)22185x y +=; (2)2219x y +=,或221819y x +=; (3)221259x y +=,或221259y x +=. 6、解:由已知,椭圆的焦距122F F =.因为12PF F ∆的面积等于1,所以,12112P F F y ⨯⨯=,解得1P y =. 代入椭圆的方程,得21154x +=,解得x = 所以,点P的坐标是(1)±,共有4个. 7、解:如图,连接QA . 由已知,得QA QP =.所以,QO QA QO QP OP r +=+==.又因为点A 在圆内,所以OA OP < 根据椭圆的定义,点Q 的轨迹是以,O A 为焦点,r 为长轴长的椭圆.8、解:设这组平行线的方程为32y x m =+. 把32y x m =+代入椭圆方程22149x y +=,得22962180x mx m ++-=. 这个方程根的判别式 223636(218)m m ∆=--(1)由0∆>,得m -<< 当这组直线在y轴上的截距的取值范围是(-时,直线与椭圆相交.(2)设直线与椭圆相交得到线段AB ,并设线段AB 的中点为(,)M x y .则 1223x x m x +==-.(第7题)因为点M 在直线32y x m =+上,与3m x =-联立,消去m ,得320x y +=. 这说明点M 的轨迹是这条直线被椭圆截下的弦(不包括端点),这些弦的中点在一条直线上.9、222213.525 2.875x y +=. 10、地球到太阳的最大距离为81.528810⨯km ,最下距离为81.471210⨯km.习题2.2 B 组(P50)1、解:设点M 的坐标为(,)x y ,点P 的坐标为00(,)x y ,则0x x =,032y y =. 所以0x x =,023y y = ……①. 因为点00(,)P x y 在圆上,所以22004x y += ……②. 将①代入②,得点M 的轨迹方程为22449x y +=,即22149x y += 所以,点M 的轨迹是一个椭圆与例2相比可见,椭圆也可以看作是由圆沿某个方向压缩或拉伸得到.2、解法一:设动圆圆心为(,)P x y ,半径为R ,两已知圆的圆心分别为12,O O .分别将两已知圆的方程 22650x y x +++=,226910x y x +--=配方,得 22(3)4x y ++=, 22(3)100x y -+=当P 与1O :22(3)4x y ++=外切时,有12O P R =+ ……① 当P 与2O :22(3)100x y -+=内切时,有210O P R =- ……② ①②两式的两边分别相加,得1212O P O P +=12= ……③化简方程③.先移项,再两边分别平方,并整理,得 12x + ……④将④两边分别平方,并整理,得 22341080x y +-= ……⑤将常数项移至方程的右边,两边分别除以108,得 2213627x y += ……⑥由方程⑥可知,动圆圆心的轨迹是椭圆,它的长轴和短轴长分别为12,(第412= ……①由方程①可知,动圆圆心(,)P x y 到点1(3,0)O -和点2(3,0)O 距离的和是常数12, 所以点P 的轨迹方程是焦点为(3,0)-、(3,0),长轴长等于12的椭圆.并且这个椭圆的中心与坐标原点重合,焦点在x 轴上,于是可求出它的标准方程. 因为 26c =,212a =,所以3c =,6a = 所以236927b=-=.于是,动圆圆心的轨迹方程为2213627x y +=. 3、解:设d 是点M 到直线8x =的距离,根据题意,所求轨迹就是集合12MF P M d ⎧⎫==⎨⎬⎩⎭由此得12= 将上式两边平方,并化简,得 223448x y +=,即2211612x y += 所以,点M 的轨迹是长轴、短轴长分别为8,. 4、解:如图,由已知,得(0,3)E -,F 因为,,R S T 是线段OF 的四等分点, ,,R S T '''是线段CF 的四等分点, 所以,(1,0),(2,0),(3,0)R S T ;933(4,),(4,),(4,)424R S T '''.直线ER 的方程是33y x =-;直线GR '的方程是3316y x =-+. 联立这两个方程,解得 3245,1717x y ==.所以,点L 的坐标是3245(,)1717.同样,点M 的坐标是169(,)55,点N 的坐标是9621(,)2525.由作图可见,可以设椭圆的方程为22221x y m n+=(0,0)m n >> ……①把点,L M 的坐标代入方程①,并解方程组,得22114m =,22113n =. 所以经过点,L M 的椭圆方程为221169x y +=. 把点N 的坐标代入22169x y +,得22196121()()11625925⨯+⨯=,所以,点N 在221169x y +=上. 因此,点,,L M N 都在椭圆221169x y +=上. 2.3双曲线 练习(P55)1、(1)221169x y -=. (2)2213y x -=. (3)解法一:因为双曲线的焦点在y 轴上所以,可设它的标准方程为22221y x a b -=(0,0)a b >>将点(2,5)-代入方程,得222541a b-=,即22224250a b a b +-= 又 2236a b +=解方程组 222222425036a b a b a b ⎧+-=⎪⎨+=⎪⎩ 令22,m a n b ==,代入方程组,得425036mn m n m n +-=⎧⎨+=⎩解得 2016m n =⎧⎨=⎩,或459m n =⎧⎨=-⎩第二组不合题意,舍去,得2220,16a b ==所求双曲线的标准方程为2212016y x -=解法二:根据双曲线的定义,有2a =.所以,a =又6c =,所以2362016b =-=由已知,双曲线的焦点在y 轴上,所以所求双曲线的标准方程为2212016y x -=. 2、提示:根据椭圆中222a b c -=和双曲线中222a b c +=的关系式分别求出椭圆、双曲线的焦点坐标.3、由(2)(1)0m m ++>,解得2m <-,或1m >- 练习(P61)1、(1)实轴长2a =,虚轴长24b =;顶点坐标为-;焦点坐标为(6,0),(6,0)-;离心率4e =. (2)实轴长26a =,虚轴长218b =;顶点坐标为(3,0),(3,0)-;焦点坐标为-;离心率e =(3)实轴长24a =,虚轴长24b =;顶点坐标为(0,2),(0,2)-;焦点坐标为-;离心率e =(4)实轴长210a =,虚轴长214b =;顶点坐标为(0,5),(0,5)-;焦点坐标为;离心率5e =2、(1)221169x y -=; (2)2213628y x -=. 3、22135x y -= 4、2211818x y -=,渐近线方程为y x =±. 5、(1)142(6,2),(,)33-; (2)25(,3)4习题2.3 A 组(P61)1、把方程化为标准方程,得2216416y x -=. 因为8a =,由双曲线定义可知,点P 到两焦点距离的差的绝对值等于16. 因此点P 到另一焦点的距离是17.2、(1)2212016x y -=. (2)2212575x y -=3、(1)焦点坐标为12(5,0),(5,0)F F -,离心率53e =; (2)焦点坐标为12(0,5),(0,5)F F -,离心率54e =; 4、(1)2212516x y -=. (2)221916y x -=(3)解:因为ce a==,所以222c a =,因此2222222b c a a a a =-=-=. 设双曲线的标准方程为 22221x y a a -=,或22221y x a a -=.将(5,3)-代入上面的两个方程,得 222591a a -=,或229251a a-=. 解得 216a = (后一个方程无解).所以,所求的双曲线方程为2211616x y -=. 5、解:连接QA ,由已知,得QA QP =. 所以,QA QO QP QO OP r -=-==. 又因为点A 在圆外,所以OA OP >.根据双曲线的定义,点Q 的轨迹是以,O A 为焦点,r 为实轴长的双曲线.6、22188x y -=. 习题2.3 B 组(P62)1、221169x y -= 2、解:由声速及,A B 两处听到爆炸声的时间差,可知,A B 两处与爆炸点的距离的差,因此爆炸点应位于以,A B 为焦点的双曲线上.使,A B 两点在x 轴上,并且原点O 与线段AB 的中点重合,建立直角坐标系xOy . 设爆炸点P 的坐标为(,)x y ,则 34031020PA PB -=⨯=. 即 21020a =,510a =.又1400AB =,所以21400c =,700c =,222229900b c a =-=.因此,所求双曲线的方程为221260100229900x y -=. 3、22221x y a b-=4、解:设点11(,)A x y ,22(,)B x y 在双曲线上,且线段AB 的中点为(,)M x y .设经过点P 的直线l 的方程为1(1)y k x -=-,即1y kx k =+-把1y kx k =+-代入双曲线的方程2212y x -=得 222(2)2(1)(1)20k x k k x k ------=(220k -≠) ……①所以,122(1)22x x k k x k +-==- 由题意,得2(1)12k k k -=-,解得 2k =. 当2k =时,方程①成为22430x x -+=.根的判别式162480∆=-=-<,方程①没有实数解.所以,不能作一条直线l 与双曲线交于,A B 两点,且点P 是线段AB 的中点.2.4抛物线 练习(P67)1、(1)212y x =; (2)2y x =; (3)22224,4,4,4y x y x x y x y ==-==-.2、(1)焦点坐标(5,0)F ,准线方程5x =-; (2)焦点坐标1(0,)8F ,准线方程18y =-;(3)焦点坐标5(,0)8F -,准线方程58x =; (4)焦点坐标(0,2)F -,准线方程2y =;3、(1)a ,2pa -. (2),(6,-提示:由抛物线的标准方程求出准线方程. 由抛物线的定义,点M 到准线的距离等于9,所以 39x +=,6x =,y =±练习(P72)1、(1)2165y x =; (2)220x y =;(3)216y x =-; (4)232x y =-. 2、图形见右,x 的系数越大,抛物线的开口越大. 3、解:过点(2,0)M 且斜率为1的直线l 的方程 为2y x =-与抛物线的方程24y x =联立 224y x y x =-⎧⎨=⎩解得1142x y ⎧=+⎪⎨=+⎪⎩2242x y ⎧=-⎪⎨=-⎪⎩ 设11(,)A x y ,22(,)B x y,则AB ===. 4、解:设直线AB 的方程为x a =(0)a >.将x a =代入抛物线方程24y x =,得24y a =,即y =±. 因为22AB y ==⨯== 所以,3a =因此,直线AB 的方程为3x =.习题2.4 A 组(P73)1、(1)焦点坐标1(0,)2F ,准线方程12y =-;(2)焦点坐标3(0,)16F -,准线方程316y =;(3)焦点坐标1(,0)8F -,准线方程18x =;(4)焦点坐标3(,0)2F ,准线方程32x =-.2、(1)28y x =-; (2),或(4,-3、解:由抛物线的方程22y px =(0)p >,得它的准线方程为2px =-. 根据抛物线的定义,由2MF p =,可知,点M 的准线的距离为2p . 设点M 的坐标为(,)x y ,则 22p x p +=,解得32px =. 将32px =代入22y px =中,得y =. 因此,点M的坐标为3()2p,3(,)2p.4、(1)224y x =,224y x =-; (2)212x y =-(图略)5、解:因为60xFM ∠=︒,所以线段FM所在直线的斜率tan 60k =︒=. 因此,直线FM 的方程为1)y x =-与抛物线24y x =联立,得21)142y x y x ⎧=-⎪⎨=⎪⎩将1代入2得,231030x x -+=,解得,113x =,23x = 把113x =,23x =分别代入①得1y =,2y = 由第5题图知1(,3不合题意,所以点M的坐标为.因此,4FM ==6、证明:将2y x =-代入22y x =中,得2(2)2x x -=, 化简得 2640x x -+=,解得3x =± 则321y =±=± 因为OB k =,OA k = 所以15195OB OA k k -⋅===-- 所以 OA OB ⊥7、这条抛物线的方程是217.5x y = 8、解:建立如图所示的直角坐标系,设拱桥抛物线的方程为22x py =-, 因为拱桥离水面2 m ,水面宽4 m 所以 222(2)p =--,1p =因此,抛物线方程为22x y =- ……①水面下降1 m ,则3y =-,代入①式,得22(3)x =-⨯-,x =这时水面宽为 m.习题2.2 B 组(P74)1、解:设垂线段的中点坐标为(,)x y ,抛物线上相应点的坐标为11(,)x y .根据题意,1x x =,12y y =,代入2112y px =,得轨迹方程为212y px =. 由方程可知,轨迹为顶点在原点、焦点坐标为(,0)8p的抛物线.2、解:设这个等边三角形OAB 的顶点,A B 在抛物线上,且坐标分别为11(,)x y ,22(,)x y ,(第8则 2112y px =,2222y px =. 又OA OB =,所以 22221122x y x y +=+即221212220x x px px -+-=,221212()2()0x x p x x -+-= 因此,1212()(2)0x x x x p -++= 因为120,0,20x x p >>>,所以12x x = 由此可得12y y =,即线段AB 关于x 轴对称. 因为x 轴垂直于AB ,且30AOx ∠=︒,所以11tan30y x =︒=. 因为2112y x p=,所以1y =,因此12AB y ==.3、解:设点M 的坐标为(,)x y由已知,得 直线AM 的斜率 (1)1AM yk x x =≠-+. 直线BM 的斜率 (1)1BM yk x x =≠-.由题意,得2AM BM k k -=,所以,2(1)11y yx x x -=≠±+-,化简,得2(1)(1)x y x =--≠±第二章 复习参考题A 组(P80)1、解:如图,建立直角坐标系,使点2,,A B F 在x 轴上,2F 为椭圆的右焦点(记1F 为左焦点).因为椭圆的焦点在x 轴上,所以设它的标准方程为22221(0)x y a b a+=>>.则 22a c OA OF F A -=-=63714396810=+=,22a c OB OF F B +=+=637123848755=+=,解得 7782.5a =,8755c =所以 b ==用计算器算得 7722b ≈因此,卫星的轨道方程是2222177837722x y +=. (第12、解:由题意,得 12a c R r a c R r -=+⎧⎨+=+⎩, 解此方程组,得1221222R r r a r r c ++⎧=⎪⎪⎨-⎪=⎪⎩因此卫星轨道的离心率21122c r r e a R r r -==++. 3、(1)D ; (2)B .4、(1)当0α=︒时,方程表示圆.(2)当090α︒<<︒时,方程化成2211cos y x α+=. 方程表示焦点在y 轴上的椭圆. (3)当90α=︒时,21x =,即1x =±,方程表示平行于y 轴的两条直线.(4)当90180α︒<≤︒时,因为cos 0α<,所以22cos 1x y α+=表示双曲线,其焦点在x轴上. 而当180α=︒时,方程表示等轴双曲线. 5、解:将1y kx =-代入方程224x y -=得 2222140x k x kx -+--= 即 22(1)250k x kx -+-= ……① 222420(1)2016k k k ∆=+-=- 令 0∆<,解得k >k <因为0∆<,方程①无解,即直线与双曲线没有公共点, 所以,k的取值范围为2k >,或2k <- 6、提示:设抛物线方程为22y px =,则点B 的坐标为(,)2p p ,点C 的坐标为(,)2pp -设点P 的坐标为(,)x y ,则点Q 的坐标为(,0)x .因为,PQ y ==2BC p =,OQ x =.所以,2PQ BC OQ =,即PQ 是BC 和OQ 的比例中项.7、解:设等边三角形的另外两个顶点分别是,A B ,其中点A 在x 轴上方.直线FA 的方程为)2py x =-与22y px =联立,消去x ,得 220y p --=解方程,得 12)y p =,22)y p =-把12)y p =代入)2p y x =-,得 17(2x p =+.把22)y p =-代入)2p y x =-,得 27(2x p =-.所以,满足条件的点A 有两个17((2))2A p p +,27((2))2A p p -.根据图形的对称性,可得满足条件的点B 也有两个17((,2))2B p p +-+,27((,2))2B p p --所以,等边三角形的边长是112)A B p =,或者222(2A B p =. 8、解:设直线l 的方程为2y x m =+.把2y x m =+代入双曲线的方程222360x y --=,得221012360x mx m +++=.1265mx x +=-,2123610m x x += ……①由已知,得 21212(14)[()4]16x x x x ++-= ……②把①代入②,解得 m =所以,直线l 的方程为2y x =±9、解:设点A 的坐标为11(,)x y ,点B 的坐标为22(,)x y ,点M 的坐标为(,)x y .并设经过点M 的直线l 的方程为1(2)y k x -=-,即12y kx k =+-.把12y kx k =+-代入双曲线的方程2212y x -=,得 222(2)2(12)(12)20k x k k x k ------=2(20)k -≠. ……①所以,122(12)22x x k k x k +-==- 由题意,得2(12)22k k k -=-,解得4k =当4k =时,方程①成为 21456510x x -+=根的判别式25656512800∆=-⨯=>,方程①有实数解. 所以,直线l 的方程为47y x =-.10、解:设点C 的坐标为(,)x y .由已知,得 直线AC 的斜率 (5)5AC yk x x =≠-+ 直线BC 的斜率 (5)5BC yk x x =≠- 由题意,得AC BCk k m =. 