蛋白质翻译后加工及转运

蛋白质的合成、加工

综述细胞内的蛋白质合成、加工、修饰、分选与运输方式及其生物学意义。 蛋白质是生命活动的主要承担者,是构成细胞和生物体结构的重要物质,在生物体及细胞的生命活动中发挥重大作用。 1.许多蛋白质是构成细胞和生物体结构的重要物质,称为结构蛋白。 2.细胞内的化学反应离不开酶得催化,绝大多数酶都是蛋白质。 3.有些蛋白质具有运输载体的功能。(血红蛋白运输氧) 4.有些蛋白质起信息传递的作用,能够调节机体的生命活动。(如,胰岛素) 5.有些蛋白质有免疫功能,人体的抗体是蛋白质,可以帮助人体抵御病菌和病毒等抗原的侵害。 1 蛋白质的合成 蛋白质的生物合成过程实质上是基因表达的一个过程,它包括转录和翻译。即把mRNA 分子中的碱基排列顺序转变为蛋白质或多肽链中的氨基酸排列顺序的过程,可分为起始、延长和终止3个阶段,分别由不同的起始因子、延伸因子和终止因子(释放因子)参与。细胞中的蛋白质都是在核糖体上合成的,并都是起始于细胞质基质之中。 2 蛋白质的加工与修饰 许多新生肽要经过一种或几种共价键修饰,这种修饰可以在正延伸着的肽链中进行。一般情况下,翻译后修饰一是为了功能上的需要,另一种情况是折叠成天然构象的需要。在粗面内质网合成并进入内质网腔的蛋白质发生的主要化学修饰作用有糖基化、羟基化、酰基化和二硫键的形成。而在细胞质基质中发生蛋白质修饰的类型主要有辅酶或辅基与酶的共价结合、磷酸化和去磷酸化、糖基化、甲基化、酰基化等。蛋白质的修饰加工主要包括: 切除加工:包括切除N-端甲硫氨酸、信号肽序列和切除部分肽段,将无活性的前体转变成活性形式。(包含信号肽的胰岛素前体称为前胰岛素原,去掉信号肽的胰岛素的前体称为胰岛素原),进一步切除称为C链的肽段后才能形成活性形式的胰岛素) 糖基化:糖基化主要发生在内质网和高尔基体中。粗面内质网上合成的大多数蛋白在都发生了糖基化。主要作用是促进蛋白质在成熟过程中折叠成正确构象,增加蛋白质的稳定性,有N-连接的糖基化和O-连接的糖基化之分。 羟基化:最常见的是内质网上合成的跨膜蛋白在通过内质网和高尔基体的转运过程中发生的,它由不同的酶来催化,把软脂酸链共价地连接在某些跨膜蛋白的暴露在细胞质基质中的结构域。 磷酸化与去磷酸化:蛋白磷酸化与去磷酸化参与代谢调控和信号转导以及蛋白与蛋白之间的相互作用。(PDGF受体的酪氨酸残基经过自身磷酸化后才与细胞质定位蛋白质结合。) 亲脂修饰:最常见的亲脂修饰是酰化和异戊二烯化。蛋白质亲脂修饰后可以改变膜结合能力和特定的蛋白与蛋白之间的相互作用。N-豆蔻酰化(豆蔻酸以酰酰氨键形式共价连在肽链N 端的残基上)能增加特定G蛋白的α亚基对膜结合的β、γ亚基的亲和力。 甲基化:通过甲基转移酶进行。天冬氨酸的甲基化能促进已破坏蛋白的修复或降解,在2,3-二磷酸核酮糖羧化酶(rihilose-2,3-biosphosphate carboxylase)、钙调蛋白(calmodulin)、组氨酸(histone)、某些核糖体蛋白和细胞色素C中都有甲基化的赖氨酸残基。 二硫键形成:二硫键通常只发现于分泌蛋白(如胰岛素)和某些膜蛋白中,在细胞质中由于有各种还原性物质,所以细胞质蛋白没有二硫键。因为内质网腔是一个非还原性环境,所以粗糙内质网上的新生肽只暂时形成二硫键。当新生肽进入内质网腔时,一些肽链可能会按氨基酸次序依次暂时形成二硫键,但最终会通过交换二硫键位置的形式形成正确的结构,内质网中可能还有一种二硫键异构酶催化该过程。 3 蛋白质的分选和转运

