幂函数、指数函数和对数函数知识点梳理

合集下载

指数对数幂函数知识点总结9篇

指数对数幂函数知识点总结9篇

指数对数幂函数知识点总结9篇第1篇示例:指数对数幂函数是高中数学中非常重要的内容之一,它在实际生活中有着广泛的应用。

指数对数幂函数是一种特殊的函数形式,通过指数、对数、以及幂运算的组合,可以描述各种复杂的变化关系。

在本文中,我们将对指数对数幂函数的相关知识点进行总结,帮助大家更好地理解和掌握这一重要内容。

一、指数函数指数函数是以自然常数e为底的幂函数,一般形式为f(x) = a^x,其中a为底数,x为指数。

指数函数的特点是底数a是一个固定的正数,指数x可以是任意实数。

指数函数的图像通常表现为一条逐渐增长或逐渐减小的曲线,其增长趋势取决于底数a的大小。

指数函数的性质有:1. 当底数a大于1时,函数呈现增长趋势;当底数a小于1且大于0时,函数呈现下降趋势。

2. 指数函数在x轴上的水平渐近线为y=0,在y轴上的垂直渐近线为x=0。

3. 在0<a<1时,指数函数是单调递减的;在a>1时,指数函数是单调递增的。

4. 指数函数的导数为f'(x)=a^x * ln(a),导数的值等于函数在该点的斜率。

1. 对数函数的图像是一条左开右闭的单调增函数。

2. ln(x)函数在x=1处的值为0,log(x)函数在x=1处的值也为0。

4. 对数函数的反函数是指数函数,即对数函数与指数函数是互为反函数的关系。

三、幂函数幂函数是指形如f(x) = x^n的函数,其中n为一个实数。

幂函数可以是单项式函数、分式函数以及多项式函数的基础函数形式。

幂函数的性质有:1. 当n为偶数时,幂函数呈现奇次函数的特点,曲线两侧对称于y 轴;当n为奇数时,幂函数呈现偶次函数的特点。

四、指数对数幂函数的综合应用指数对数幂函数在自然科学、工程技术、经济管理等领域有着广泛的应用。

在生态学中,人口增长规律可以用指数函数来描述;在物理学中,无阻射下的自由落体运动可以用幂函数来描述;在金融领域中,复利计算和收益增长也可以用指数函数和对数函数来分析。

指数函数幂函数对数函数知识点总结

指数函数幂函数对数函数知识点总结

指数函数幂函数对数函数知识点总结一.指数函数指数函数是一种特殊的函数形式,其中自变量位于指数的上方。

指数函数的一般形式为:$y=a^x$。

在指数函数中,底数$a$是一个正实数,且$a\ne q1$。

1.指数函数的性质指数函数的增长特性-:当底数$a$大于1时,指数函数呈现增长趋势,随着自变量$x$的增大,函数值$y$也随之增大。

当底数$a$在0和1之间时,指数函数则呈现递减趋势。

指数函数的定义域和值域-:指数函数的定义域为所有实数,即$(-\i nf ty,+\i nf ty)$。

根据底数$a$的不同,指数函数的值域也有所不同。

若底数$a>1$,则值域为$(0,+\in ft y)$;若底数$0<a<1$,则值域为$(-\in ft y,+\in fty)$。

指数函数的奇偶性-:当底数$a>0$且$a\n eq1$时,指数函数为奇数函数。

2.指数函数的图像指数函数的图像特点也与底数$a$的取值有关:-当底数$a>1$时,指数函数的图像呈现增长趋势,在原点左侧逐渐接近$y=0$轴,右侧逐渐趋近于正无穷。

-当底数$0<a<1$时,指数函数的图像呈现递减趋势,在原点左侧呈现正无穷,右侧逐渐接近$y=0$轴。

二.幂函数幂函数是指数函数的一种特殊形式,其中底数固定为正整数。

幂函数的一般形式为:$y=x^n$。

1.幂函数的性质幂函数的增长特性-:当指数$n$为正整数时,幂函数呈现增长趋势。

若$n$为奇数,则幂函数随自变量$x$的增大而增加;若$n$为偶数,则幂函数随着自变量$x$的增大或减小而增加。

幂函数的定义域和值域-:幂函数的定义域为所有实数,即$(-\i nf ty,+\i nf ty)$。

幂函数的值域则根据指数$n$的奇偶性而定。

若$n$为奇数,则值域为$(-\i nf ty,+\i nf t y)$;若$n$为偶数,则值域为$[0,+\in ft y)$。

指数函数、对数函数、幂函数的图像和性质知识点总结.docx

指数函数、对数函数、幂函数的图像和性质知识点总结.docx

(一)指数与指数函数1.根式(1)根式的概念根式的It念3符号表示a备注3如果x n=a,那么x叫做a的〃次方根a n > lfin e AT P 当«为奇数时,正数的«次方根是一个正数,负数的川次方根是一个负数3零的兀次方根是零3当n为偶数时,正数的n次方根有两个,它们互为相反数"土嚅(° >0)3负数没有偶次方根卩(2).两个重要公式*a①> 0)\a\=<[-a{ci < 0)②=a (注意a必须使砺有意义)。