所以,(5)55y ym x x x ⨯=≠±+-化简得,221(5)2525x y x m-=≠± 当0m <时,点C 的轨迹是椭圆(1)m ≠-,或者圆(1)m =-,并除去两点(5,0),(5,0)-;当0m >时,点C 的轨迹是双曲线,并除去两点(5,0),(5,0)-;11、解:设抛物线24y x =上的点P 的坐标为(,)x y ,则24y x =.点P 到直线3y x =+的距离d ===当2y =时,d. 此时1x =,点P 的坐标是(1,2).12、解:如图,在隧道的横断面上,以拱顶为原点、拱高所在直线为y 轴 (向上),建立直角坐标系.设隧道顶部所在抛物线的方程 为22x py =-因为点(4,4)C -在抛物线上 所以 242(4)p =--解得 24p =-为24x y =-.(第12题)设0.5EF h =+. 则(3, 5.5)F h -把点F 的坐标代入方程24x y =-,解得 3.25h =. 答:车辆通过隧道的限制高度为3.2 m.第二章 复习参考题B 组(P81)1、12243PF F S ∆=2、解:由题意,得1PF x ⊥轴.把x c =-代入椭圆方程,解得 2b y a =±. 所以,点P 的坐标是2(,)bc a -直线OP 的斜率21b k ac =-. 直线AB 的斜率2bk a =-.由题意,得2b bac a =,所以,b c =,2a c =. 由已知及1F A a c =+,得 105a c +=所以 (12)105c += 5c =所以,10a =,5b =因此,椭圆的方程为221105x y +=. 3、解:设点A 的坐标11(,)x y ,点B 的坐标22(,)x y .由OA OB ⊥,得12120x x y y +=.由已知,得直线AB 的方程为25y x =-+. 则有 12125()250y y y y -++= ……①由25y x =-+与22y px =消去x ,得250y py p +-= ……② 12y y p +=-,125y y p =- ……③ 把③代入①,解得54p = 当54p =时,方程②成为245250y y +-=,显然此方程有实数根. 所以,54p = 4、解:如图,以连接12,F F 的直线为x 轴,线段12F F 的中点为原点,建立直角坐标系.对于抛物线,有176352922922p=+=, 所以,4584p =,29168p =.对于双曲线,有2080529c a c a +=⎧⎨-=⎩解此方程组,得775.5a =,1304.5c = 因此,2221100320b c a =-=.所以,所求双曲线的方程是221601400.31100320x y -=(775.5)x ≥. 因为抛物线的顶点横坐标是 (1763)(1763775.5)987.5a --=--=- 所以,所求抛物线的方程是 29168(987.5)y x =+ 答:抛物线的方程为29168(987.5)y x =+,双曲线的方程是221601400.31100320x y -=(775.5)x ≥. 5、解:设点M 的坐标为(,)x y由已知,得 直线AM 的斜率 (1)1AM yk x x =≠-+ 直线BM 的斜率 (1)1BM yk x x =≠- 由题意,得2AM BM k k +=,所以2(1)11y y x x x +=≠±-+,化简,得21(1)xy x x =-≠±所以,点M 轨迹方程是21(1)xy x x =-≠±.6、解:(1)当1m =时,方程表示x 轴;(2)当3m =时,方程表示y 轴;(3)当1,3m m ≠≠时,把方程写成22131x y m m +=--. ①当13,2m m <<≠时,方程表示椭圆; ②2m =时,方程表示圆;③当1m <,或3m >时,方程表示双曲线.7、以AB 为直径的圆与抛物线的准线l 相切.证明:如图,过点,A B 分别作抛物线22(0)y px p =>的准线l 的 垂线,垂足分别为,D E .由抛物线的定义,得 AD AF =,BE BF =.所以,AB AF BF AD BE =+=+.设AB 的中点为M ,且过点M 作抛物线22(0)y px p =>的准线l 的垂线,垂足为C .显然MC ∥x 轴,所以,MC 是直角梯形ADEB 的中位线. 于是,11()22MC AD BE AB =+=.因此,点C 在以AB 为直径的圆上.又MC l ⊥,所以,以AB 为直径的圆与抛物线的准线l 相切. 类似地,可以证明:对于椭圆,以经过焦点的弦为直径的圆与相应的准线相离; 对于双曲线,以经过焦点的弦为直径的圆与相应的准线相交.新课程标准数学选修2—1第三章课后习题解答第三章 空间向量与立体几何 3.1空间向量及其运算 练习(P86)1、略.2、略.3、A C AB AD AA ''=+-,BD AB AD AA ''=-+,DB AA AB AD ''=--. 练习(P89)1、(1)AD ; (2)AG ; (3)MG .2、(1)1x =; (2)12x y ==; (3)12x y ==. 3练习(P92) 1、B .2、解:因为AC AB AD AA ''=++,所以22()AC AB AD AA ''=++2222222()4352(0107.5)85AB AD AA AB AD AB AA AD AA '''=+++⋅+⋅+⋅=+++⨯++=所以85AC '=3、解:因为AC α⊥所以AC BD ⊥,AC AB ⊥,又知BD AB ⊥.所以0AC BD ⋅=,0AC AB ⋅=,又知0BD AB ⋅=.2CD CD CD =⋅222222()()CA AB BD CA AB BD CA AB BDa b c =++⋅++=++=++所以CD .练习(P94)1、向量c 与a b +,a b -一定构成空间的一个基底. 否则c 与a b +,a b -共面, 于是c 与a ,b 共面,这与已知矛盾.2、共面2、(1)解:OB OB BB OA AB BB OA OC OO a b c ''''=+=++=++=++;BA BA BB OC OO c b '''=+=-+=-CA CA AA OA OC OO a b c '''=+=-+=-+(2)1111()2222OG OC CG OC CB b a c a b c '=+=+=++=++.练习(P97)1、(1)(2,7,4)-; (2)(10,1,16)-; (3)(18,12,30)-; (4)2.2、略.3、解:分别以1,,DA DC DD 所在的直线为x 轴、y 轴、z 轴,建立空间直角坐标系.则(0,0,0)D ,1(1,1,1)B ,1(1,,0)2M ,(0,1,0)C所以,1(1,1,1)DB =,1(1,,0)2CM =-.所以,111110cos ,3DB CM DB CM DB CM-+⋅<>===⋅习题3.1 A 组(P97)1、解:如图,(1)AB BC AC +=;(2)AB AD AA AC AA AC CC AC ''''++=+=+=;(3)设点M 是线段CC '的中点,则12AB AD CC AC CM AM '++=+=; (4)设点G 是线段AC '的三等分点,则11()33AB AD AA AC AG ''++==.向量,,,AC AC AM AG '如图所示.(第12、A .3、解:22()AC AB AD AA ''=++2222222()15372(53573722298AB AD AA AB AD AB AA AD AA '''=+++⋅+⋅+⋅=+++⨯⨯+⨯⨯+⨯⨯=+所以,13.3AC '≈.4、(1)21cos602AB AC AB AC a ⋅=⋅︒=; (2)21cos1202AD DB AD DB a ⋅=⋅︒=-;(3)21cos1802GF AC GF AC a ⋅=⋅︒=- 11()22GF AC a ==;(4)21cos604EF BC EF BC a ⋅=⋅︒= 11()22EF BD a ==;(5)21cos1204FG BA FG BA a ⋅=⋅︒=- 11()22FG AC a ==;(6)11()22GE GF GC CB BA CA ⋅=++⋅2111()222111424111cos120cos60cos6042414DC CB BA CA DC CA CB CA BA CA DC CA CB CA BA CA a =++⋅=⋅+⋅+⋅=⋅︒+⋅︒+⋅︒=5、(1)60︒; (2)略.6、向量a 的横坐标不为0,其余均为0;向量b 的纵坐标不为0,其余均为0;向量c 的竖坐标不为0,其余均为0.7、(1)9; (2)(14,3,3)-.8、解:因为a b ⊥,所以0a b ⋅=,即8230x --+=,解得103x =. 9、解:(5,1,10)AB =--,(5,1,10)BA =-设AB 的中点为M ,119()(,,2)222OM OA OB =+=-,所以,点M 的坐标为19(,,2)22-,(AB =-10、解:以1,,DA DC DD 分别作为x 轴、y 轴、z 轴建立空间直角坐标系O xyz -.则1,,,C M D N 的坐标分别为:(0,1,0)C ,1(1,0,)2M ,1(0,0,1)D ,1(1,1,)2N .1(1,1,)2CM =-,11(1,1,)2D N =-所以2312CM ==,21312D N ==111114cos ,994CM D N --<>==- 由于异面直线CM 和1D N 所成的角的范围是[0,]2π因此,CM 和1D N 所成的角的余弦值为19.11、31(,,3)22-习题3.1 B 组(P99)1、证明:由已知可知,OA BC ⊥,OB AC ⊥∴ 0OA BC ⋅=,0OB AC ⋅=,所以()0OA OC OB ⋅-=,()0OB OC OA ⋅-=. ∴ OA OC OA OB ⋅=⋅,OB OC OB OA ⋅=⋅.∴ 0OA OC OB OC ⋅-⋅=,()0OA OB OC -⋅=,0BA OC ⋅=. ∴ OC AB ⊥.2、证明:∵ 点,,,E F G H 分别是,,,OA OB BC CA 的中点.∴ 12EF AB =,12HG AB =,所以EF HG = ∴四边形EFGH 是平行四边形.1122EF EH AB OC ⋅=⋅11()()44OB OA OC OB OC OA OC =-⋅=⋅-⋅∵ OA OB =,CA CB =(已知),OC OC =. ∴ BOC ∆≌AOC ∆(SSS ) ∴ BOC AOC ∠=∠ ∴ OB OC OA OC ⋅=⋅ ∴ 0EF EH ⋅= ∴ EF EH ⊥∴ 平行四边形□EFGH 是矩形.3、已知:如图,直线OA ⊥平面α,直线BD ⊥平面α,,O B 为垂足. 求证:OA ∥BD证明:以点O 为原点,以射线OA 方向为z 轴正方向,建立空间直角坐标系O xyz -,,,i j k 分别为沿x 轴、y 轴、z 轴的坐标向量,且设(,,)BD x y z =.∵ BD α⊥.∴ BD i ⊥,BD j ⊥.∴ (,,)(1,0,0)0BD i x y z x ⋅=⋅==,(,,)(0,1,0)0BD j x y z y ⋅=⋅==. ∴ (0,0,)BD z =. ∴ BD zk =.∴ BD ∥k ,又知,O B 为两个不同的点.∴ BD ∥OA .3.2立体几何中的向量方法 练习(P104)1、(1)3b a =,1l ∥2l ; (2)0a b ⋅=,1l ⊥2l ; (3)3b a =-,1l ∥2l .2、(1)0u v ⋅=,αβ⊥; (2)2v u =-,α∥β; (3)2247u v u v⋅=-,α与β相交,交角的余弦等于2247.练习(P107)1、证明:设正方形的棱长为1.11D F DF DD =-,AE BE BA =-.因为11()000D F AD DF DD AD ⋅=-⋅=-=,所以1D F AD ⊥. 因为1111()()00022D F AE DF DD BE BA ⋅=-⋅-=+-+=,所以1D F AE ⊥. 因此1D F ⊥平面ADE .2、解:22()CD CD CA AB BD ==++222222361664268cos(18060)68CA AB BD CA AB CA BD AB BD =+++⋅+⋅+⋅=+++⨯⨯⨯︒-︒= ∴68CD =(第3练习(P111)1、证明:1()()2MN AB MB BC CN AB MB BC CD AB ⋅=++⋅=++⋅222211()22111cos120cos60cos600222MB BC AD AC AB a a a a =++-⋅=+︒+︒-︒=∴ MN AB ⊥. 同理可证MN CD ⊥.2、解:222222()2cos l EF EA A A AF m d n mn θ''==++=+++(或2cos()mn πθ-)22222cos d l m n mn θ=--,所以AA d '=3、证明:以点D 为原点,,,DA DC DD '的方向分别为x 轴、y 轴、z 轴正方向,建立坐标系,得下列坐标:(0,0,0)D ,(0,1,0)C ,(1,1,0)B ,(0,1,1)C ',11(,1,)22O .∵ 11(,1,)(1,0,1)022DO BC '⋅=---⋅-= ∴DO BC '⊥习题3.2 A 组(P111)1、解:设正方形的棱长为1(1)1()()2MN CD MB B N CC C D ''''''⋅=+⋅+=,212MN CD '⋅== 112cos 12θ==,60θ=︒.(2)1()2MN AD MB B N AD ''⋅=+⋅=,21MN AD ⋅== 1cos 2θ==,45θ=︒.2、证明:设正方体的棱长为1因为11()000DB AC DB BB AC ⋅=+⋅=+=,所以1DB AC ⊥.因为111111()000DB AD DA AB AD ⋅=+⋅=+=,所以11DB AD ⊥. 因此,1DB ⊥平面1ACD .3、证明:∵()cos cos 0OA BC OC OB OA OC OA OB OA θθ⋅=-⋅=-=,∴OA BC ⊥.4、证明:(1)因为11()000AC LE A A AC LE ⋅=+⋅=+=,所以1AC LE ⊥. 因为11()000AC EF A B BC EF ⋅=+⋅=+=,所以1AC EF ⊥.因此,1AC ⊥平面EFGHLK . (2)设正方体的棱长为1因为1111()()1AC DB A A AC DB DB ⋅=+⋅+=-,211(3)3AC DB ⋅== 所以 1cos 3θ=-.因此1DB 与平面EFGHLK 的所成角α的余弦cos α=. 5、解:(1)222211111()()22222DE DE DE DE DA AB AC AB OA AC AB ==⋅=++-=++ 11(111111)42=++-+-= 所以,2DE =(2)11111()()22222AE AO AC AB AO ⋅=+⋅=+=,3AE AO ⋅=1cos 3θ===,sin 3θ=点O 到平面ABC的距离sin 1OH OA θ===. 6、解:(1)设1AB =,作AO BC ⊥于点O ,连接DO .以点O 为原点,,,OD OC OA 的方向分别为x 轴、y 轴、z 轴正方向, 建立坐标系,得下列坐标:(0,0,0)O ,2D ,1(0,,0)2B ,3(0,,0)2C ,(0,0,)2A .∴3((4DO DA ⋅=-⋅=,18DO DA⋅=,cos 2θ=. ∴ AD 与平面BCD 所成角等于45︒. (2)(0,1,0)()022BC DA ⋅=⋅--=. 所以,AD 与BC 所成角等于90︒. (3)设平面ABD 的法向量为(,,1)x y ,则1(,,1)(,,1)(0,,022x y AB x y ⋅=⋅=,(,,1)(,,1)0x y AD x y ⋅=⋅=. 解得 1x =,y =显然(0,0,1)为平面BCD 的法向量.(0,0,1)1⋅=,cos θ==因此,二面角A BD C --的余弦cos cos()απθ=-=. 7、解:设点B 的坐标为(,,)x y z ,则(1,2,)AB x y z =-+.因为AB ∥α,所以123412x y z-+==-. 因为226AB α==26. 解得5x =-,6y =,24z =,或7x =,10y =-,24z =-.8、解:以点O 为原点建立坐标系,得下列坐标:(,,0)A a a -,(,,0)B a a ,(,,0)C a a -,(,,0)D a a --,(0,0,)V h ,(,,)222a a hE -.(1)222233(,,)(,,)6222222cos ,10a a h a a h h a BE DE h a BE DE--⋅-<>==+. (2)223(,,)(,,)02222a a h h VC BE a a h a ⋅=--⋅--=-=,222h a = 222222641cos ,10123h a a BE DE h a a --<>===-+ 9、解:以点A 为原点建立坐标系,得下列坐标:(0,0,0)A ,(0,1,0)B ,111(,,)222O -,1(0,0,1)A ,1(1,0,1)D -,1(0,0,)2M .因为10OM AA ⋅=,10OM BD ⋅=, 所以1OM AA ⊥,1OM BD ⊥,2OM ==. 10、解:以点A 为原点建立坐标系,得下列坐标:(0,0,0)A ,(0,7,0)B ,(0,0,24)C ,(,,)D x y z .因为(,7,)(0,7,0)0BD AB x y z ⋅=-⋅=,所以7y =.由24BD ==,25CD == 解得12z =,x =1cos 2BD AC BD ACθ⋅==⋅,60θ=︒ 因此,线段BD 与平面α所成的角等于9030θ︒-=︒.11、解:以点O 为原点建立坐标系,得下列坐标:(0,0,0)O ,(4,0,0)A ,(0,3,0)B ,(0,0,4)O ',(4,0,4)A ',(0,3,4)B ',3(2,,4)2D ,(0,3,)P z .由3(0,3,)(2,,4)02OP BD z ⋅=⋅-=,解得98z =. 所以,938tan 38PB OB θ===.12、解:不妨设这条线段MN 长为2,则点M 到二面角的棱的距离1MP =,点N 到二面角的棱的距离1NQ =,QM PN ==PQ =22cos 2PQ MNPQ MNθ⋅====⋅, 45θ=︒. 习题 3.2 B 组(P113)1、解:12222ABC S ∆=⨯⨯=,()224502AD BE AB BDBE ⋅=+⋅=︒+=,202cos AD BE AD AD θ⋅==,20AD =,204BD ==. 184233ABCD V =⨯⨯=2、解:(1)以点B 为原点建立坐标系,得下列坐标:(0,0,0)B ,(1,0,0)A ,(0,0,1)C ,(1,1,0)F,,0,1)M,,0)N . 2221)1MN a =-=-+,MN =(2)2211()22a a -+=-+,当2a =时,MN 的长最小.。