蛋白质翻译总结

氨基酸的活化a.起始信号(AUG-甲硫氨酸密码子)和缬氨酸(GUG)极少出现i.真核生物起始氨基酸—甲硫氨酸,原核生物-甲酰甲硫氨酸 ii.SD序列:存在于原核生物起始密码子AUG上游7~12个核苷酸处的一种4~7个核苷酸的保 守片段,与16srRNA3’端反向互补。功能将mRNA的AUG起始密码子置于核糖体的适当位置以便起始翻译作用。 1)原核生物的SD序列:原核mRNA起始密码子上一段可与核糖体结合的序列。30s小亚基首先与 翻译因子IF-1(与30s结合)和IF-3(稳定小亚基,帮助其与mRNA结合位点的识别)结合,通过SD序列与mRNA模板相结合。 iii.真核生物依赖于结合5'帽,核糖体小亚基沿mRNA5'端帽子结构扫描到RBS iv.在IF2起始因子和GTP的帮助下,fMet-tRNA进入小亚基的P位,tRNA上的反密码子与mRNA密码子配对。 v.小亚基复合物与50s大亚基结合,GTP水解,释放翻译起始因子vi.翻译的起始 b.后续氨基酸与核糖体的集合:第二个氨酰-tRNA与EF-Tu.GTP形成复合物,进入核糖体的A位,水解产生GDP并在EF-Ts的作用下释放GDP并使EF-Tu结合另一分子GTP形成新的循环。i.肽键的生成:AA-tRNA占据A位,fMet-tRNA占据P位,在肽基转移酶的催化下,A位上的AA-tRNA转移到P位,P位上的起始tRNA转移至E位,与fMet-tRNA上的氨基酸生产肽键。起始RNA随后离开。 ii.移位:核糖体通过EF-G介导的GTP水解所提供的能量向mRNA模板3'末端移动一个密码子,二 肽基-tRNA完全进入P位点 iii.肽链的延申 c.当终止密码子UAA,UAG,UGA出现在核糖体的A位时,没有相应的AA-tRNA能与其结合,而释放因子能识别密码子并与之结合,水解P位上的多肽链与tRNA之间的二酯键,然后新生的肽链释放,核糖体大小亚基解体 i.肽链的终止 d.N端fMet或Met的切除i.二硫键的形成ii.特定氨基酸的修饰iii.新生肽段非功能片段的切除iv.蛋白质前体的加工 e.无义突变:DNA序列中任何导致编码氨基酸的三联密码子突变转变为终止密码子 UAA,UGA,UAG中的突变,使得蛋白质合成提前终止,合成无功能或无意义的多肽。1)错义突变:由于结构基因中某种核苷酸的变化使一种氨基酸的密码变成另一种密码。2)同工tRNA:识别携带相同氨基酸的tRNA i.校正tRNA: ii.tRNA种类 f.蛋白质的生物合成 1.翻译 2019年6月19日 19:50