2.有理数指数幕(1)幕的有关概念①正数的正分数指数幕:a"= 奸(d > (),m. n w AT,且〃〉1);豐 1 1②正数的负分数指数幕:a n = —=-=(^7>0,/?K /?G N\JBL H>1)a n③0的正分数指数幕等于0,0的负分数指数幕没有意义.注:分数指数幕与根式可以互化,通常利用分数指数幕进行根式的运算。

(2)有理数指数幕的性质①a I a'=a H'"(a>0,r、s G Q);②(a r)s=a re(a>0,r> sEQ);③(ab)'=a r b s(a>0,b>0,r E Q);.3.指数函数的图象与性质y=a x a>l 0<a<l图象~d 1 *定义域 R 值域 (0, +oo) 性质(1)过定点(0, 1)(2)当 x>0 时,y>l; x<0 时,0<y<l(2)当 x>0 时,0<y<l; x<0 时,y>l(3)在(-oo, +oo)上是增函数(3)在 (-00 , 4-00 )上是减函数注:如图所示,是指数函数(1) y=a x , (2) y=b x ' (3) ,y=c x (4) ,y=d x 的图象,如何确 定底数a,b,c,d 与1之间的大小关系?提示:在图屮作直线x=l,与它们图象交点的纵坐标即为它们各自底数的值,即 ci>』>l>ai>bi,・・・c>d>l>a>b 。

指数函数、对数函数及幂函数知识总结+典型考题

指数函数、对数函数及幂函数知识总结+典型考题

指数函数、对数函数及幂函数知识总结+典型考题指数函数、对数函数及幂函数知识总结一、知识框图二、知识要点梳理函数名称指数函数定义函数且叫做指数函数图象定义域值域过定点图象过定点,即当时,.奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,从逆时针方向看图象,逐渐增大;在第二象限内,从逆时针方向看图象,逐渐减小.常见性质n次方根的性质:(1)当为奇数时,;当为偶数时,(2)分数指数幂的意义:;注意:0的正分数指数幂等与0,负分数指数幂没有意义.有理数指数幂的运算性质:(1) (2) (3)函数名称对数函数定义函数且叫做对数函数图象定义域值域过定点图象过定点,即当时,.奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,从顺时针方向看图象,逐渐增大;在第四象限内,从顺时针方向看图象,逐渐减小.常见性质几个重要的对数恒等式,,.常用对数与自然对数常用对数:,即;自然对数:,即(其中…).对数的运算性质如果,那么①加法:②减法:③数乘:④⑤⑥换底公式:幂函数形如的函数,叫做幂函数,其中为常数.三、考题训练1.(2012·新课标全国高考文科·T11)当0<x ≤12时,4x<log a x ,则a 的取值范围是( )(A )(0,22) (B )(22,1) (C )(1,2) (D )(2,2) 2.(2012·安徽高考文科·T3)(2log 9)·(3log 4)=( )(A )14 (B )12(C )2 (D )4 3.(2012·天津高考文科·T6)下列函数中,既是偶函数,又在区间(1,2)内是增函数的为( )2x (A )y=cos ,x R ∈ 2||x (B )y=log , 0x R x ∈≠且 2x xe e --(C )y=, x R ∈ 3+x (D )y=1, x R ∈4.(2012·北京高考文科·T12)已知函数f (x )=lgx ,若f (ab )=1,则f (a 2)+f (b 2)=___________.5.(2012·江苏高考·T5)函数6()12log f x x=-的定义域为 .6.(2012·山东高考文科·T15)若函数()(0,1)x f x a a a =>≠在[-1,2]上的最大值为4,最小值为m ,且函数()(14)g x m x =-在[0,)+∞上是增函数,则a = .7.函数y=(31)x -2x 在区间[-1, 1]上的最大值为 .8.记函数13x y -=+的反函数为()y g x =,则(10)g = A . 2 B . 2- C . 3 D . 1-9.若函数f (x )=log x a 在[2,4]上的最大值与最小值之差为2,则a=___ 10.函数y =的定义域是____________10.f (x )=⎪⎩⎪⎨⎧〉〈-)1(log )1(281x x xx 则满足f (x )=41的x 的值是_______________3 11.设)(1x f-是函数)1(log )(2+=x x f 的反函数,若8)](1)][(1[11=++--b fa f,则f (a +b )的值为A. 1B. 2C. 3D. 3log 2 12.函数)(log )(2x ax x f a -=在]4,2[∈x 上是增函数,则a 的取值范围是( ) A. 1>a B. 1,0≠>a a C. 10<<a D. φ∈a . 13.方程lg()lg lg 4223x x +=+的解是___________________14.21-=a 是函数ax e x f x ++=)1ln()(为偶函数的c(A ) 充分不必要条件 (B )必要不充分条件(C ) 充分必要条件 (D )既不充分也不必要条件15.已知函数)(log )(221a ax x x f --=的值域为R ,且f (x )在()31,-∞-上是增函数,则a的范围是 .16.函数y=log 2(1-x)的图象是(A ) (B ) (C ) (D )16.已知9x -10.3x +9≤0,求函数y=(41)x-1-4·(21)x +2的最大值和最小值17.设函数,241)(+=xx f (1)求证:对一切)1()(,x f x f R x -+∈为定值;(2)记*),()1()1()2()1()0(N n f nn f n f n f f a n ∈+-++++=K 求数列}{n a 的通项公式及前n 项和.。