高二数学选修2-1第一章测试题

高二数学选修2-1第一章测试题

1.如下图所示,在直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AB =5,AA 1=4,点D 是AB 的中点. (1)求证:AC 1∥平面CDB 1;(2)求异面直线AC 1与B 1C 所成角的余弦值.2.如下图所示, 在平行六面体1111ABCD A B C D -中,E ,M ,N ,G 分别是AA 1,CD ,CB ,CC 1的中点,求证:(1) MN//B 1D 1 ;(2) AC 1//平面EB 1D 1 ;(3) 平面EB 1D 1//平面BDG.3.如图, 在正方体ABCD-A 1B 1C 1D 1中,E 、F 、G 、P 、Q 、R 分别是所在棱 AB 、BC 、BB '、A 'D '、D 'C '、DD '的中点,求证: (1)PQ ∥EF ; (2)PQ ∥平面EFG ; (3)平面PQR ∥平面EFG ;(4)异面直线EG 与AC 1的夹角的余弦.5. 已知PA ⊥平面ABC ,AB 是圆O 的直径,C 是圆O 上的任一点,求证:PC BC ⊥6、如图,已知矩形ABCD 所在平面外一点P ,P A ⊥平面ABCD ,E 、F 分别是AB, PC 的中点 (1)求证:EF ∥平面P AD ; (2)求证:EF ⊥CD ;(3)若∠PDA =45︒,求EF 与平面ABCD 所成的角的大小.7、如图,四面体ABCD 中,O 、E 分别是B D .BC 的中点,2====BD CD CB CA ,2==AD AB(Ⅰ)求证:AO ⊥平面BCD;(Ⅱ)求异面直线AB 与CD 所成角的余弦值;(Ⅲ)求点E 到平面ACD 的距离.1、(1)起止框图: (2)输入、输出框: (3)处理框: (4)判断框:ACD'B 'C 'D ' FQGRP OCCB DA PEFACDOBE2、三种基本逻辑结构: 顺序结构 ;条件结构;循环结构3、基本算法语句 条件语句IF -THEN -ELSE 格式当计算机执行上述语句时,首先对IF 后的条件进行判断,如果条件符合,就执行THEN 后的语句1,否则执行ELSE 后的语句2。