蛋白质合成、加工和转运的过程

一、蛋白质的合成 1、核糖体是合成蛋白质的机器,其功能是按照mRNA的指令由氨基酸合成蛋白质。 2、游离核糖体游离于胞质中,合成细胞内的基础蛋白质;附着核糖体,附着在内质网表面,构 成粗面内质网的核糖体,合成分泌蛋白和膜蛋白。 3、蛋白质合成的一般过程: 1)氨基酸的活化。氨基酸和tRNA在氨酰一tRNA合成酶作用下合成活化的氨酰一 tRNA。2)起始、延伸和终止。3)蛋白质合成后的加工。肽链N端Met的去除; 氨基酸残基的化学修饰,乙酰化、甲基化、磷酸化等;肽链的折叠;二硫键的形成。 二、蛋白质的分泌合成、加工修饰和转运 1、信号肽介导分泌性蛋白在粗面内质网的合成。 1)信号肽是蛋白质合成中最先被翻译出来的一段氨基酸序列,通常由18-30个疏水氨基酸组成,能指引核糖体与内质网结合,并引导合成的多肽链进入内质网 腔。 2)新生分泌性蛋白质多肽链在胞质中的游离核糖体上起始合成。当新生肽链N端的信号肽被翻译后,可立即被细胞质基质中的信号识别颗粒(SRP)识别、结 合。 3)与信号肽识别结合的SRP,识别结合内质网膜上的SRP-R,并介导核糖体锚泊附着于内质网膜的通道蛋白移位子上。而SRP则从信号肽一核糖体复合体上解离, 返回细胞质基质中重复上述过程。 4)在信号肽的引导下,合成中的肽链,通过由核糖体大亚基的中央管和移位子蛋白共同形成的通道,穿膜进入内质网网腔。随之,信号肽序列被内质网膜俄面的信号肽酶且除, 新生肽链继续延伸,直至完成而终止。最后完成肽链合成的核糖体大、小亚基解聚,并 从内质网上解离。 2、跨膜驻留蛋白的插入和转移决定了蛋白质的两种去处:1)穿过膜进腔,为可溶性蛋 白质,包括分泌蛋白和内质网驻留蛋白。2)嵌入内质网膜中,形成膜蛋白。 3、粗面内质网与外输性蛋白质的分泌合成、加工修饰和转运过程密切相关。 1)新生多肽链的折叠与装配,与合成同时发生。内质网为新生多肽链正确的折叠和装配提供了有利的环境。分子伴侣通过对多肽链的识别结合来协助它们的折叠组装和转运。 2)蛋白质的糖基化。在粗面内质网网膜腔面的糖基转移酶作用下发生N一连接糖基化。 三、蛋白质的加工、分选和定向运输 1、蛋白质在高尔基体内加工等。 1)糖蛋白的加工合成。糖基化修饰加工合成的糖蛋白,主要包括N一连接糖蛋白和O一连接糖蛋白两种类型。前者,糖链合成与糖基化修饰始于内质网,完成 于高尔基复合体;后者,则主要或完全是在高尔基复合体中进行和完成的。 2)蛋白质糖链的加工有严格的区域性和顺序性:甘露糖去除发生在中间扁囊高尔基复合体靠近顺面的部位;N一乙酰葡萄糖胺加入在中间部;半乳糖加入在中 间扁囊区靠近反面的部位。 3)蛋白质的水解加工。 2、分选蛋白质:高尔基体通过对蛋白质的修饰、加工,使其带上能被高尔基复合体网膜上专一 受体识别的分选信号,进而选择、浓缩,形成不同靶向的分泌泡。 四、蛋白质合成的质量监控 1、内质网至高尔基体的蛋白质必须是正确折叠和组装的。分子伴侣可特异性的识别错

第十二章蛋白质的生物合成及转运

第十二章蛋白质的生物合成及转运 蛋白质的生物合成在细胞代谢中占有十分重要的地位。目前已经完全清楚,贮存遗传信息的DNA并不是蛋白质合成的直接模板,DNA上的遗传信息需要通过转录传递给mRNA。mRNA才是蛋白质合成的直接模板。mRNA是由4种核苷酸构成的多核苷酸,而蛋白质是由20种左右的氨基酸构成的多肽,它们之间遗传信息的传递与从一种语言翻译成另一种语言时的情形相似。所以人们称以mRNA为模板合成蛋白质的过程为翻译或转译(translation)。 翻译的过程十分复杂,几乎涉及到细胞内所有种类的RNA和几十种蛋白质因子。蛋白质合成的场所是核糖体,合成的原料是氨基酸,反应所需能量由A TP和GTP提供。蛋白质合成的早期研究工作都是用大肠杆菌的无细胞体系进行的,所以对大肠杆菌的蛋白质合成机理了解最多。真核细胞蛋白质合成的机理与大肠杆菌的有许多相似之处。 第一节遗传密码 任何一种天然多肽都有其特定的严格的氨基酸序列。有机界拥有1010~1011种不同的蛋白质,构成数目这么庞大的不同的多肽的单体却只有20种氨基酸。氨基酸在多肽中的不同排列次序是蛋白质多样性的基础。目前已经清楚,多肽上氨基酸的排列次序最终是由DNA上核苷酸的排列次序决定的,而直接决定多肽上氨基酸次序的却是mRNA。不论是DNA还是mRNA,基本上都由4种核苷酸构成。这4种核苷酸如何编制成遗传密码,遗传密码又如何被翻译成20种氨基酸组成的多肽,这就是蛋白质生物合成中的遗传密码的翻译问题。 一、密码单位 用数学方法推算,如果mRNA分子中的一种碱基编码一种氨基酸,那么4种碱基只能决定4种氨基酸,而蛋白质分子中的氨基酸有20种,所以显然是不行的。如果由mRNA 分子中每2个相邻的碱基编码一种氨基酸,也只能编码42=16种氨基酸,仍然不够。如果采用每3个相邻的碱基为一个氨基酸编码,则43=64,可以满足20种氨基酸编码的需要。所以这种编码方式的可能性最大。应用生物化学和遗传学的研究技术,已经充分证明了是 293