幂函数指数函数和对数函数知识点梳理

幂函数指数函数和对数函数知识点梳理

幂函数指数函数和对数函数知识点梳理一、幂函数1.定义:幂函数是形如f(x)=x^n的函数,其中n为常数,x为自变量,n可以是整数、分数或实数。

2.性质:-当n为正偶数时,幂函数是单调递增函数,图像呈现开口向上的抛物线形状。

-当n为正奇数时,幂函数是单调递增函数,图像呈现开口向上的直线形状。

-当n为负偶数时,幂函数是单调递减函数,图像呈现开口向下的抛物线形状。

-当n为负奇数时,幂函数是单调递减函数,图像呈现开口向下的直线形状。

-当n=0时,幂函数f(x)=x^0恒等于1,所有x轴上的点对应于y=1,即图像是一条水平直线。

3.应用:-幂函数常用于描述成比例关系,如面积和边长的关系、体积和边长的关系等。

-幂函数还用于经济学、物理学、化学等学科中的一些数学模型。

二、指数函数1.定义:指数函数是形如f(x)=a^x的函数,其中a为正实数且不等于1,x为自变量。

2.性质:-指数函数的值域为正实数,图像始终位于y轴的上方。

-当a>1时,指数函数是单调递增函数,图像呈现开口向上的曲线形状。

-当0<a<1时,指数函数是单调递减函数,图像呈现开口向下的曲线形状。

-当a=1时,指数函数f(x)=1^x恒等于1,所有x轴上的点对应于y=1,即图像是一条水平直线。

3.应用:-指数函数常用于描述指数增长或指数衰减的情况,如人口增长、放射性物质衰变等。

-指数函数还用于描述复利、投资和经济增长等问题。

三、对数函数1. 定义:对数函数是形如f(x)=loga(x)的函数,其中a为正实数且不等于1,x为自变量。

2.性质:-对数函数的定义域为正实数,值域为实数。

-对数函数的图像呈现开口向右的曲线形状。

-对数函数关于直线y=x对称。

-对数函数的导数为1/x。

3.应用:-对数函数常用于解决指数方程和指数不等式,将复杂的指数问题转化为相对简单的对数问题。

-对数函数还广泛应用于科学、工程、经济等领域的数据处理和模型建立。

综上所述,幂函数、指数函数和对数函数是高中数学中的重要函数类型。

指数与对数函数幂函数知识点总结

指数与对数函数幂函数知识点总结
On the positive side, the fast rhythm of life requires people to enhance efficiency when working and then allows them to enjoy longer leisure time. Withthe advance in technologypeople can make inquires by phone, instead of travelling long distances, Internet access makes it possible (for one to perform various tasks without leaving theiroffices. Even though people have to travel every now and then, for meeting business partners, visiting clients in other cities or other purposes, modem transport networks reduce the amount of time they spend on commutes.
说明: 注意底数的限制 ,且 ;

注意对数的书写格式.
两个重要对数:
常用对数:以10为底的对数 ;
自然对数:以无理数 为底的对数的对数 .
指数式与对数式的互化
幂值 真数
= N = b
底数
指数 对数
(二)对数的运算性质
如果 ,且 , , ,那么:
· + ;
- ;

注意:换底公式
( ,且 ; ,且 ; ).