(易错题)高中数学高中数学选修2-1第一章《常用逻辑用语》测试(含答案解析)(5)

(易错题)高中数学高中数学选修2-1第一章《常用逻辑用语》测试(含答案解析)(5)

一、选择题1.已知命题:p 关于x 的方程210x ax ++=没有实根;命题:0q x ∀≥,20x a ->.若p ⌝和p q ∧都是假命题,则实数a 的取值范围是( ) A .()(),21,-∞-⋃+∞ B .(]2,1- C .(]1,2D .[)1,22.下列命题中假命题是( ) A .∃x 0∈R ,ln x 0<0 B .∀x ∈(-∞,0),e x >x +1 C .∀x >0,5x >3xD .∃x 0∈(0,+∞),x 0<sin x 03.已知命题p :所有有理数都是实数,命题q :正数的对数都是负数,则下列命题中为真命题的是 A .()p q ⌝∨B .p q ∧C .()()p q ⌝∧⌝D .()()p q ⌝∨⌝4.下列四个命题中,真命题的个数是( ) ①命题“若ln 1x x +>,则1x >”;②命题“p 且q 为真,则,p q 有且只有一个为真命题”; ③命题“所有幂函数()af x x =的图象经过点()1,1”;④命题“已知22,,4a b R a b ∈+≥是2a b +≥的充分不必要条件”. A .1B .2C .3D .45.命题“存在[]1,0x ∈-,使得20x x a +-≤”为真命题的一个充分不必要条件是( ) A .14a ≥-B .14a >C .12a ≥-D .12a >-6.已知p :2+2=5;q :3>2,则下列判断错误的是( ) A .“p ∨q ”为真,“¬q ”为假 B .“p ∧q ”为假,“¬p ”为真 C .“p ∧q ”为假,“¬p ”为假 D .“p ∨q ”为真,“¬p ”为真7.“a <0”是“函数f (x )=ax 2﹣2x ﹣1在(0,+∞)上单调递减”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分要也不必要条件8.已知ABC 的三个内角分别为A ,B ,C ,则“A B C <<”是“cos cos cos A B C >>”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件9.命题p :函数1()(0)f x x x x=+>最小值是2;命题q :若1a b >,则a b >.下列说法正确的是( ) A .p 或q 为真 B .p 且q 为真 C .p 或q 为假 D .非p 为真 10.已知实数0x >,0y >,则“224x y +≤”是“1xy ≤”的( )A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件11.下列三个命题:①设命题p :若m 是质数,则m 一定是奇数.那么p ⌝真命题;②在ABC 中,“sin sin A B =”是“cos cos A B =”的充要条件;③“若1x >,则1x >”的否命题是“若1x >,则1x ≤”.其中真命题的个数为( ) A .3B .2C .1D .012.“1m =”是“椭圆22360mx y m +-=的焦距为4”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件二、填空题13.给出以下四个结论: ①函数()211x f x x -=+的对称中心是1,2;②若关于x 的方程10x k x-+=在()0,1∈x 没有实数根,则k 的取值范围是2k ≥; ③在ABC 中,“cos cos b A a B =”是“ABC 为等边三角形”的充分不必要条件; ④若()πsin 23f x x ⎛⎫=-⎪⎝⎭的图象向右平移()0ϕϕ>个单位后为奇函数,则ϕ最小值是π12. 其中正确的结论是______14.已知函数22(1)(1)3y a x a x =-+-+(x ∈R ),写出0y >的充要条件________. 15.关于以下结论: ①*n N ∀∈,22n n ≤;②函数44()sin cos f x x x =-的最小正周期为π; ③若向量0a b ⋅=,则向量a b ⊥; ④20182019log 2019log 2020>. 以上结论正确的个数为______. 16.给出下列命题:①命题“若21x =,则1x =”的否命题为“若21x =,则1x ≠”; ②“1x =-”是“2560x x --=”的必要不充分条件;③x R ∃∈命题“,使得210x x +-<”的否定是:“x R ∀∈,均有210x x -->”; ④命题“若x y =,则 sin sin x y =”的逆否命题为真命题 其中所有正确命题的序号是________.17.已知命题20001:,02p x R ax x ∃∈++≤,若命题p 是假命题,则实数a 的取值范围是________. 18.“”是“”的_____条件.(填“充分不必要”, “必要不充分”,“充要”,“既不充分也不必要”) 19.已知命题p :不等式01xx <-的解集为{x |0<x <1};命题q :在△ABC 中,“A >B ”是“sin A >sin B ”成立的必要不充分条件.有下列四个结论: ①p 真q 假;②“p ∧q ”为真;③“p ∨q ”为真;④p 假q 真, 其中正确结论的序号是________20.给出如下四个命题:①若“p 或q ”为真命题,则p 、q 均为真命题; ②命题“若且,则”的否命题为“若且,则”;③在中,“”是“”的充要条件;④已知条件,条件,若是的充分不必要条件,则的取值范围是; 其中正确的命题的是________.三、解答题21.已知命题p :(x +1)(x -5)≤0,命题q :1-m ≤x ≤1+m (m >0). (1)若p 是q 的充分条件,求实数m 的取值范围;(2)若m =5,p ∨q 为真命题,p ∧q 为假命题,求实数x 的取值范围.22.若函数()y f x =满足“存在正数λ,使得对定义域内的每一个值1x ,在其定义域内都存在2x ,使12()()f x f x λ=成立”,则称该函数为“依附函数”.(1)分别判断函数①()2x f x =,②2()log g x x =是否为“依附函数”,并说明理由; (2)若函数()y h x =的值域为[,]m n ,求证:“()y h x =是‘依附函数’”的充要条件是“0[,]m n ∉”.23.(1)已知命题p :()20a a a R -<∈,命题q :对任意x ∈R ,都有()2410x ax a R ++≥∈,若命题“p 且q ”为假命题,命题“p 或q ”为真命题,求实数a 的取值范围;(2)已知集合{}22|440A x x x a =-+-≤,{}2|41270B x x x =+-≤,若“x A ∈”是“x B ∈”的必要条件,求实数a 的取值范围.24.已知0c >,设p :函数x y c =在R 上递减; q :不等式|2|1x x c +->的解集为R ,如果“p 或q ”为真,且“p 且 q ”为假,求c 的取值范围. 25.已知命题P :函数()1()13f x x =-且()2<f a ,命题Q :集合(){}2210,A x x a x x R =+++=∈,{}0B x x =>且AB =∅.(1)分别求命题P 、Q 为真命题时的实数a 的取值范围;(2)当实数a 取何范围时,命题P 、Q 中有且仅有一个为真命题; (3)设P 、Q 皆为真时a 的取值范围为集合,,,0,0mS T y y x x R x m x ⎧⎫==+∈≠>⎨⎬⎩⎭,若全集U =R ,T S ⊆,求m 的取值范围.26.已知命题p :任意2,230x R x mx m ∈-->成立;命题q :存在2,410x R x mx ∈++<成立.(1)若命题p 为真命题,求实数m 的取值范围;(2)若命题,p q 中恰有一个为真命题,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】计算出当命题p 为真命题时实数a 的取值范围,以及当命题q 为真命题时实数a 的取值范围,由题意可知p 真q 假,进而可求得实数a 的取值范围. 【详解】若命题p 为真命题,则240a ∆=-<,解得22a -<<;若命题q 为真命题,0x ∀≥,20x a ->,则()min21xa <=.由于p ⌝和p q ∧都是假命题,则p 真q 假,所以221a a -<<⎧⎨≥⎩,可得12a ≤<.因此,实数a 的取值范围是[)1,2. 故选:D. 【点睛】本题考查利用复合命题、全称命题的真假求参数,考查计算能力,属于中等题.2.D解析:D 【详解】∃x 0∈R ,lnx 0<0,的当x ∈(0,1)时,恒成立,所以正确;x ∈(﹣∞,0),令g (x )=e x ﹣x ﹣1,可得g ′(x )=e x ﹣1<0,函数是减函数,g (x )>g (0)=0,可得∀x ∈(﹣∞,0),e x >x +1恒成立,正确; 由指数函数的性质的可知,∀x >0,5x >3x 正确;令f (x )=sin x -x (x >0),则f ′(x )=cos x -1≤0,所以f (x )在(0,+∞)上为减函数,所以f (x )<f (0),即f (x )<0,即sin x <x (x >0),故∀x ∈(0,+∞),sin x <x ,所以D 为假命题,故选D.3.D解析:D 【解析】试题分析:不难判断命题p 为真命题,命题q 为假命题,从而¬p 为假命题,¬q 为真命题,所以根据复合命题的真值表得A 、B 、C 均为假命题,故选D . 考点:本题考查复合命题真假的判断.点评:本题直接考查复合命题的真值判断,属于基础题型.4.C解析:C 【分析】①令()ln f x x x =+,研究其单调性判断.②根据“且”构成的复合命题定义判断.③根据幂函数()af x x =的图象判断.④由()222222a ba b a b a b +=++≥+,判断充分性,取特殊值1a b ==判断必要性. 【详解】①令()ln f x x x =+,()110f x x=+>',所以()f x 在{}1,+∞上递增 所以()()1f x f >,所以1x >,故正确. ②若p 且q 为真,则,p q 都为真命题,故错误.③因为所有幂函数()af x x =的图象经过点()1,1,故正确.④因为()2222224a ba b a b a b +=++≥+≥,所以2a b +≥,故充分性成立,当1a b ==时,推不出224a b +≥,所以不必要,故正确.故选:C 【点睛】本题主要考查命题的真假判断,还考查了理解辨析的能力,属于基础题.5.B解析:B 【分析】“存在[]1,0x ∈-,使得20x x a +-≤”为真命题,可得()2mina x x≥+,利用二次函数的单调性即可得出.再利用充要条件的判定方法即可得出. 【详解】解:因为“存在[]1,0x ∈-,使得20x x a +-≤”为真命题, 所以()22minmin 111244a xx x ⎡⎤⎛⎫≥+=+-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,因此上述命题得个充分不必要条件是14a >. 故选:B. 【点睛】本题考查了二次函数的单调性、充要条件的判定方法,考查了推理能力与计算能力,属于中档题.6.C解析:C 【分析】先判定命题p 为假命题,命题q 为真命题,再结合复合命题的真假判定,即可求解. 【详解】由题意,命题:225p +=为假命题,命题:32q >为真命题,所以命题p q ∧为假命题,p ⌝为真命题,命题p q ∨为真命题,q ⌝为假命题, 故选:C . 【点睛】本题主要考查了复合命题的真假判定,其中解答中正确判定命题,p q 的真假,熟记复合命题的真假判定方法是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.7.A解析:A 【分析】根据二次函数和一次函数的单调性,利用充分条件和必要条件的定义进行判断即可. 【详解】 当0a <时,10a<, 211()()1f x a x a a ∴=---,在(0,)+∞上单调递减,当0a =时,则()21f x x =--在(0,)+∞上单调递减,∴ “0a <”是“函数2()21f x ax x =--在(0,)+∞上单调递减”的充分不必要条件.故选:A . 【点睛】本题主要考查函数单调性的判断和应用,利用充分条件和必要条件的定义是解决本题的关键.本题属于基础题.8.C解析:C 【分析】结合余弦函数在()0,π上的单调性,分别判断充分性与必要性,可得出答案. 【详解】先来判断充分性:ABC 的三个内角分别为A ,B ,C ,由A B C <<可得0πA B C <<<<,因为函数cos y x =在()0,π上单调递减,所以cos cos cos A B C >>,故充分性成立; 再来判断必要性:ABC 的三个内角分别为A ,B ,C ,且0πA <<,0πB <<,0πC <<,因为函数cos y x =在()0,π上单调递减,且cos cos cos A B C >>,所以0πA B C <<<<,即A B C <<,故必要性成立.所以“A B C <<”是“cos cos cos A B C >>”的充分必要条件. 故选:C. 【点睛】本题考查命题的充分性与必要性,考查余弦函数单调性的应用,考查学生的推理论证能力,属于基础题.9.A解析:A 【分析】求出函数()f x 的最小值判定p 的真假;举例说明命题q 为假,再由复合命题的真假判断得答案. 【详解】 由0x >时,得1122x x x x+⋅=(当且仅当1x x =,即1x =时取等号),∴命题p 为真命题;当4a =-,2b =-,满足1ab>,但a b <,故命题q 是假命题. p ∴或q 为真;p 且q 为假;非p 为假.故选:A . 【点睛】本题考查利用基本不等式求最值,考查不等式的性质,考查复合命题的真假判断,是基础题.10.C解析:C 【分析】利用基本不等式和充分,必要条件的判断方法判断. 【详解】22x y +≥ 且224x y+≤ ,422x y ∴≤⇒⇒+≤ ,等号成立的条件是x y =,又x y +≥,0,0x y >>21xy ∴≤⇒≤ ,等号成立的条件是x y =,2241x y xy ∴+≤⇒≤,反过来,当12,3x y ==时,此时1xy ≤,但224x y +> ,不成立, ∴ “224x y +≤”是“1xy ≤”的充分不必要条件. 故选:C 【点睛】本题考查基本不等式和充分非必要条件的判断,属于基础题型.11.B解析:B 【分析】对各个命题分别判断. 【详解】命题p :若m 是质数,则m 一定是奇数.2是质数,但2是偶数,命题p 是假命题,那么p ⌝真命题;①正确;在ABC 中,sin sin A B a b A B =⇔=⇔=⇔cos cos A B =,②正确; “若1x >,则1x >”的否命题是“若1x ≤,则1x ≤”,③错. 因此有2个命题正确. 故选:B. 【点睛】本题考查命题的真假判断,这种问题难度较大,需要对每个命题进行判断,才能得出正确结论,这样考查的知识点可能很多,考查的能力要求较高.12.A解析:A 【分析】由椭圆22360mx y m +-=的焦距为4,分类讨论求得1c =或5c =时,再结合充分条件和必要条件的判定方法,即可求解. 【详解】由题意,椭圆22360mx y m +-=可化为22162x y m+=,当03m <<时,4c ==,解得1c =,当3m >时,4c ==,解得5c =, 即当1c =或5c =时,椭圆22360mx y m +-=的焦距为4,所以“1m =”是“椭圆22360mx y m +-=的焦距为4”的充分不必要条件. 故选:A . 【点睛】本题主要考查了椭圆的标准方程及几何性质,以及充分条件、必要条件的判定,其中解答中熟记椭圆的标准方程和几何性质,结合充分条件、必要条件的判定求解是解答的关键,着重考查了推理与计算能力,属于基础题.二、填空题13.①【分析】对四个结论逐个分析可选出答案【详解】对于①其图象由的图象向左平移1个单位再向上平移2个单位得到故的对称中心为即①正确;对于②由可得令且显然函数在上单调递减则又因为时故在的值域为所以当时关于解析:① 【分析】对四个结论逐个分析,可选出答案. 【详解】 对于①,()213211x f x x x -==-++,其图象由3y x =-的图象向左平移1个单位,再向上平移2个单位得到,故()f x 的对称中心为1,2,即①正确;对于②,由10x k x -+=,可得1k x x=-. 令()1g x x x=-,且()0,1∈x ,显然函数()g x 在()0,1∈x 上单调递减, 则()()10g x g >=,又因为0x →时,1+x x-→∞,故()g x 在0,1的值域为0,,所以当0k ≤时,关于x 的方程10x k x-+=在()0,1∈x 没有实数根,即②错误; 对于③,先来判断充分性,当cos cos b A a B =时,可得sin cos sin cos =B A A B ,所以()sin cos sin cos sin 0B A A B B A -=-=,即B A =,所以ABC 为等腰三角形,不能推出ABC 为等边三角形,即充分性不成立;再来判断必要性,当ABC 为等边三角形时,可得B A =,则sin cos sin cos =B A A B ,故cos cos b A a B =,即必要性成立,故③不正确;对于④,()πsin 23f x x ⎛⎫=-⎪⎝⎭的图象向右平移()0ϕϕ>个单位后,得到()πsin 223g x x φ⎛⎫=-- ⎪⎝⎭,由()g x 为奇函数,可得πsin 203φ⎛⎫--= ⎪⎝⎭,则()π2π3φk k +=∈Z ,解得()ππ26k φk =-∈Z ,当1k =时,ϕ取得最小正值为π3,故④不正确.所以,正确的结论是①. 故答案为:①. 【点睛】本题考查函数的对称中心,考查三角函数的平移变换及奇偶性的应用,考查利用参变分离法解决方程的解的存在性问题,考查充分性与必要性的判断,考查学生的推理论证能力与计算求解能力,属于中档题.14.或【分析】根据不等式的性质结合充要条件的定义进行求解即可【详解】若则当即或当时不等式等价为满足条件当时不等式等价为不满足条件当时要使则解之得:或综上:或反之也成立故答案为:或【点睛】本题考查充分必要解析:1a ≥或1311a <- 【分析】根据不等式的性质结合充要条件的定义进行求解即可. 【详解】若22(1)(1)30y a x a x =-+-+>, 则当210a -=,即1a =或1a =-, 当1a =时,不等式等价为30>,满足条件, 当1a =-时,不等式等价为230x -+>,32x <,不满足条件, 当1a ≠±时,要使0y >,则22210(1)12(1)0a a a ⎧->⎨∆=---<⎩,解之得:1a >或1311a <-, 综上:1a ≥或1311a <-,反之也成立.故答案为:1a ≥或1311a <-. 【点睛】本题考查充分必要条件的应用,考查二次函数的性质,考查逻辑思维能力和运算能力,属于常考题.15.2【分析】对命题逐一分析正误得出结论即可【详解】解:对于①当时∴;故①错误;②函数所以的最小正周期为;故②正确;③若向量则向量;当时或当时但不垂直于;故③错误;④;④正确证明如下:∵;而∴;∴故②④解析:2 【分析】对命题逐一分析正误,得出结论即可. 【详解】解:对于①*n N ∀∈,22n n ≤,当3n =时,29n =,28n =,∴22n n >;故①错误;②函数44()sin cos cos2f x x x x =-=-,所以()f x 的最小正周期为T π=;故②正确;③若向量0a b ⋅=,则向量a b ⊥;当0a =时或当0b =时,0a b ⋅=,但a 不垂直于b ;故③错误;④20182019log 2019log 2020>;④正确,证明如下:∵220182019lg2019lg2020(lg2019)lg2018lg2020log 2019log 2020lg2018lg2019lg2018lg2019-⋅-=-=⋅;而22lg 2018lg 2020lg 2018lg 2020()2+⋅<=2220182020(lg)(lg 2019)2+<=. ∴2(lg2019)lg2018lg20200-⋅>; ∴20182019log 2019log 2020>. 故②④正确;正确的个数为2个; 故答案为:2. 【点睛】本题考查命题判断真假的方法,需要逐个判断,属于基础题.16.④【分析】①根据命题的否命题和原命题之间的关系判断②利用充分条件和必要条件的定义判断③利用特称命题的否定判断④利用逆否命题的等价性进行判断【详解】解:①根据否命题的定义可知命题若则的否命题为若则所以解析:④ 【分析】①根据命题的否命题和原命题之间的关系判断.②利用充分条件和必要条件的定义判断.③利用特称命题的否定判断.④利用逆否命题的等价性进行判断. 【详解】解:①根据否命题的定义可知命题“若21x =,则1x =”的否命题为“若21x ≠,则1x ≠”,所以①错误.②由2560x x --=得1x =-或6x =,所以②“1x =-”是“2560x x --=”的充分不必要条件,所以②错误.③根据特称命题的否定是全称命题得命题“x R ∃∈,使得210x x +-<”的否定是:“x R ∀∈,均有210x x +-”,所以③错误.④根据逆否命题和原命题为等价命题可知原命题正确,所以命题“若x y =,则sin sin x y =”的逆否命题为真命题,所以④正确.故答案为④. 【点睛】本题主要考查命题的真假判断,以及四种命题的真假关系的判断,比较基础.17.【分析】根据命题否定为真结合二次函数图像列不等式解得结果【详解】因为命题是假命题所以为真所以【点睛】本题考查命题的否定以及一元二次不等式恒成立考查基本分析求解能力属基础题解析:1,2⎛⎫+∞ ⎪⎝⎭【分析】根据命题否定为真,结合二次函数图像列不等式,解得结果 【详解】因为命题20001:,02p x R ax x ∃∈++≤是假命题,所以21,02x R ax x ∀∈++>为真 所以011202a a a >⎧∴>⎨-<⎩ 【点睛】本题考查命题的否定以及一元二次不等式恒成立,考查基本分析求解能力,属基础题.18.必要不充分条件【解析】【分析】由a2>1解得a>1或a<-1由a3>1解得a>1进而判断出结论【详解】由a2>1解得a>1或a<-1由a3>1解得a>1因为(-∞-1)∪(1+∞)⊃≠(1+∞)所以解析:必要不充分条件 【解析】 【分析】 由,解得或,由解得,进而判断出结论.【详解】由,解得或,由解得,因为,所以“”是“”的必要不充分条件,故答案是:必要不充分条件.【点睛】该题考查的是有关必要不充分条件的判断,涉及到的知识点有不等式的解法,必要不充分条件的定义,属于简单题目.19.①③【分析】先判断命题的真假然后由复合命题的真值表判断复合命题的真假【详解】不等式等价于即命题为真在中命题为假因此②④为假①③为真【点睛】复合命题的真值表: 真 真 真 真 假 真 假解析:①③ 【分析】先判断命题,p q 的真假,然后由复合命题的真值表判断复合命题的真假. 【详解】 不等式01xx <-等价于()10x x -<,即01x <<,命题p 为真,在ABC ∆中,sin sin A B a b A B >⇔>⇔>,命题q 为假,因此②④为假,①③为真.【点睛】复合命题的真值表:pqp q ∧p q ∨p ⌝真 真 真 真 假 真 假 假 真 假 假 真 假 真 真 假假假假真复合命题的真假可按真值表进行判断.另外在ABC ∆中A B >与sin sin A B >是等价的,但在一般三角函数中此结论不成立.20.④【解析】试题分析:若或为真命题则pq 至少有一真所以命题 错误;命题若且则的否命题为若或则故命题‚错误;三角形ABC 中角A 时故命题 错误;若是的充分不必要条件即p 是q 的充分不必要条件由因p:所以由一解析:④ 【解析】试题分析:若“p 或q ”为真命题,则p 、q 至少有一真,所以命题•错误;命题“若且,则”的否命题为“若或,则”,故命题 错误;三角形ABC 中,角A时,,故命题 错误;若是的充分不必要条件即p 是q 的充分不必要条件.由因p:,所以由一元二次方程根的分布可得,解得,.故正确的命题是④.考点:命题的真假性判断.三、解答题21.(1)[4,+∞);(2)[4,1)(5,6]--⋃. 【分析】(1)设使命题p 成立的集合为A ,命题q 成立的集合为B ,由题意可得A ⊆B ,根据集合的包含关系,列出方程,即可求得结果;(2)由题意可得:p ,q 命题,一真一假,分别求得当p 真q 假时、 p 假q 真时x 的范围,即可得结果. 【详解】(1)设使命题p 成立的集合为A ,命题q 成立的集合为B , 则A ={x |-1≤x ≤5},B ={x |1-m ≤x ≤1+m }, 由题意得:A ⊆B , 所以01511m m m >⎧⎪+≥⎨⎪-≤-⎩,解得m ≥4,故m 的取值范围为[4,+∞).(2)根据条件可得:p ,q 命题,一真一假,当p 真q 假时,156?4x x x -≤≤⎧⎨><-⎩或,无解;当p 假q 真时,5?146x x x ><-⎧⎨-≤≤⎩或,解得-4≤x <-1或5<x ≤6.故实数x 的取值范围为[4,1)(5,6]--⋃. 【点睛】本题考查根据充分条件求参数范围、利用复合命题真假求参数范围,考查分析理解,计算求值的能力,属中档题.22.(1)①是,②不是;理由详见解析(2)详见解析. 【分析】(1)①可取1λ=,说明函数()2x f x =是“依附函数”; ②对于任意正数λ,取11x =,此时关于2x 的方程12()()g x g x λ=无解,说明2()log g x x =不是“依附函数”; (2)先证明必要性,再证明充分性,即得证. 【详解】(1)①可取1λ=,则对任意1x ∈R ,存在21x x =-∈R ,使得12221x x ⋅=成立, (说明:可取任意正数λ,则221log x x λ=-) ∴()2x f x =是“依附函数”,②对于任意正数λ,取11x =,则1()0g x =,此时关于2x 的方程12()()g x g x λ=无解,∴2()log g x x =不是“依附函数”. (2)必要性:(反证法)假设0[,]m n ∈,∵()y h x =的值域为[,]m n ,∴存在定义域内的1x ,使得1()0h x =,∴对任意正数λ,关于2x 的方程12()()h x h x λ=无解, 即()y h x =不是依附函数,矛盾, 充分性:假设0[,]m n ∉,取0mn λ=>, 则对定义域内的每一个值1x ,由1()[,]h x m n ∈,可得1[,][,]()m n h x n mλλλ∈=, 而()y h x =的值域为[,]m n , ∴存在定义域内的2x ,使得21()()h x h x λ=,即12()()h x h x λ=成立,∴()y h x =是“依附函数”. 【点睛】本题主要考查函数的新定义,考查充分必要条件的证明,意在考查学生对这些知识的理解掌握水平和分析推理能力.23.(1)11,0,122⎡⎤⎛⎫- ⎪⎢⎥⎣⎦⎝⎭;(2)112a ≥或112a ≤-.【分析】(1)分别计算命题,p q 为真、假时参数a 的取值范围,再根据题意可知命题p ,q 一真一假,进而分情况求解a 的取值范围即可.(2)由题意可知B A ⊆,再分0a ≥与0a <两种情况,分别根据区间端点满足的条件列式计算即可. 【详解】(1)若命题p :()20a a a R -<∈为真,解得01a <<.若p 为假,则0a ≤或1a ≥;若命题q :对任意x ∈R ,都有()2410x ax a R ++≥∈为真,则21640a ∆=-≤,解得1122a -≤≤,若q 为假,则12a <-或12a >. 由命题p 且q 为假,p 或q 为真可知命题p ,q 一真一假.若命题p 真,q 假,则011122a a a <<⎧⎪⎨-⎪⎩或,解得112a <<;若命题p 假,q 真,则1,01122a a a ≥≤⎧⎪⎨-≤≤⎪⎩,解得102a -≤≤. 综上可知,实数a 的取值范围是11,0,122⎡⎤⎛⎫- ⎪⎢⎥⎣⎦⎝⎭. (2)因为“x A ∈”是“x B ∈”的必要条件,所以B A ⊆,71,22B ⎡⎤=-⎢⎥⎣⎦,()(){}|220A x x a x a =-+--≤,当0a ≥时,[]2,2A a a =-+,此时应有122722a a ⎧+≥⎪⎪⎨⎪-≤-⎪⎩,即112a ≥, 当0a <时,[]2,2A a a =+-,此时应有122722a a ⎧-≥⎪⎪⎨⎪+≤-⎪⎩,即112a ≤-. 故112a ≥或112a ≤- 【点睛】本题主要考查了根据命题的真假以及充分与必要条件等求解参数范围的问题,属于中档题.24.[)10,1,2⎛⎤+∞ ⎥⎝⎦【分析】计算p 为真时()0,1c ∈,q 为真时12c >,讨论p 真q 假,或p 假q 真两种情况,分别计算得到答案. 【详解】p :函数x y c =在R 上递减,故()0,1c ∈;q :不等式|2|1x x c +->的解集为R ,当2x c ≥时,|2|221x x c x c +-=->,即12c x <-,故min11222c x c ⎧⎫<-=-⎨⎬⎩⎭, 解得12c >; 当2x c <时,|2|21x x c c +-=>,解得12c >. 综上所述:12c >. “p 或q ”为真,且“p 且 q ”为假,故p 真q 假,或p 假q 真.当p 真q 假时,0112c c <<⎧⎪⎨≤⎪⎩,故10,2c ⎛⎤∈ ⎥⎝⎦;当p 假q 真时,112c c ≥⎧⎪⎨>⎪⎩,故[)1,c ∈+∞.综上所述:[)10,1,2c ⎛⎤∈+∞ ⎥⎝⎦.【点睛】本题考查了根据命题的真假求参数,意在考查学生的计算能力和转化能力.25.(1)P 为真时,(5,7)a ∈-,Q 为真时,(4,)a ∞∈-+;(2)(5,4][7,)∞--⋃+;(3)(0,4] 【分析】(1)解出绝对值不等式可求出P 为真时a 的取值范围,讨论A =∅和A ≠∅时可求出Q 为真时a 的取值范围; (2)P 真Q 假,则574a a -<<⎧⎨≤-⎩;P 假Q 真,则574a a a ≤-≥⎧⎨>-⎩或,即可解出;(3)可求出(4,7)S =-,利用基本不等式可求出(,[2,)T m =-∞-+∞,则利用包含关系列出式子可求. 【详解】(1)对于命题P ,由1|()|(1)23f a a =-<可得616a -<-<,即57a -<<, :(5,7)P a ∴∈-,对于命题Q ,若A =∅,则Δ(2)(2)40a a =++-<,解得40a ,若A ≠∅,则2Δ(2)40(2)0a a ⎧=+-≥⎨-+<⎩,解得0a ≥,综上,4a >-,:(4,)Q a ∞∴∈-+;(2)若P 真Q 假,则574a a -<<⎧⎨≤-⎩,解得54a -<≤-,若P 假Q 真,则574a a a ≤-≥⎧⎨>-⎩或 ,解得7a ≥,综上,(5,4][7,)a ∈--⋃+∞; (3)当P ,Q 皆为真时,574a a -<<⎧⎨>-⎩,解得47a -<<,即(4,7)S =-,,,0,0(,)mT y y x x R x mx ⎧⎫==+∈≠>=-∞-⋃+∞⎨⎬⎩⎭,(T ∴=-, T S ⊆,47⎧-≥-⎪∴⎨≤⎪⎩,解得04m <≤. 【点睛】本题主要考查了复合命题真假的应用,解题的关键是要把命题,P Q 为真时所对应的参数范围准确求出,还要注意集合包含关系的应用.26.(1)(3,0)-;(2)(]11,3,0,22⎡⎫⎛⎫-∞--+∞⎪ ⎪⎢⎣⎭⎝⎭. 【分析】(1)只需24120m m ∆=+<,然后求解m 的取值范围; (2)分p 真q 假、p 假q 真两种情况讨论求解. 【详解】解:(1)若命题p 为真命题,则24120m m ∆=+<,解得30m -<<, 故实数m 的取值范围(3,0)-(2)若命题q 为真命题,则21640m ∆=->,解得12m <-或12m > ∵命题,p q 中恰有一个为真命题, ∴命题,p q 一真一假①当p 真q 假时,301122m m -<<⎧⎪⎨-≤≤⎪⎩,解得:102m -≤< ②当p 假q 真时,301122m m m m ≤-≥⎧⎪⎨-⎪⎩或或,解得:3m ≤-或12m >.综上,实数m 的取值范围(]11,3,0,22⎡⎫⎛⎫-∞--+∞⎪ ⎪⎢⎣⎭⎝⎭. 【点睛】本题考查根据命题的真假求解参数的取值范围,考查二次不等式恒成立与有解问题,难度一般.。

高二数学选修2-1第一章测试【高考题精华版-附详细解答】

高二数学选修2-1第一章测试【高考题精华版-附详细解答】

数学选修2-1 第一章测试(常用逻辑用语)班级: 姓名:一、选择题(请将答案填写到答题卡中)1、“12m ”是“直线(m +2)x+3m y+1=0与直线(m +2)x+(m -2)y-3=0相互垂直”的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要2、实数a 、b 满足a ≥0,b ≥0,且ab =0,则称a 与b 互补,记φ()a ,b =a 2+b 2-a -b ,那么φ()a ,b =0是a 与b 互补的( ) A .必要而不充分的条件 !B .充分而不必要的条件C .充要条件D .既不充分也不必要的条件【解析】选C.若φ()a ,b =0,则a 2+b 2=a +b ,两边平方整理,得ab =0, 且a ≥0,b ≥0,∴a ,b 互补.若a ,b 互补,则a ≥0,b ≥0,且ab =0,即a =0,b ≥0或b =0,a ≥0,此时都有φ()a ,b =0,∴φ()a ,b =0是a 与b 互补的充要条件.*3、设甲是乙的充分不必要条件,乙是丙的充要条件,丁是丙的必要非充分条件,则甲是丁的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要甲是乙的充分而不必要条件:甲 ==> 乙; 乙 =/=> 甲 丙是乙的充要条件: 丙 <==> 乙丁是丙的必要而不充分条件:丙 ==> 丁; 丁 =/=> 丙甲 ==> 乙 ==> 丙 ==> 丁丁 =/=> 甲 (若 丁 ==> 甲,则 丁 ==> 甲 ==> 乙 ==> 丙 ,矛盾)所以 丁 是 甲 的[ 必要而不充分条件 ]4、有金盒、银盒、铅盒各一个,只有一个盒子里有肖像.金盒上写有命题p :肖像在这个盒子里;银盒上写有命题q :肖像不在这个盒子里;铅盒上写有命题r :肖像不在金盒里.p 、q 、r 中有且只有一个是真命题,则肖像在 ( ) A .金盒里 B .银盒里 $C .铅盒里D .在哪个盒子里不能确定 5、2x 2-5x -3<0的一个必要不充分条件是 ( )A .-21<x <3 B .-21<x <0 C .-3<x <21 D .-1<x <6D ;解析:由2x 2-5x -3<0,解得-21<x <3,记为P ,则①P A ,②B P ,B 是P 的充分非必要条件,③CP ,C 既不是P 的充分条件,也不是P 的必要条件,④DP ,P D ,D 是P 的必要不充分条件.6、若函数f (x )=x 2+ax (a ∈R),则下列结论正确的是 ( )A.∀a ∈R ,f (x ) 在(0,+∞)上是增函数B.∀a ∈R ,f (x )在(0,+∞)上是减函数!C.∃a ∈R ,f (x )是偶函数D.∃a ∈R ,f (x )是奇函数解析:当a =16时,f (x )=x 2+16x ,f ′(x )=2x -16x 2, 令f ′(x )>0得x >2.∴f (x )在(2,+∞)上是增函数,故A 、B 错. 当a =0时,f (x )=x 2是偶函数,故C 正确. D 显然错误.7、有四个关于三角函数的命题: ( ) 《p 1:∃x ∈R ,sin 2x 2+cos 2x 2=12p 2:∃x ,y ∈R ,sin(x -y )=sin x -sin y p 3:∀x ∈,1-cos2x2=sin x p 4:sin x =cos y ⇒x +y =π2其中的假命题是 ( ),p 4 ,4 C ,p 3 ,p 3 解析:sin 2x 2+cos 2x2=1恒成立,p 1错; 当x =y =0时,sin(x -y )=sin x -sin y ,p 2对;}∵1-cos2x2=sin 2x ,当x ∈,sin x ≥0,∴1-cos2x 2=sin x ,p 3对;当x =23π,y =π6时, sin x =cos y 成立,但x +y ≠π2,p 4错. 答案:A8、知命题p :“∀x ∈,x 2-a ≥0”,命题q :“∃x ∈R ,x 2+2ax +2-a =0”.若命题“p 且q ”是真命题,则实数a 的取值范围为 ( )≤-2或a =1 ≤-2或1≤a ≤2≥1 D.-2≤a ≤1 *解析:由已知可知p 和q 均为真命题,由命题p 为真得a ≤1,由命题q 为真得a ≤-2或a ≥1,所以a ≤-2,或a =1. 答案:A9、下列命题中真命题的个数是 ( )①∀x ∈R ,x 4>x 2②若p ∧q 是假命题,则p 、q 都是假命题③命题“∀x ∈R ,x 3+2x 2+4≤0”的否定为“∃x 0∈R ,x 30+2x 20+4>0”.1 C—解析:只有③是正确的. 答案:B10、若a ,b 为实数,则“0<ab <1”是“a <1b 或b >1a ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件"【解析】选A.∵0<ab <1,∴a ,b 同号,且ab <1.当a >0,b >0时,a <1b ;当a <0,b <0时,b >1a .∴“0<ab <1”是“a <1b 或b >1a ”的充分条件.而取a =-1,b =1,显然有a <1b ,但不能推出0<ab <1,故“0<ab <1”是“a <1b 或b >1a ”的充分而不必要条件.11、“sinα=12”是“cos2α=12”的 ( )《A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解析:充分性:如果sinα=12,则cos2α=1-2sin 2α=12,成立;必要性:如果cos2α=12,则sinα=±12,不成立,可知是充分而不必要条件.答案:A 12、下列选项中,p 是q 的必要不充分条件的是 ( ) :ac 2≥bc 2, q :a >b :a >1,b >1, 。

选修2-1第一章测试题教学内容

选修2-1第一章测试题教学内容

高二数学第一章《常用逻辑用语》检测题1.设p:实数x,y满足x>1且y>1,q:实数x,y满足x+y>2,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.下列四个结论中正确的个数是()①“x2+x﹣2>0”是“x>1”的充分不必要条件②命题:“?x∈R,sinx≤1”的否定是“?x0∈R,sinx0>1”.③“若x=,则tanx=1,”的逆命题为真命题;④若f(x)是R上的奇函数,则f(log32)+f(log23)=0.A.1 B.2 C.3 D.43.下列说法正确的是()A.“x2+x﹣2>0”是“x>l”的充分不必要条件B.“若am2<bm2,则a<b的逆否命题为真命题C.命题“?x∈R,使得2x2﹣1<0”的否定是:“?x∈R,均有2x2﹣1<0”D.命题“若x=,则tanx=1的逆命题为真命题4.命题“若x2≠4,则x≠2且x≠﹣2”的否命题为()A.若x2=4,则x≠2且x≠﹣2 B.若x2≠4,则x=2且x=﹣2C.若x2≠4,则x=2或x=﹣2 D.若x2=4,则x=2或x=﹣25.下列命题:①“若a≤b,则a<b”的否命题;②“若a=1,则ax2﹣x+3≥0的解集为R”的逆否命题;③“周长相同的圆面积相等”的逆命题;④“若为有理数,则x为无理数”的逆否命题.其中真命题序号为()A.②④ B.①②③C.②③④D.①②③④6、以下有关命题的说法错误的是()A.命题“若x2﹣3x+2=0,则x=1”的逆否命题为“若x≠1,则x2﹣3x+2≠0”B.若a∈R,则“a=2”是“(a﹣1)(a﹣2)=0”的充分且不必要条件C.对于命题p:?x0∈R,使得x02+x0+1<0,则¬p:?x∈R,则x2+x+1≥0D.命题“若am2<bm2,则a<b”的逆命题是真命题7.下列说法正确的是()A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”B.若命题p:?x∈R,x2﹣2x﹣1>0,则命题¬p:?x∈R,x2﹣2x﹣1<0C.命题“若α>β,则2α>2β”的逆否命题为真命题D.“x=﹣1”是x2﹣5x﹣6=0的必要不充分条件8.已知命题p:对m∈[﹣1,1],不等式a2﹣5a﹣3≥恒成立;命题q:不等式x2+ax+2<0有解.若p是真命题,q是假命题,求a的取值范围.9.已知p:|1﹣|<2;q:x2﹣2x+1﹣m2<0;若¬p是¬q的充分非必要条件,求实数m的取值范围.10.已知命题p:函数f(x)=x2+ax﹣2在[﹣1,1]内有且仅有一个零点.命题q:x2+3(a+1)x+2≤0在区间内恒成立.若命题“p且q”是假命题,求实数a的取值范围.11、(Ⅰ)已知命题p:函数f(x)=(2a﹣5)x是R上的减函数;命题q:在x∈(1,2)时,不等式x2﹣ax+2<0恒成立,若p∨q是真命题,求实数a的取值范围;(Ⅱ)设条件p:2x2﹣3x+1≤0,条件q:x2﹣(2a+1)x+a(a+1)≤0,若¬p是¬q的必要不充分条件,求实数a的取值范围.12.已知p:|x﹣4|≤6,q:x2﹣2x+1﹣m2≤0(m>0),若¬p是¬q的必要而不充分条件,求实数m的取值范围.13.已知命题p:(x﹣3)(x+1)<0,命题q:<0,命题r:a<x<2a,其中a>0.若p∧q 是r的充分条件,求a的取值范围.14.已知命题p:x+2≥0且x﹣10≤0,命题q:1﹣m≤x≤1+m,m>0,若?p是?q的必要不充分条件,求实数m的取值范围.15.设p:不等式x2+(m﹣1)x+1>0的解集为R;q:?x∈(0,+∞),m≤x+恒成立.若“p且q”为假命题,“p或q”为真命题,求实数m的取值范围.16.已知命题p:实数x满足|2x﹣m|≥1;命题q:实数x满足>0.(Ⅰ)若m=1时,p∧q为真,求实数x的取值范围;(Ⅱ)若?p是q的充分不必要条件,求实数m的取值范围.高二数学第一章《常用逻辑用语》检测题参考答案1解:由x>1且y>1,可得:x+y>2,反之不成立:例如取x=3,y=.∴p是q的充分不必要条件.故选:A.2.解:对于①,x2+x﹣2>0,解得x<﹣2或x>1,故“x>1”的必要不充分条件,故错误,对于②,命题:“?x∈R,sinx≤1”的否定是“?x0∈R,sinx0>1”,故正确,对于③,若x=,则tanx=1,”的逆命题为“若tanx=1,则x=,x还可以等于,故错误,对于④,f(x)是R上的奇函数,则f(﹣x)=﹣f(x),∵log32=,∴log32与log23不是互为相反数,故错误.故选:A.3.解:选项A,x2+x﹣2>0,解得x<﹣2或x>1,故“x2+x﹣2>0”是“x>l”的必要不充分条件,故A错误,选项B,“若am2<bm2,则a<b”的逆否命题为“若a≥b,则am2≥bm2”为真命题,故B正确,选项C,命题“?x∈R,使得2x2﹣1<0”的否定是:“?x∈R,均有2x2﹣1≥0,故C错误,选项D,命题“若x=,则tanx=1”的逆命题“若tanx=1,则x=”,因为tanx=1,则x=kπ+”,故D错误,故选:B.4.解:“若x2≠4,则x≠2且x≠﹣2”的否命题是:“若x2=4,则x=2或x=﹣2”,故选:D.5.解:对于①,逆命题为真,故否命题为真;对于②“若a=1,则ax2﹣x+3≥0的解集为R”原命题为真,故逆否命题为真;对于③“面积相等的圆周长相同”为真;对于④“若为有理数,则x为0或无理数”,故原命题为假,逆否命题为假.故选:B.6、解:对于A,命题“若x2﹣3x+2=0,则x=1”的逆否命题为“若x≠1,则x2﹣3x+2≠0”,正确;对于B,a=2时,(a﹣1)(a﹣2)=0,充分性成立,(a﹣1)(a﹣2)=0时,a=1或a=2,必要性不成立,是充分且不必要条件,正确;对于C,命题p:?x0∈R,使得x02+x0+1<0,则¬p:?x∈R,则x2+x+1≥0,命题正确;对于D,命题“若am2<bm2,则a<b”的逆命题是命题“若a<b,则am2<bm2”,是假命题,因为m=0时不成立,所以错误.故选:D.7.解:对于A,命题“若x2=1,则x=1”的否命题为:“若x2≠1,则x≠1”,∴A错误;对于B,若命题p:?x∈R,x2﹣2x﹣1>0,则命题¬p:?x∈R,x2﹣2x﹣1≤0,∴B错误;对于C,命题“若α>β,则2α>2β”是真命题,则它的逆否命题也为真命题,∴C正确;对于D,x=﹣1时,x2﹣5x﹣6=0,充分性成立,x2﹣5x﹣6=0时,x=﹣1或x=6,必要性不成立,所以是充分不必要条件,D错误.故选:C.8.解:∵m∈[﹣1,1],∴∈[2,3].∵对m∈[﹣1,1],不等式a2﹣5a﹣3≥恒成立,可得a2﹣5a﹣3≥3,∴a≥6或a≤﹣1.故命题p为真命题时,a≥6或a≤﹣1.又命题q:不等式x2+ax+2<0有解,∴△=a2﹣8>0,∴a>2或a<﹣2.从而命题q为假命题时,﹣2≤a≤2,∴命题p为真命题,q为假命题时,a的取值范围为﹣2≤a≤﹣1.9.解:p:|1﹣|<2即为p:﹣2<x<10,q:x2﹣2x+1﹣m2<0即为(x﹣1)2<m2,即q:1﹣|m|<x<1+|m|,又¬p是¬q的充分非必要条件,所以q是p的充分非必要,∴(两式不能同时取等)得到|m|≤3,满足题意,所以m的范围为[﹣3,3].10.解:在命题p中,若a=0,则不合题意,∴,解得a≤﹣1,或a≥1.在命题q中,∵x∈[,],∴3(a+1)≤﹣(x+)在[]上恒成立.∴(x+)max=,故只需3(a+1)即可,解得a.∵命题“p且q”是假命题,∴p真q假,或p假q真,或p、q均为假命题,当p真q假时,,或a≥1,当p假q真时,a∈?.当p、q均为假命题时,有﹣1<a<1,故实数a的取值范围{a|a>﹣}.11、解:(Ⅰ)在p中,∵函数f(x)=(2a﹣5)x是R上的减函数,∴0<2a﹣5<1,解得<a<3;在q中,由x2﹣ax+2<0得ax>x2+2,∵1<x<2,∴a>=x+在x∈(1,2)时恒成立;又当x∈(1,2)时,x+∈[2,3),∴a≥3;∵p∨q是真命题,故p真或q真,∴有<a<3或a≥3;∴a的取值范围是a>;(Ⅱ)命题p为:{x/},命题q为:{ x/a≤x≤a+1},¬p对应的集合A={x/x>1,或x<},¬q对应的集合为B={x/x>a+1,或x<a},∵若¬p是¬q的必要不充分条件,∴B?A,∴a+1≥1且,∴0≤a≤.12.解:由题知,若?p是?q的必要不充分条件的等价命题为:p是q的充分不必要条件.由|x﹣4|≤6,解得﹣2≤x≤10,∴p:﹣2≤x≤10;由x2﹣2x+1﹣m2≤0(m>0),整理得[x﹣(1﹣m)][x﹣(1+m)]≤0解得 1﹣m≤x≤1+m,∴q:1﹣m≤x≤1+m又∵p是q的充分不必要条件∴,∴m≥9,∴实数m的取值范围是[9,+∞).13.解:由题可知,命题p:﹣1<x<3,命题q:2<x<4,,..(2分)故p∧q:2<x<3.,(4分)根据a>0,及p∧q是r的充分条件可知:;,(8分)解得,综上可知,a的取值范围是.,(10分)14.解:命题p:﹣2≤x≤10,命题q:1﹣m≤x≤1+m,m>0;∴¬p:x<﹣2,或x>10;¬q:x<1﹣m,或x>1+m,m>0;¬p是¬q的必要不充分条件,就是由¬q能得到¬p,而¬p得不到¬q;∴集合{x|x<﹣2,或>10}真包含集合{x|x<1﹣m,或x>1+m,m>0};∴1﹣m≤﹣2,且1+m≥10,且两等号不能同时取;∴解得:m≥9,即实数m的取值范围为[9,+∞).15.解:若p为真:判别式△<0,则(m﹣1)2﹣4<0,所以:﹣1<m<3若q为真::?x∈(0,+∞),x+≥2,当且仅当x=1时取“=”所以:m≤2.(1)当p为真q为假时:2<m<3(2)当q为真p为假时:m≤﹣1综上所述:m≤﹣1或2<m<316.解:(Ⅰ)∵p∧q为真,∴p,q都为真,(1分)又m=1,∴p真;|2x﹣1|≥1,即x≤0或x≥1,(2分),∴(1﹣3x)(x+2)>0,即,(4分)由,∴实数x的取值范围为(﹣2,0],(6分)(Ⅱ)∵p:实数x满足|2x﹣m|≥1,∴?p;|2x﹣m|<1,即令,(7分),令,(8分)∵?P是q的充分非必要条件,A是B的真子集,(9分)∴,得∴实数m的取值范围是,(12分)。