幂函数、指数函数和对数函数

幂函数、指数函数和对数函数

幂函数、指数函数和对数函数幂函数、指数函数和对数函数一、幂函数1、函数k xy=(k为常数,Qk∈)叫做幂函数2、单调性:当k>0时,单调递增;当k<0时,单调递减3、幂函数的图像都经过点(1,1)二、指数函数1、x ay=(0>a且1≠a)叫做指数函数,定义域为R,x作为指数2、指数函数的值域:)+,(∞3、指数函数的图像都经过点(0,1)4、当a>1时,为增函数;当0<a<1时,为减函数5、指数函x ay=数的图像:a>1 0<a<1三、对数1、如果a(a>0,且a ≠-1)的b 次幂等于N ,即Nab=,那么b 叫做以a 为底N 的对数,记作bN a =log ,其中,a 叫做底数,N 叫做真数2、零与负数没有对数,即N>03、对数恒等式:NaNa =log4、(重点强调)a>0,且a ≠-1,N>05、常用对数:以十为底的对数,记作lg N6、自然对数:以e 为底的对数,记作in N7、对数的运算性质:如果a>0,a ≠1,M>0,N>0,那么(1)NM MN a aalog log)(log +=(2)N M NMa a alog log log-=(3)Mn M a n alog log=8、对数换底公式:)01,01,(log log log >≠>≠>=N b b a o a NNN b a b ,,其中9、指数式与对数式的互化,必须并且只需紧紧抓住对数的定义:ab=N logaN=b四、反函数1、对于函数)(x f y =,设它的定义域为D ,值域为A ,如果A 中任意一个值y ,在D 中总有唯一确定的x 值与它对应(即一个x 对应一个y ),且满足)(x f y =,这样得到的x 关于y 的函数叫做)(x f y =的反函数,记作)(1y fx -=,习惯上,自变量用x 表示,而函数用y 表示,说以把它改写为))((1A x x f y ∈=-2、反函数的定义域与值域: 函数)(x f y = 反函数)(1x f y -=定义域 D A 值域AD3、函数)(x f y =的图像与反函数)(1x fy -=的图像关于直线x y =对称五、对数函数1、函数)1,0(log≠>=a a x y a且叫做对数函数,是指数函数的反函数2、对数函数的图像都在y 轴的右方3、对数函数的图像都经过点(1,0)4、当a,x 范围相同时,y>0;当a,x 范围不同是,y<0,(范围指的是0<x<1和x>1两个范围)5、对数函数)1,0(log≠>=a a x y a且的图像6、对数函数的定义域:x>07、对数函数的单调性:当a>1时,单调递增;当0<a<1时,单调递减六、简单指数方程指数里含有未知数的方程叫做指数方程 1、819252=+-x x(1)将方程化为同底数幂的形式:225992=+-x x2252=+-∴x x 解得:5,021==x x(2)指对互换:281log 2592==+-x x ,解得:5,021==x x2、0155252=-⋅-x x换元法:令)05>=t t x(,则原方程化为1522=--t t ,解得:(舍)3,521-==t t1,55==∴x x3、11235-+=xx两边同取以十为底的对数,得:1123lg 5lg -+=xx ,3lg )1)(1(5lg )1+-=+∴x x x ( 0)3lg 3lg 5)(lg 1(=+-+∴x x ,解得:5log 13lg 5lg 113+=+=-=x x 或七、简单对数方程对数符号后面含有未知数的方程叫做对数方程(解对数方程须检验,真数>0) 1、化为同底:2)532(log2)1(=-++x x x2)1(2)1()1(log )532(log +=-+++x x x x x ,532)1(22-+=+x x x62=-+x x ,3,221-==x x经检验,x=2为原方程的解2、换元:1log325log 225=-x x令tx =25log,则tx 125log=,所以原方程化为:1312=-t t232=-+∴t t ,解得32,121=-=t t当1-=t 时,1log 25-=x ,251=∴x当32=t 时,32log25=x ,3165=∴x经检验,它们都是原方程的根 所以原方程的解为321165,32==x x。