最新人教A版高中数学选修2-1测试题全套及答案

最新人教A版高中数学选修2-1测试题全套及答案

高中数学选修2-1测试题全套及答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.给出命题:“若x 2+y 2=0,则x =y =0”,在它的逆命题、否命题、逆否命题中,真命题的个数是( )A .0个B .1个C .2个D .3个2.若命题p ∨q 与命题p ⌝都是真命题,则( )A .命题p 不一定是假命题B .命题q 一定是真命题C .命题q 不一定是真命题D .命题p 与命题q 的真假相同3.设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题p :∀x ∈A ,2x ∈B ,则( )A .⌝p :∀x ∈A ,2x ∉B B .⌝p :∀x ∉A ,2x ∉BC .⌝p :∃x 0∉A ,2x 0∈BD .⌝p :∃x 0∈A ,2x 0∉B4.命题“若f (x )是奇函数,则f (-x )是奇函数”的否命题是( )A .若f (x )是偶函数,则f (-x )是偶函数B .若f (x )不是奇函数,则f (-x )不是奇函数C .若f (-x )是奇函数,则f (x )是奇函数D .若f (-x )不是奇函数,则f (x )不是奇函数5.设U 为全集,A,B 是集合,则“存在集合C 使得C C B C A U ⊆⊆,是“∅=B A ”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件6.命题“若△ABC 有一内角为π3,则△ABC 的三内角成等差数列”的逆命题( ) A .与原命题同为假命题B .与原命题的否命题同为假命题C .与原命题的逆否命题同为假命题D .与原命题同为真命题7.若“0<x <1”是“(x -a )[x -(a +2)]≤0”的充分不必要条件,则实数a 的取值X 围是( )A .(-∞,0]∪[1,+∞)B .(-1,0)C .[-1,0]D .(-∞,-1)∪(0,+∞)8.命题p :若a ·b >0,则a 与b 的夹角为锐角;命题q :若函数f (x )在(-∞,0]及(0,+∞)上都是减函数,则f (x )在(-∞,+∞)上是减函数.下列说法中正确的是( )A .“p ∨q ”是真命题B .“p ∧q ”是假命题C .⌝p 为假命题D .⌝q 为假命题9.下列命题中是假命题的是( )A .存在α,β∈R ,使tan(α+β)=tan α+tan βB .对任意x >0,有lg 2x +lg x +1>0C .△ABC 中,A >B 的充要条件是sin A >sin BD .对任意φ∈R ,函数y =sin(2x +φ)都不是偶函数10.下面四个条件中,使a >b 成立的充分不必要的条件是( )A .a >b +1B .a >b -1C .a 2>b 2D .a 3>b 311.已知A :13x -<,B :(2)()0x x a ++<,若A 是B 的充分不必要条件,则实数a 的取值X 围是( )A .(4,+∞)B .[4,+∞)C .(-∞,4]D .(-∞,-4)12.已知命题p:不等式(x -1)(x -2)>0的解集为A ,命题q:不等式x 2+(a -1)x -a >0的解集为B ,若p 是q 的充分不必要条件,则实数a 的取值X 围是( )A .(-2,-1]B .[-2,-1]C .[-3,1]D .[-2,+∞)二、填空题(本大题共6小题,每小题5分,共30分.把答案填在题中横线上) 13若关于x 的不等式|x -m |<2成立的充分不必要条件是2≤x ≤3,则实数m 的取值X 围是________.14.若命题“∪x ∪R ,ax 2-ax -2≤0”是真命题,则实数a 的取值X 围是________.15.关于x 的方程x 2-(2a -1)x +a 2-2=0至少有一个非负实根的充要条件的a 的取值X 围是________.16.给出下列四个说法:①一个命题的逆命题为真,则它的逆否命题一定为真;②命题“设a ,b ∈R ,若a +b ≠6,则a ≠3或b ≠3”是一个假命题;③“x >2”是“1x <12”的充分不必要条件; ④一个命题的否命题为真,则它的逆命题一定为真.其中说法不正确的序号是________.17.已知命题p :∀x ∈[1,2]都有x 2≥a .命题q :∃x ∈R ,使得x 2+2ax +2-a =0成立,若命题p ∧q 是真命题,则实数a 的取值X 围是________.18.如果甲是乙的必要不充分条件,乙是丙的充要条件,丙是丁的必要不充分条件,则丁是甲的__________条件.三、解答题(本大题共6小题,共60分.解答应写出文字说明、证明过程或演算步骤)19.(10分)已知命题p:若,0≥ac 则二次方程02=++c bx ax 没有实根.(1)写出命题p 的否命题;(2)判断命题p 的否命题的真假, 并证明你的结论.20.(10分)已知集合A ={x |x 2-4mx +2m +6=0},B ={x |x <0},若命题“A ∩B =φ”是假命题,XX 数m 的取值X 围.21.(10分)已知P ={x |x 2-8x -20≤0},S ={x |1-m ≤x ≤1+m }.(1)是否存在实数m ,使x ∪P 是x ∪S 的充要条件,若存在,求出m 的X 围;若不存在,请说明理由;(2)是否存在实数m ,使x ∪P 是x ∪S 的必要条件,若存在,求出m 的X 围;若不存在,请说明理由.22.(10分)已知c >0,且c ≠1,设命题p :函数y =c x 在R 上单调递减;命题q :函数f (x )=x 2-2cx +1在⎝⎛⎭⎫12,+∞上为增函数,若命题p ∧q 为假,命题p ∨q 为真,XX 数c 的取值X 围.23.(10分)已知命题p :方程2x 2+ax -a 2=0在[-1,1]上有解;命题q :只有一个实数x 0满足不等式x 20+2ax 0+2a ≤0,若命题p ∨q 是假命题,求a 的取值X 围.24.(10分)已知数列{a n }的前n 项和为S n ,数列{S n +1}是公比为2的等比数列. 证明:数列{a n }成等比数列的充要条件是a 1=3.参考答案一、选择题1.D2.B3.D4.B5.C6.D7.C8.B9.D 10.A 11.D 12.A提示:1.逆命题为:若x =y =0,则x 2+y 2=0,是真命题.否命题为:若x 2+y 2≠0,则x ≠0或y ≠0,是真命题.逆否命题为:若x ≠0或y ≠0,则x 2+y 2≠0,是真命题.2.“p ⌝”为真命题,则命题p 为假,又p 或q 为真,则q 为真,故选B.3.由命题的否定的定义及全称命题的否定为特称命题可得.命题p 是全称命题:∀x ∈A ,2x ∈B ,则⌝p 是特称命题:∃x 0∈A ,2x 0∉B .故选D.4.原命题的否命题是既否定题设又否定结论,故“若f (x )是奇函数,则f (-x )是奇函数”的否命题是B 选项.5.6.原命题显然为真,原命题的逆命题为“若△ABC 的三内角成等差数列,则△ABC 有一内角为π3”,它是真命题. 7.(x -a )[x -(a +2)]≤0⇒a ≤x ≤a +2,由集合的包含关系知:⎩⎪⎨⎪⎧a ≤0,a +2≥1,⇒a ∈[-1,0]. 8.因为当a ·b >0时,a 与b 的夹角为锐角或零度角,所以命题p 是假命题;命题q 是假命题,例如f (x )=⎩⎪⎨⎪⎧-x +1,x ≤0,-x +2,x >0,综上可知,“p 或q ”是假命题. 9.对于A ,当α=β=0时,tan(α+β)=0=tan α+tan β,因此选项A 是真命题;对于B ,注意到lg 2x +lg x +1=⎝⎛⎭⎫lg x +122+34≥34>0,因此选项B 是真命题;对于C ,在△ABC 中,A >B ⇔a >b ⇔2R sin A >2R sin B ⇔sin A >sin B (其中R 是△ABC 的外接圆半径),因此选项C 是真命题;对于D ,注意到当φ=π2时,y =sin(2x +φ)=cos 2x 是偶函数,因此选项D 是假命题. 10.a >b +1⇒a -b >1>0⇒a >b ,但a =2,b =1满足a >b ,但a =b +1,故A 项正确.对于B ,a >b -1不能推出a >b ,排除B ;而a 2>b 2不能推出a >b ,如a =-2,b =1,(-2)2>12,但-2<1,故C 项错误;a >b ⇔a 3>b 3,它们互为充要条件,排除D.11.由题知1324x x -<⇔-<<,当2a <时,(2)()02x x a x a ++<⇔-<<-,若A 是B 的充分不必要条件,则有A B ⊆且B A ≠,故有4a ->,即4a <-;当2a =时,B=φ,显然不成立;当2a >时,(2)()02x x a a x ++<⇔-<<-,不可能有A B ⊆,故(),4a ∈-∞-.12.不等式(x -1)(x -2)>0,解得x >2或x <1,所以A 为(-∞,1)∪(2,+∞).不等式x 2+(a -1)x -a >0可以化为(x -1)(x +a )>0,当-a ≤1时,解得x >1或x <-a ,即B 为(-∞,-a )∪(1,+∞),此时a =-1;当-a >1时,不等式(x -1)(x +a )>0的解集是(-∞,1)∪(-a ,+∞),此时-a <2,即-2<a <-1.综合知-2<a ≤-1.二、填空题13.(1,4) 14.[-8,0] 15.⎣⎡⎦⎤-2,9416.①② 17.(-∞,-2]∪{1} 18.充分不必要提示:13.由|x -m |<2得-2<x -m <2,即m -2<x <m +2.依题意有集合{x |2≤x ≤3}是{x |m -2<x <m +2}的真子集,于是有⎩⎪⎨⎪⎧m -2<2m +2>3,由此解得1<m <4,即实数m 的取值X 围是(1,4).14.由题意知,x 为任意实数时,都有ax 2-ax -2≤0恒成立.当a =0时,-2≤0成立.当a ≠0时,由⎩⎪⎨⎪⎧a <0,Δ=a 2+8a ≤0得-8≤a <0, 所以-8≤a ≤0.15.设方程的两根分别为x 1,x 2,当有一个非负实根时,x 1x 2=a 2-2≤0,即-2≤a ≤2;当有两个非负实根时,⎩⎪⎨⎪⎧Δ=(2a -1)2-4(a 2-2)≥0,x 1+x 2=2a -1>0,x 1x 2=a 2-2≥0⇔⎩⎪⎨⎪⎧4a ≤9,a >12,a ≤-2或a ≥ 2.即2≤a ≤94.综上,得-2≤a ≤94. 16.①逆命题与逆否命题之间不存在必然的真假关系,故①错误;②此命题的逆否命题为“设a ,b ∈R ,若a =3且b =3,则a +b =6”,此命题为真命题,所以原命题也是真命题,②错误;③1x <12,则1x -12=2-x 2x <0,解得x <0或x >2,所以“x >2”是“1x <12”的充分不必要条件,故③正确;④否命题和逆命题是互为逆否命题,真假性相同,故④正确.17.若p 是真命题,即a ≤(x 2)min ,x ∈[1,2],所以a ≤1;若q 是真命题,即x 2+2ax +2-a =0有解,则Δ=4a 2-4(2-a )≥0,即a ≥1或a ≤-2.命题“p 且q ”是真命题,则p 是真命题,q 也是真命题,故有a ≤-2或a =1.三、解答题19.解:(1)命题p 的否命题为:若,0<ac 则二次方程02=++c bx ax 有实根.(2)命题p 的否命题是真命题. 证明如下: ,04,0,02>-=∆>-<ac b ac ac 所以所以因为所以二次方程02=++c bx ax 有实根.故该命题是真命题.20.解:因为“A ∩B =∅”是假命题,所以A ∩B ≠∅.设全集U ={m |Δ=(-4m )2-4(2m +6)≥0},则U ={m |m ≤-1或m ≥32}. 假设方程x 2-4mx +2m +6=0的两根x 1,x 2均非负,则有⎩⎪⎨⎪⎧ m ∈U ,x 1+x 2≥0,x 1x 2≥0⇒⎩⎪⎨⎪⎧ m ∈U ,4m ≥0,2m +6≥0⇒m ≥32. 又集合{m |m ≥32}关于全集U 的补集是{m |m ≤-1}, 所以实数m 的取值X 围是{m |m ≤-1}.21.解:(1)不存在.由x 2-8x -20≤0得-2≤x ≤10,所以P ={x |-2≤x ≤10},因为x ∈P 是x ∈S 的充要条件,所以P =S ,所以⎩⎪⎨⎪⎧ 1-m =-2,1+m =10,所以⎩⎪⎨⎪⎧m =3,m =9, 这样的m 不存在.(2)存在.由题意x ∈P 是x ∈S 的必要条件,则S ⊆P .所以⎩⎪⎨⎪⎧1-m ≥-2,1+m ≤10,所以m ≤3. 又1+m ≥1-m,所以m ≥0.综上,可知0≤m ≤3时,x ∈P 是x ∈S 的必要条件.22.解:因为函数y =c x 在R 上单调递减,所以0<c <1.即p :0<c <1,因为c >0且c ≠1,所以⌝p :c >1.又因为f (x )=x 2-2cx +1在⎝⎛⎭⎫12,+∞上为增函数,所以c ≤12.即q :0<c ≤12,因为c >0且c ≠1, 所以⌝q :c >12且c ≠1. 又因为“p 或q ”为真,“p 且q ”为假,所以p 真q 假或p 假q 真.①当p 真,q 假时,{c |0<c <1}∩⎩⎨⎧⎭⎬⎫c |c >12且c ≠1=⎩⎨⎧⎭⎬⎫c |12<c <1. ②当p 假,q 真时,{c |c >1}∩⎩⎨⎧⎭⎬⎫c |0<c ≤12=∪. 综上所述,实数c 的取值X 围是⎩⎨⎧⎭⎬⎫c |12<c <1. 23.解:由2x 2+ax -a 2=0得(2x -a )(x +a )=0,所以x =a 2或x =-a , 所以当命题p 为真命题时⎪⎪⎪⎪a 2≤1或|-a |≤1,所以|a |≤2.又“只有一个实数x 0满足不等式x 20+2ax 0+2a ≤0”,即抛物线y =x 2+2ax +2a 与x 轴只有一个交点,所以Δ=4a 2-8a =0,所以a =0或a =2.所以当命题q 为真命题时,a =0或a =2.所以命题“p 或q ”为真命题时,|a |≤2.因为命题“p 或q ”为假命题,所以a >2或a <-2.即a 的取值X 围为{a |a >2或a <-2}.24.证明: 因为数列{S n +1}是公比为2的等比数列,所以S n +1=S 1+1·2n -1,即S n +1=(a 1+1)·4n -1.因为a n =⎩⎪⎨⎪⎧a 1,n =1,S n -S n -1,n ≥2, 所以a n =⎩⎪⎨⎪⎧a 1,n =1,3(a 1+1)·4n -2,n ≥2,显然,当n ≥2时,a n +1a n =4. ①充分性:当a 1=3时,a 2a 1=4,所以对n ∈N *,都有a n +1a n=4,即数列{a n }是等比数列. ②必要性:因为{a n }是等比数列,所以a 2a 1=4, 即3(a 1+1)a 1=4,解得a 1=3. 综上,数列{a n }成等比数列的充要条件是a 1=3.第二章 圆锥曲线与方程 测试题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如果抛物线的顶点在原点,对称轴为x 轴,焦点在直线3x -4y -12=0上,那么抛物线的方程是( )A .y 2=-16xB .y 2=12xC .y 2=16xD .y 2=-12x2.设F 1,F 2分别是双曲线x 2-y 29=1的左、右焦点.若点P 在双曲线上,且|PF 1|=5,则|PF 2|=( )A .5B .3C .7D .3或73.已知椭圆x 225+y 29=1,F 1,F 2分别为其左、右焦点,椭圆上一点M 到F 1的距离是2,N 是MF 1的中点,则|ON |的长为( )A .1B .2C .3D .44.“2<m <6”是“方程x 2m -2+y 26-m=1表示椭圆”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件5.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的焦距为4,一个顶点是抛物线y 2=4x 的焦点,则双曲线的离心率e 等于( )A .2B .3C .32D .26.已知点A (3,4),F 是抛物线y 2=8x 的焦点,M 是抛物线上的动点,当|AM |+|MF |最小时,M 点坐标是( )A .(0,0)B .(3,26)C .(3,-26)D .(2,4)7.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则椭圆x 2a 2+y 2b 2=1的离心率为( )A .12B .33C .32D .228.设F 1,F 2是双曲线x 2-y 224=1的两个焦点,P 是双曲线上的一点,且3|PF 1|=4|PF 2|,则△PF 1F 2的面积等于( )A .42B .83C .24D .489.已知点A (1,2)是抛物线C :y 2=2px 与直线l :y =k (x +1)的一个交点,则抛物线C 的焦点到直线l 的距离是( )A .22B .2C .322D .2210.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最大值为( )A .6B .3C .2D .811.已知以F 1(-2,0),F 2(2,0)为焦点的椭圆与直线x +3y +4=0有且仅有一个交点,则椭圆的长轴长为( )A .32B .26C .27D .712.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1、F 2,过F 1作圆x 2+y 2=a 2的切线交双曲线的左、右支分别于点B 、C ,且|BC|=|CF 2|,则双曲线的渐近线方程为( )A .y=±3xB .y=±22xC .y=±(1+3)xD .y=±(3-1)x 二、填空题(本大题共6小题,每小题5分,共30分.把答案填在题中横线上)13.抛物线y =4x 2的焦点到准线的距离是_____.14.中心在原点,焦点在x 轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是_____.15.若点P 在曲线C 1:x 216-y 29=1上,点Q 在曲线C 2:(x -5)2+y 2=1上,点R 在曲线C 3:(x +5)2+y 2=1上,则|PQ |-|PR |的最大值是_____.16.已知点P 是抛物线y 2=2x 上的动点,点P 到准线的距离为d ,且点P 在y 轴上的射影是M ,点A (72,4),则|PA |+|PM |的最小值是_____.17.已知F 1为椭圆C :x 22+y 2=1的左焦点,直线l :y =x -1与椭圆C 交于A 、B 两点,则|F 1A |+|F 1B |的值为_____.18.过抛物线y 2=2px (p>0)的焦点作斜率为3的直线与该抛物线交于A ,B 两点,A ,B 在y 轴上的正射影分别为D ,C ,若梯形ABCD 的面积为103,则p=_____. 三、解答题(本大题共6小题,共60分.解答应写出文字说明、证明过程或演算步骤)19.(10分)已知双曲线的渐近线方程为y =±43x ,并且焦点都在圆x 2+y 2=100上,求双曲线方程.20.(10分)已知点P (3,4)是椭圆x 2a 2+y 2b 2=1(a >b >0)上的一点,F 1,F 2是椭圆的左、右焦点,若PF 1⊥PF 2.试求:(1)椭圆的方程;(2)△PF 1F 2的面积.21.(10分)抛物线y 2=2px (p >0)有一个内接直角三角形,直角顶点是原点,一条直角边所在直线方程为y =2x ,斜边长为513,求此抛物线方程.22.(10分)已知抛物线C 的顶点在原点,焦点F 在x 轴的正半轴上,设A 、B 是抛物线C 上的两个动点(AB 不垂直于x 轴),且|AF |+|BF |=8,线段AB 的垂直平分线恒经过定点Q (6,0),求此抛物线的方程.23.(10分)设双曲线C :x 2a 2-y 2=1(a >0)与直线l :x +y =1相交于两点A 、B . (1)求双曲线C 的离心率e 的取值X 围;(2)设直线l 与y 轴的交点为P ,且PA →=512PB →,求a 的值.24.(10分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,且经过点(32,12). (1)求椭圆C 的方程;(2)过点P (0,2)的直线交椭圆C 于A ,B 两点,求△AOB (O 为原点)面积的最大值.参考答案一、选择题1.C 2.D 3.D 4.B 5.A 6.D 7.C 8.C 9.B 10.A 11.C 12.C 提示:1.由题设知直线3x -4y -12=0与x 轴的交点(4,0)即为抛物线的焦点,故其方程为y 2=16x .2.因为双曲线的定义可得||PF 1|-|PF 2||=2,所以|PF 2|=7或3.3.由题意知|MF 2|=10-|MF 1|=8,ON 是△MF 1F 2的中位线,所以|ON |=12|MF 2|=4. 4.若x 2m -2+y 26-m=1表示椭圆,则有⎩⎪⎨⎪⎧m -2>0,6-m >0,m -2≠6-m ,所以2<m <6且m ≠4,故2<m <6是x 2m -2+y 26-m=1表示椭圆的必要不充分条件. 5.依题意,得c =2,a =1,所以e =ca =2.6.由题知点A 在抛物线内.设M 到准线的距离为|MK |,则|MA |+|MF |=|MA |+|MK |,当|MA |+|MK |最小时,M 点坐标是(2,4).7.因为在双曲线中,e 2=c 2a 2=a 2+b 2a 2=1+b 2a 2=54,所以b 2a 2=14,在椭圆中,e 2=c 2a 2=a 2-b 2a 2=1-b 2a 2=1-14=34,所以椭圆的离心率e =32.8.由P 是双曲线上的一点和3|PF 1|=4|PF 2|可知,|PF 1|-|PF 2|=2,解得|PF 1|=8,|PF 2|=6,又|F 1F 2|=2c =10,所以△PF 1F 2为直角三角形,所以△PF 1F 2的面积S =12×6×8=24.9.将点(1,2)代入y 2=2px 中,可得p =2,即得抛物线y 2=4x ,其焦点坐标为(1,0),将点(1,2)代入y =k (x +1)中,可得k =1,即得直线x -y +1=0,所以抛物线C 的焦点到直线l 的距离d =|1-0+1|2=2.10.由椭圆方程得F (-1,0),设P (x 0,y 0),则OP →·FP →=(x 0,y 0)·(x 0+1,y 0)=x 20+x 0+y 20,因为P 为椭圆上一点,所以x 204+y 203=1,所以OP →·FP →=x 20+x 0+3(1-x 204)=x 204+x 0+3=14(x 0+2)2+2,因为-2≤x 0≤2,所以OP →·FP →的最大值在x 0=2时取得,且最大值等于6.11.根据题意设椭圆方程为x 2b 2+4+y 2b 2=1(b >0),则将x =-3y -4代入椭圆方程,得4(b 2+1)y 2+83b 2y -b 4+12b 2=0,因为椭圆与直线x +3y +4=0有且仅有一个交点,所以Δ=(83b 2)2-4×4(b 2+1)(-b 4+12b 2)=0,即(b 2+4)·(b 2-3)=0,所以b 2=3,长轴长为2b 2+4=27.12.根据双曲线的定义有|CF 1|-|CF 2|=2a ,而|BC|=|CF 2|,那么2a=|CF 1|-|CF 2|=|CF 1|-|BC|=|BF 1|,而又由双曲线的定义有|BF 2|-|BF 1|=2a ,可得|BF 2|=4a ,由于过F 1作圆x 2+y 2=a 2的切线交双曲线的左、右支分别于点B 、C ,那么sin ∠BF 1F 2=c a ,那么cos ∠BF 1F 2=cb,根据余弦定理有cos ∠BF 1F 2=c b =ca a c a 222)4()2()2(222⨯⨯-+,整理有b 2-2ab -2a 2=0,即(a b)2-2a b -2=0,解得a b =1+3(a b =1-3<0舍去),故双曲线的渐近线方程为y=±abx=±(1+3)x .二、填空题13.1814.x 281+y 272=115.10 16.9217.82318.3 提示:13.由x 2=14y 知,p =18,所以焦点到准线的距离为p =18.14.依题意知:2a =18,所以a =9,2c =13×2a ,所以c =3,所以b 2=a 2-c 2=81-9=72,所以椭圆方程为x 281+y 272=1.15.依题意得,点F 1(-5,0)、F 2(5,0)分别为双曲线C 1的左、右焦点,因此有|PQ |-|PR |≤|(|PF 2|+1)-(|PF 1|-1)|≤||PF 2|-|PF 1||+2=2×4+2=10,故|PQ |-|PR |的最大值是10.16.设抛物线y 2=2x 的焦点为F ,则F (12,0),又点A (72,4)在抛物线的外侧,抛物线的准线方程为x =-12,则|PM |=d -12,又|PA |+d =|PA |+|PF |≥|AF |=5,所以|PA |+|PM |≥92.17.设点A (x 1,y 1),B (x 2,y 2),则由⎩⎪⎨⎪⎧x 22+y 2=1,y =x -1,消去y 整理得3x 2-4x =0,解得x 1=0,x 2=43,易得点A (0,-1)、B (43,13).又点F 1(-1,0),因此|F 1A |+|F 1B |=12+(-1)2+(73)2+(13)2=823.18.由抛物线y 2=2px (p>0)得其焦点F (2p ,0),直线AB 的方程为y=3(x -2p ),设A (x 1,y 1),B (x 2,y 2)(假定x 2>x 1),由题意可知y 1<0,y 2>0,联立⎪⎩⎪⎨⎧=-=px y p x y 2)2(32,整理有3y 2-2py -3p 2=0,可得y 1+y 2=32p,y 1y 2=-p 2,则有x 1+x 2=35p ,而梯形ABCD的面积为S=21(x 1+x 2)(y 2-y 1)=65p212214)(y y y y -+=103,整理有p 2=9,而p>0,故p=3.三、解答题19.解:设双曲线的方程为42·x 2-32·y 2=λ(λ≠0), 从而有(|λ|4)2+(|λ|3)2=100,解得λ=±576, 所以双曲线的方程为x 236-y 264=1和y 264-x 236=1. 20.解:(1)因为P 点在椭圆上,所以9a 2+16b 2=1,① 又PF 1⊥PF 2,所以43+c ·43-c =-1,得:c 2=25,②又a 2=b 2+c 2,③ 由①②③得a 2=45,b 2=20,则椭圆方程为x 245+y 220=1; (2)S 21F PF ∆=12|F 1F 2|×4=5×4=20.21.解:设抛物线y 2=2px (p >0)的内接直角三角形为AOB ,直角边OA 所在直线方程为y =2x ,另一直角边所在直线方程为y =-12x ,解方程组⎩⎪⎨⎪⎧y =2x ,y 2=2px ,可得点A 的坐标为⎝⎛⎭⎫p 2,p ; 解方程组⎩⎪⎨⎪⎧y =-12x ,y 2=2px ,可得点B 的坐标为(8p ,-4p ).因为|OA |2+|OB |2=|AB |2,且|AB |=513, 所以⎝⎛⎭⎫p24+p 2+(64p 2+16p 2)=325, 所以p =2,所以所求的抛物线方程为y 2=4x .22.解:设抛物线的方程为y 2=2px (p >0),其准线方程为x =-p2, 设A (x 1,y 1),B (x 2,y 2),因为|AF |+|BF |=8, 所以x 1+p 2+x 2+p2=8,即x 1+x 2=8-p ,因为Q (6,0)在线段AB 的中垂线上,所以QA =QB ,即(x 1-6)2+y 21=(x 2-6)2+y 22,又y 21=2px 1,y 22=2px 2,所以(x 1-x 2)(x 1+x 2-12+2p )=0, 因为x 1≠x 2,所以x 1+x 2=12-2p ,故8-p =12-2p ,所以p =4, 所以所求抛物线方程是y 2=8x .23.解:(1)联立⎩⎪⎨⎪⎧x 2-a 2y 2-a 2=0,x +y =1,消y 得x 2-a 2(1-x )2-a 2=0,即(1-a 2)x 2+2a 2x -2a 2=0,得⎩⎪⎨⎪⎧x 1+x 2=-2a 21-a 2,x 1x 2=-2a21-a 2.因为与双曲线交于两点A 、B ,所以⎩⎪⎨⎪⎧1-a 2≠0,4a 4+8a 2(1-a 2)>0,可得0<a 2<2且a 2≠1,所以e 的取值X 围为(62,2)∪(2,+∞); (2)由(1)得⎩⎪⎨⎪⎧x 1+x 2=-2a 21-a 2,x 1x 2=-2a21-a2.因为P A →=512PB →,所以x 1=512x 2,则1712x 2=-2a 21-a 2,①512x 22=-2a 21-a 2,② 由①2②得,a 2=289169,结合a >0,则a =1713. 24.解:(1)由e 2=a 2-b 2a 2=1-b 2a 2=23,得b a =13,①由椭圆C 经过点(32,12),得94a 2+14b 2=1,②联立①②,解得b =1,a =3, 所以椭圆C 的方程是x 23+y 2=1;(2)易知直线AB 的斜率存在,设其方程为y =kx +2,将直线AB 的方程与椭圆C 的方程联立,消去y 得(1+3k 2)x 2+12kx +9=0, 令Δ=144k 2-36(1+3k 2)>0,得k 2>1,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-12k 1+3k 2,x 1x 2=91+3k 2,所以S △AOB =|S △POB -S △POA |=12×2×|x 1-x 2|=|x 1-x 2|,因为(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=(-12k 1+3k 2)2-361+3k 2=36(k 2-1)(1+3k 2)2,设k 2-1=t (t >0), 则(x 1-x 2)2=36t(3t +4)2=369t +16t+24≤3629t ×16t+24=34, 当且仅当9t =16t ,即t =43时等号成立,此时k 2=73,△AOB 面积取得最大值32.第三章 空间向量与立体几何一、选择题1.若A (0,-1,1),B (1,1,3),则|AB |的值是(). A .5B .5C .9 D .32.化简AB +CD -CB -AD ,结果为().A .0B .ABC .ACD .3.若a ,b ,c 为任意向量,m ∈R ,则下列等式不成立的是(). A .(a +b )+c =a +(b +c )B .(a +b )·c =a ·c +b ·c C .m (a +b )=m a +m b D .(a ·b )·c =a ·(b ·c )4.已知+=(2,-1,0),a -b =(0,3,-2),则cos<,>的值为(). A .31B .-32C .33D .375.若P 是平面α 外一点,A 为平面α 内一点,n 为平面α 的一个法向量,且<,n >=40º,则直线PA 与平面α 所成的角为().A .40ºB .50ºC .40º或50ºD .不确定6.若A ,B ,C ,D 四点共面,且 = + 3+ 2+ x ,则x 的值是().A .4B .2C .6D .-67.在平行六面体ABCD —A 1B 1C 1D 1中,已知AB =4,AD =3,AA 1=5,∠BAD =90º,∠BAA 1=∠DAA 1=60º,则AC 1的长等于().A .85B .50C .85D .528.已知向量a =(2,-1,3),b =(-4,2,x ),c =(1,-x ,2),若(a +b )⊥c ,则x 等于().A .4B .-4C .21D .-6 9.在正方体ABCD —A 1B 1C 1D 1中,考虑下列命题①(A A 1+11D A +11B A )2=3(11B A )2;②A 1·(11B A -A A 1)=0;③向量1AD 与向量A 1的夹角为60º;④正方体ABCD —A 1B 1C 1D 1的体积为|··|. 错误命题的个数是().A .1个B .2个C .3个D .4个10.已知四边形ABCD 满足·>0,·>0,·>0,·>0,则该四边形为().A .平行四边形B .梯形C .任意的平面四边形D .空间四边形 二、填空题11.设a =(-1,1,2),b =(2,1,-2),则a -2b =.1AA12.已知向量a ,b ,c 两两互相垂直,且|a |=1,|b |=2,|c |=3,s =a +b +c ,则|s |=. 13.若非零向量a ,b 满足|a +b |=|a -b |,则a 与b 所成角的大小.14.若n 1,n 2分别为平面α,β 的一个法向量,且<n 1,n 2>=60º,则二面角α-l -β 的大小为.15.设A (3,2,1),B (1,0,4),则到A ,B 两点距离相等的点P (x ,y ,z )的坐标x ,y ,z 应满足的条件是 .16.已知向量n A A 1=2a ,a 与b 夹角为30º,且|a |=3,则21A A +32A A +…+n n A A 1-在向量b 的方向上的射影的模为.三、解答题17.如图,在四棱柱ABCD —A 1B 1C 1D 1中,底面是平行四边形, O 是B 1D 1的中点.求证:B 1C //平面ODC 1.18.如图,在三棱柱ABC —A 1B 1C 1中,侧棱垂直于底面,底边CA =CB =1,∠BCA =90º,棱AA 1=2,M ,N 分别是11B A 、的中点.A A 1ABA 1B 1D CD 1C 1O(第17题)(1)求BN ·M C 1;(2)求cos<1BA ,1CB >.19.如图,在长方体ABCD —A 1B 1C 1D 1中,AD =AA 1=1,AB =2,点E 在棱AB 上移动.ACBA 1C 1B 1N M(第18题)(1)证明:D 1E ⊥A 1D ;(2)当E 为AB 的中点时,求点E 到面ACD 1的距离; (3)AE 等于何值时,二面角D 1—EC —D 的大小为4.20.如图,在四棱锥P —ABCD 中,PA ⊥底面ABCD ,∠DAB 为直角,AB //CD ,AD =CD =2AB ,E ,F 分别为PC 、CD 中点.ABA 1D B 1C D 1C 1E(第19题)(1)试证:CD ⊥平面BEF ;(2)设PA =k ·AB ,且二面角E —BD —C 的平面角大于30º,求k 的取值X 围.参考答案一、选择题 1.D2.A3.D 4.B解析:两已知条件相加,得 a =(1,1,-1),再得 b =(1,-2,1),则cos<a ,b >=||||b a •=-32. 5.B6.D7.C8.B9.B 10.D解析:由AB ·BC >0得∠ABC >90º,同理,∠BCD >90º,∠CDA >90º,∠DAB >90º,若ABCD 为平面四边形,则四个内角之和为360º,这与上述得到结论矛盾,故选D .二、填空题11.(-5,-1,6) .12.14. 13.90°.BACPE FD(第20题)14.60º或120º. 15.4x +4y -6z +3=0. 16.3. 三、解答题17.提示:∵C B 1=D A 1=11C A +D C 1=21OC +D C 1. ∴ 直线B 1C 平行于直线OC 1与C 1D 所确定的平面ODC 1. 18.(1)0.提示:可用向量计算,也可用综合法得C 1M ⊥BN ,进而得两向量数量积为0. (2)1030. 提示:坐标法,以C 为原点,CA ,CB ,CC 1所在直线为x ,y ,z 轴.19.(1)提示:以D 为原点,直线DA ,DC ,DD 1分别为x ,y ,z 轴,可得1·E D 1=0.(2)31. 提示:平面ACD 1的一个法向量为n 1=(2,1,2),d =11n n | |1·E D =31. (3)2-3.提示:平面D 1EC 的一个法向量为n 2=(2-x ,1,2)(其中AE =x ),利用 cos 4x =2-3.20.(1)提示:坐标法,A 为原点,直线AD ,AB ,AP 分别为x ,y ,z 轴.(2)k >15152.提示:不妨设AB =1,则PA =k ,利用cos<n 1,n 2><23,其中n 1,n 2分别为面EBD ,面BDC 的一个法向量.。