(完整版)指数函数、对数函数和幂函数知识点归纳

(完整版)指数函数、对数函数和幂函数知识点归纳

一、幂函数1、幂的有关概念正整数指数幂:...()nna a a a n N=∈零指数幂:01(0)a a=≠负整数指数幂:1(0,)ppa a p Na-=≠∈分数指数幂:正分数指数幂的意义是:(0,,,1)mn mna a a m n N n=>∈>且负分数指数幂的意义是:11(0,,,1) mnm n mna a m n N naa-==>∈>且2、幂函数的定义一般地,函数ay x=叫做幂函数,其中x是自变量,a是常数(我们只讨论a是有理数的情况).3、幂函数的图象幂函数ay x=当11,,1,2,332a=时的图象见左图;当12,1,2a=---时的图象见上图:由图象可知,对于幂函数而言,它们都具有下列性质:a y x =有下列性质: (1)0a >时:①图象都通过点(0,0),(1,1);②在第一象限内,函数值随x 的增大而增大,即在(0,)+∞上是增函数. (2)0a <时:①图象都通过点(1,1);②在第一象限内,函数值随x 的增大而减小,即在(0,)+∞上是减函数; ③在第一象限内,图象向上与y 轴无限地接近,向右与x 轴无限地接近. (3)任何幂函数的图象与坐标轴至多只有一个交点; (4)任何幂函数图象都不经过第四象限; (5)任何两个幂函数的图象最多有三个交点.二、指数函数①定义:函数)1,0(≠>=a a a y x且称指数函数, 1)函数的定义域为R ; 2)函数的值域为),0(+∞;3)当10<<a 时函数为减函数,当1>a 时函数为增函数. 4)有两个特殊点:零点(0,1),不变点(1,)a .5)抽象性质: ()()(),()()/()f x y f x f y f x y f x f y +=⋅-=三、对数函数如果b a N =(0a >,1a ≠),那么b 叫做以a 为底N 的对数,记作log a N b =log b a a N N b =⇔=(0a >,1a ≠,0N >). 1.对数的性质()log log log a a a MN M N =+. log log log aa a MM N N=-.log log n a a M n M =.(00M N >>,,0a >,1a ≠)( a, b > 0且均不为1)2.换底公式:log log log m a m NN a=( a > 0 , a ≠ 1 ;0,1m m >≠) 常用的推论:(1)log log 1a b b a ⨯= ; .(2)log log m na a nb b m=(a 、0b >且均不为1).1log log 1N N a a mn n m==. (3), (4)对数恒等式.一、对数函数的图像及性质① 函数log a y x =(0a >,1a ≠)叫做对数函数② 对数函数的性质:定义域:(0,)+∞; 值域:R ; 过点(1,0),即当1x =时,0y =.当0a >时,在(0,+∞)上是增函数;当01a <<时,在(0,+∞)上是减函数.二、对数函数与指数函数的关系对数函数log a y x =与指数函数x y a =图像关于直线y x =对称. 指数方程和对数方程主要有以下几种类型:()()log ,log ()()f x b a a a b f x b f x b f x a =⇔==⇔=(定义法)b mnb a n am log log =1log log log =⋅⋅a c b c b a 01log =a 1log =a a N a N a =log()()()(),log ()log ()()()0f x g x a a a a f x g x f x g x f x g x =⇔==⇔=>(转化法) ()()()log ()log f x g x m m a b f x a g x b =⇔= (取对数法)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

幂函数、指数函数和对数函数知识点梳理
函数是高中数学的一个基本而重要的知识点,它的有关概念和理论是研究运动变化着的变量间相互依赖关系的规律的工具。

在高考试题中占有很大的比重。

在高中阶段是运用集合、对应的思想,即"映射"的观点去概括函数的一般定义,深化函数的概念。

函数作为中学数学的重要知识体系,不但其自身内容十分丰富,而且与不等式、数列、三角、复数、解析几何等都紧密相连,因此,要用运动变化,相互联系,相互制约,相互转化的观点和方法去分析问题和解决问题。

此外,还应重视数形结合,分类讨论,等价转化(包括变形,换元等)等重要的思想方法的运用,加强函数与各部分知识间的联系,加强综合运用知识和方法的能力,在函数复习中应给予高度的.现将有关知识点作如下归纳,供复习参考.
1.幂函数
(1)定义形如y=xα的函数叫幂函数,其中α为常数,在中学阶段只研究α为有理数的情形
2.指数函数和对数函数
(1)定义
指数函数,y=a x(a>0,且a≠1),注意与幂函数的区别.
对数函数y=log a x(a>0,且a≠1).
指数函数y=a x与对数函数y=log a x互为反函数.
(2)指数函数y=a x(a>0,且a≠1)与对数函数y=log a x(a>0,且a≠1)的图象和性质如表1-2.
(3)指数方程和对数方程
指数方程和对数方程属于超越方程,在中学阶段只要求会解一些简单的特殊类型指数方程和对数方程,基本思想是将它们化成代数方程来解.其基本类型和解法见表1-3.。

相关文档
最新文档