2019-2020学年高二数学人教A版选修2-1:第一章检测(A) 含解析

2019-2020学年高二数学人教A版选修2-1:第一章检测(A) 含解析

第一章检测(A)(时间:90分钟满分:120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1已知命题p:“若(a-b)3b2>0,则a>b”,则在命题p的逆命题、否命题、逆否命题中,假命题的个数为() A.0 B.1C.2D.3解析:原命题p为真,故其逆否命题为真;p的逆命题为假,故其否命题也为假,因此假命题个数为2.答案:C2若p:x=2,且y=3,则p为()A.x≠2或y≠3B.x≠2,且y≠3C.x=2或y≠3D.x≠2或y=3解析:因为“且”的否定为“或”,所以p:x≠2或y≠3.故选A.答案:A3如果命题“p∧q”是假命题,“p”是真命题,那么()A.命题p一定是真命题B.命题q一定是真命题C.命题q一定是假命题D.命题q可以是真命题也可以是假命题解析:由于“p”是真命题,则p一定是假命题,故A错;由于“p∧q”是假命题,p是假命题,则q可能是真命题,也可能是假命题.答案:D4已知直线l的倾斜角为α,斜率为k,那么“α是的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析:当时,k<0,当k时所以是k的必要而不充分条件,故选B.答案:B5命题“若x<0,则ln(x+1)<0”的否命题是()A.若x≥0,则ln(x+1)<0B.若x<0,则ln(x+1)≥0C.若x≥0,则ln(x+1)≥0D.若ln(x+1)≥0,则x≥0解析:由原命题与其否命题之间的关系可知,原命题的否命题为“若x≥0,则ln(x+1)≥0”.答案:C6设命题p:若a>b,则ac>bc,q ⇔ab<0,给出下列四个由p,q构成的新命题:①p∨q;②p∧q;③p;④q.其中真命题的个数是()A.0B.1C.2D.3解析:由已知可知p为假,q为真,则①p∨q为真;②p∧q为假;③p为真;④q为假,故选C.答案:C7命题“∀x∈R,x2≠x”的否定是()A.∀x∉R,x2≠xB.∀x∈R,x2=xC.∃x0∉R≠x0D.∃x0∈R答案:D8“不等式x2-x+m>0在R上恒成立”的一个必要不充分条件是()A.mC.m>0D.m>1解析:不等式x2-x+m>0在R上恒成立⇔1-4m<0,∴m在选项中只有m>0”是“不等式x2-x+m>0在R上恒成立”的必要不充分条件.选C.答案:C9下列说法错误的是()A.命题“若x≠1,则x2-3x+2≠0”的逆否命题是“若x2-3x+2=0,则x=1”B.若命题p:∀x∈R,x2+x+1≠0,则p:∃x∈R,x2+x+1=0C.若p∨q为真命题,则p,q均为真命题D.“x>2”是“x2-3x+2>0”的充分不必要条件解析:C中“p∨q”为真命题,则p,q不一定均为真命题,可能一真一假.答案:C10“a≤0”是“函数f(x)=|(ax-1)x|在区间(0,+∞)内单调递增”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:函数f(x)的图象有以下三种情形:a=0a>0a<0由图象可知f(x)在区间(0,+∞)内单调递增时,a≤0,故选C.答案:C二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)11命题“到圆心的距离不等于半径的直线不是圆的切线”的逆否命题是.答案:圆的切线到圆心的距离等于半径12“存在α,β,使cos(α-β)=cos α-cos β”是命题(填“全称”或“特称”),该命题是(填“真”或“假”)命题.答案:特称真13存在实数x0,y0,使得≤0,用符号“∀”或“∃”可表示为,其否定为.答案:∃x0,y0∈R,使≤0∀x,y∈R,都有2x2+3y2>014已知命题甲:x≠1,且y≠2,乙:x+y≠3,则甲是乙的.(填“充要条件”“充分不必要条件”“必要不充分条件”“既不充分也不必要条件”)解析:非甲:x=1或y=2,非乙:x+y=3.∵非甲非乙,非乙非甲,∴乙甲,甲乙,∴甲是乙的既不充分也不必要条件.答案:既不充分也不必要条件15若α表示平面,a,b表示直线,给定下列四个命题:①a∥α,a⊥b⇒b⊥α;②a∥b,a⊥α⇒b⊥α;③a⊥α,a⊥b⇒b∥α;④a⊥α,b⊥α⇒a∥b.其中正确命题的序号是.解析:①错误,b也可能在α内;②正确,a∥b,a⊥α⇒b⊥α,这是直线与平面垂直的性质;③错误,还有可能b在α内;④正确,这是直线与平面垂直的性质定理.答案:②④三、解答题(本大题共5小题,共45分.解答时应写出文字说明、证明过程或演算步骤)16(8分)指出下列命题的构成形式,并写出构成它的命题.(1)36是6与18的倍数;(2)x=1不是方程x2+3x-4=0的根.解: (1)是“p∧q”的形式,其中p:36是6的倍数,q:36是18的倍数.(2)是“p”的形式,其中p:x=1是方程x2+3x-4=0的根.17(8分)指出下列各题中,p是q的什么条件:(1)p:(x-2)(x-3)=0,q:x-2=0;(2)p:四边形的对角线相等,q:四边形是平行四边形;(3)p:(x-1)2+(y-2)2=0,q:(x-1)(y-2)=0;(4)在△ABC中,p:A>B,q:BC>AC.分析:要求p是q的什么条件,关键在于分析出p能否推出q,q能否推出p.解:(1)∵(x-2)(x-3)=0x-2=0(可能x-3=0),而x-2=0⇒(x-2)(x-3)=0,∴p是q的必要不充分条件.(2)∵四边形的对角线相等四边形是平行四边形,四边形是平行四边形四边形的对角线相等,∴p是q的既不充分也不必要条件.(3)∵(x-1)2+(y-2)2=0⇒x=1,且y=2⇒(x-1)(y-2)=0,而(x-1)(y-2)=0(x-1)2+(y-2)2=0,∴p是q的充分不必要条件.(4)在△ABC中,大边对大角,大角对大边,则A>B⇔BC>AC.故p是q的充要条件.18(9分)写出下列命题的逆命题、否命题、逆否命题,并判断其真假:(1)全等三角形一定相似;(2)末位数字是零的自然数能被5整除;(3)若-则且解:(1)逆命题:若两个三角形相似,则它们一定全等,假命题;否命题:若两个三角形不全等,则它们一定不相似,假命题;逆否命题:若两个三角形不相似,则它们一定不全等,真命题.(2)逆命题:若一个自然数能被5整除,则它的末位数字是零,假命题;否命题:若一个自然数的末位数字不是零,则它不能被5整除,假命题;逆否命题:若一个自然数不能被5整除,则它的末位数字不是零,真命题.(3)逆命题:若x=2,且y=-1,则-真命题;否命题:若-≠0,则x≠2或y≠-1,真命题;逆否命题:若x≠2或y≠-1,则-≠0,真命题.19(10分)写出下列命题的否定,并判断原命题与其否定的真假:(1)所有自然数的平方是正数;(2)任意实数x都是方程5x-12=0的根;(3)∀x∈R,x2-3x+3>0;(4)有些合数不是偶数.解:(1)所有自然数的平方是正数,假命题;否定:有些自然数的平方不是正数,真命题.(2)任意实数x都是方程5x-12=0的根,假命题;否定:∃x0∈R,5x0-12≠0,真命题.(3)∀x∈R,x2-3x+3>0,真命题;否定:∃x0∈R≤0,假命题.(4)有些合数不是偶数,真命题;否定:所有的合数都是偶数,假命题.20(10分)设命题p:函数f(x)=l-的定义域为R;命题q:不等式对一切正实数均成立如果命题∨q为真命题,命题p∧q为假命题,求实数a的取值范围.分析:p∨q为真命题,p∧q为假命题,则说明p与q中一真一假.先分别求出p和q为真命题对应的a的取值范围,再分p真q假,p假q真这两种情况讨论.解:命题p为真命题⇔函数f(x)=l-的定义域为R⇔ax2-x对任意实数x均成立.因为当a=0时,-x>0,其解集不为R,所以a≠0,所以-解得a>2.所以命题p为真命题⇔a>2.命题q为真命题⇔对一切正实数x均成立⇔a-x均成立.因为x>0,所以所以所以命题q为真命题⇔a≥1.根据题意,知命题p与q有且只有一个为真命题,当命题p为真命题,且命题q为假命题时,a不存在;当命题p为假命题,且命题q为真命题时,a的取值范围是[1,2].综上所述,命题p∨q为真命题,命题p∧q为假命题时,实数a的取值范围是[1,2].。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学选修2-1第一章测试【高考题精华版-附详细解答】-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN数学选修2-1 第一章测试(常用逻辑用语)班级: 姓名:一、选择题(请将答案填写到答题卡中)1、“12m ”是“直线(m +2)x+3m y+1=0与直线(m +2)x+(m -2)y-3=0相互垂直”的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要2、实数a 、b 满足a ≥0,b ≥0,且ab =0,则称a 与b 互补,记φ()a ,b =a 2+b 2-a -b ,那么φ()a ,b =0是a 与b 互补的( )A .必要而不充分的条件B .充分而不必要的条件C .充要条件D .既不充分也不必要的条件【解析】选C.若φ()a ,b =0,则a 2+b 2=a +b ,两边平方整理,得ab =0,且a ≥0,b ≥0,∴a ,b 互补.若a ,b 互补,则a ≥0,b ≥0,且ab =0,即a =0,b ≥0或b =0,a ≥0,此时都有φ()a ,b =0,∴φ()a ,b =0是a 与b 互补的充要条件.3、设甲是乙的充分不必要条件,乙是丙的充要条件,丁是丙的必要非充分条件,则甲是丁的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要甲是乙的充分而不必要条件:甲 ==> 乙; 乙 =/=> 甲丙是乙的充要条件: 丙 <==> 乙丁是丙的必要而不充分条件:丙 ==> 丁; 丁 =/=> 丙甲 ==> 乙 ==> 丙 ==> 丁丁 =/=> 甲 (若 丁 ==> 甲,则 丁 ==> 甲 ==> 乙 ==> 丙 ,矛盾)所以 丁 是 甲 的[ 必要而不充分条件 ]4、有金盒、银盒、铅盒各一个,只有一个盒子里有肖像.金盒上写有命题p :肖像在这个盒子里;银盒上写有命题q :肖像不在这个盒子里;铅盒上写有命题r :肖像不在金盒里.p 、q 、r 中有且只有一个是真命题,则肖像在( )A .金盒里B .银盒里C .铅盒里D .在哪个盒子里不能确定5、2x 2-5x -3<0的一个必要不充分条件是( )A .-21<x <3B .-21<x <0 C .-3<x <21 D .-1<x <6 D ;解析:由2x 2-5x -3<0,解得-21<x <3,记为P ,则①P A ,②B P ,B 是P 的充分非必要条件,③C P ,C 既不是P 的充分条件,也不是P 的必要条件,④D P ,P D ,D 是P 的必要不充分条件.6、若函数f (x )=x 2+a x(a ∈R),则下列结论正确的是 ( ) A.∀a ∈R ,f (x ) 在(0,+∞)上是增函数B.∀a ∈R ,f (x )在(0,+∞)上是减函数C.∃a ∈R ,f (x )是偶函数D.∃a ∈R ,f (x )是奇函数解析:当a =16时,f (x )=x 2+16x ,f ′(x )=2x -16x 2, 令f ′(x )>0得x >2.∴f (x )在(2,+∞)上是增函数,故A 、B 错.当a =0时,f (x )=x 2是偶函数,故C 正确.D 显然错误.7、有四个关于三角函数的命题: ( )p 1:∃x ∈R ,sin 2x 2+cos 2x 2=12p 2:∃x ,y ∈R ,sin(x -y )=sin x -sin yp 3:∀x ∈, 1-cos2x 2=sin x p 4:sin x =cos y ⇒x +y =π2其中的假命题是 ( )A.p 1,p 4B.p 2,p 4C.p 1,p 3D.p 2,p 3解析:sin 2x 2+cos 2x 2=1恒成立,p 1错; 当x =y =0时,sin(x -y )=sin x -sin y ,p 2对;∵1-cos2x 2=sin 2x ,当x ∈,sin x ≥0, ∴ 1-cos2x 2=sin x ,p 3对;当x =23π,y =π6时, sin x =cos y 成立,但x +y ≠π2,p 4错. 答案:A8、知命题p :“∀x ∈,x 2-a ≥0”,命题q :“∃x ∈R ,x 2+2ax +2-a =0”.若命题“p 且q ”是真命题,则实数a 的取值范围为 ( )A.a ≤-2或a =1B.a ≤-2或1≤a ≤2C.a ≥1D.-2≤a ≤1解析:由已知可知p 和q 均为真命题,由命题p 为真得a ≤1,由命题q 为真得a ≤-2或a ≥1,所以a ≤-2,或a =1.答案:A9、下列命题中真命题的个数是 ( )①∀x ∈R ,x 4>x 2②若p ∧q 是假命题,则p 、q 都是假命题③命题“∀x ∈R ,x 3+2x 2+4≤0”的否定为“∃x 0∈R ,x 30+2x 20+4>0”A.0B.1C.2D.3解析:只有③是正确的.答案:B10、若a ,b 为实数,则“0<ab <1”是“a <1b 或b >1a”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【解析】选A.∵0<ab <1,∴a ,b 同号,且ab <1.当a >0,b >0时,a <1b ;当a <0,b <0时,b >1a.∴“0<ab <1”是“a <1b 或b >1a ”的充分条件. 而取a =-1,b =1,显然有a <1b,但不能推出0<ab <1, 故“0<ab <1”是“a <1b 或b >1a”的充分而不必要条件.11、“sinα=12”是“cos2α=12”的 ( ) A.充分而不必要条件 B.必要而不充分条件C.充要条件D.既不充分也不必要条件解析:充分性:如果sinα=12,则cos2α=1-2sin 2α=12,成立;必要性:如果cos2α=12,则sinα=±12,不成立,可知是充分而不必要条件. 答案:A12、下列选项中,p 是q 的必要不充分条件的是 ( )A.p :ac 2≥bc 2, q :a >bB.p :a >1,b >1,q :f (x )=a x -b (a >0,且a ≠1)的图象不过第二象限C.p :x =1, q :x 2=xD.p :a >1,q :f (x )=log a x (a >0,且a ≠1)在(0,+∞)上为增函数解析:a >b ⇒ac 2≥bc 2,但ac 2≥bc 2 a >b .答案:A1 2 3 4 5 6 7 8 9 1011 12二、填空题13、若命题“∃x ∈R ,使得x 2+(a -1)x +1<0”是真命题,则实数a 的取值范围是 .解析:∵∃x ∈R ,使得x 2+(a -1)x +1<0是真命题∴(a -1)2-4>0,即(a -1)2>4,∴a -1>2或a -1<-2,∴a >3或a <-1.答案:(-∞,-1)∪(3,+∞)14、下列命题中__1234_____为真命题.①“A ∩B =A ”的一个必要条件是“A B ”;②“若x 2+y 2=0,则x ,y 全为0”的否命题;③“全等三角形是相似三角形”的逆命题;④“圆内接四边形对角互补”的逆否命题.15、若“x∈[2,5]或x∈{x|x<1或x>4}”是假命题,则x 的取值范围是16、判断下列命题的真假性:①若m>0,则方程x 2-x +m =0有实根②若x>1,y>1,则x+y>2的逆命题③对任意的x ∈{x|-2<x<4},|x-2|<3的否定形式④△>0是一元二次方程ax 2+bx +c =0有一正根和一负根的充要条件三、解答题17、P :对任意实数x 都有012>++ax ax 恒成立;Q :关于x 的方程02=+-a x x 有实数根;如果P 与Q 中有且仅有一个为真命题,求实数a 的取值范围.解:对任意实数x 都有012>++ax ax 恒成立⎩⎨⎧<∆>=⇔000a a 或 40<≤⇔a ;关于x 的方程02=+-a x x 有实数根41041≤⇔≥-⇔a a ;如果P 正确,且Q 不正确,有44141,40<<∴><≤a a a 且;如果Q 正确,且P 不正确,有041,40<∴≤≥<a a a a 且或.所以实数a 的取值范围为()⎪⎭⎫ ⎝⎛∞-4,410, .18、已知p: 2311≤--x ,q: ()001222>≤-+-m m x x ,若p ⌝是q ⌝的必要不充分条件,求实数m 的取值范围。

解:由p :2311≤--x .102≤≤-⇒x ()().921101.,,11:,210:.110122≥⎩⎨⎧-≤-≥+⌝⇒⌝⌝⌝-<+>⌝-<>⌝+≤≤-〉≤-m m m q p q p m x m x p x x p m x m m m x q 所以故只需满足所以的必要不充分条件是因为或或所以所以可得由19、已知0≠ab ,求证1=+b a 的充要条件是02233=--++b a ab b a 证明:必要性:()()()0....111,1,122332233==----+-+=--++∴-==+a a a a a a b a ab b a a b b a 即 充分性:=--++2233b a ab b a 0即()()()()()01,0,.1,0432,0,0,0.01022332222222222=--++=+≠=+≠+⎪⎭⎫ ⎝⎛-=+-≠≠≠=-++-=+--+-+b a ab b a b a ab b a b b a b ab a b a ab b a b ab a b ab a b ab a b a 的充要条件是当综上可知只有且即又20、证明:若222=+q p ,则2≤+q p 。

(提示:用逆否命题来证明)。

相关文档
最新文档