蛋白质的翻译

Proteins Lu Linrong (鲁林荣)PhD Laboratory of Immune Regulation Institute of Immunology Zhejiang University ,School of Medicine Medical Research Building B815-819Email: Lu.Linrong@https://www.360docs.net/doc/6e12690775.html, Website: https://www.360docs.net/doc/6e12690775.html,/llr Molecular Biology

Why study proteins? ?Part of the central dogma ?Proteins are coded by genes ?They play crucial functional roles in almost every biological process

The life cycle of a protein ?Where does a protein come from? ?How is a protein processed, modified, translocated to the proper place and degraded? ?How to describe the are the functions? ??Protein synthesis (Translation) 蛋白质翻译 ?Protein maturation (folding, modification) and degradation 蛋白质成熟,降解 Structure and function of protein 蛋白质的结构与功能?Methods: protein-protein interaction et al 蛋白-蛋白相 互作用

翻译后功能蛋白质的形成和降解

翻译后功能蛋白质的形成和降解 一、新生肽链经折叠形成特定空间构象 1蛋白质折叠:多肽链自我组装成为功能蛋白质的过程。 2蛋白质折叠需要分子伴侣 分子伴侣:分子伴侣是细胞中的一类保守蛋白质,可识别肽链的非天然构象,促进各功能域和整体蛋白质的正确折叠。细胞中至少有两类分子伴侣家族:热休克蛋白和伴侣素。前者能与肽链结合防止其错误折叠;后者能为非自发性蛋白质折叠提供必要的微环境。分子伴侣不能加快蛋白质折叠的速度,但能提高其产率。 二、蛋白质组装 三、蛋白质翻译后需进行不同形式的共价修饰 1新生肽链N端的甲硫氨酸在翻译后被切除 2蛋白质前体经酶切修饰成为功能蛋白质 3磷酸化-去磷酸化决定磷蛋白质的活性状态 4许多真核蛋白质需要糖基化修饰 翻译后蛋白质与糖链共价结合成糖蛋白,称糖基化修饰。包括N-糖基化和O-糖基化两类。5有些蛋白质通过脂酰化修饰定位于膜的周边 6乙酰化与去乙酰化修饰可调节蛋白质的活性 7二硫键的形成能使蛋白质的立体结构更稳定 蛋白质翻译后由两个半胱氨酸残基上的巯基氧化形成二硫键。 8有些功能蛋白质需要与金属离子结合 四、翻译后蛋白质通过靶向运输到特定部位才能发挥特定的生物学功能 蛋白质的靶向运输是将蛋白质前体跨膜输送到特定细胞部位的复杂过程。蛋白质前体分子内含有特定信号序列,能指导蛋白质的靶向运输和细胞内定位。 分泌蛋白前体的N末端的一段能被细胞转运系统识别的保守序列,称为信号肽。在信号肽识别颗粒(SRP)和SRP受体的协助下,信号肽引导新生肽链跨膜进入内质网,信号肽被切除,新生肽链被加工成成熟蛋白质。 膜蛋白前体则是在信号肽和停止转运信号的共同作用下,进行膜插入和定位。 五、蛋白质分子在细胞内由蛋白酶体降解 细胞内功能蛋白质处于合成与降解动态平衡状态。 蛋白质降解决定于其末端和内部序列。根据位于蛋白质N末端的氨基酸残基对蛋白质稳定性的影响,将其分为去稳定残基和稳定残基两大类。有些蛋白质的降解信号可能是肽链内的一段保守序列。 细胞内蛋白质通过泛素-蛋白酶复合体途径被降解。即在泛素活化酶(E1)、泛素偶联酶(E2)和泛素-蛋白连接酶(E3)连续催化下,使蛋白质泛素化标记,再被26S蛋白酶体降解。 内质网也具有蛋白质质量监控功能,它能区别正确折叠和错误折叠的蛋白质,并在易位子协助下,将错误折叠的蛋白质逆向转运到细胞浆,再被泛素-蛋白酶体系降解。蛋白质的这种降解途径被称为内质网相关蛋白降解途径(ERAD)。

蛋白质翻译

蛋白质的生物合成??翻译 一切生命现象不能离开蛋白质,由于代谢更新,即使成人亦需不断合成蛋白质(约400g/日)。蛋白质具有高度特异性。不同生物,它们的蛋白质互不相同。所以食物蛋白质不能为人体直接利用,需经消化、分解成氨基酸,吸收后方可用来合成人体蛋白质。 mRNA含有来自DNA的遗传信息,是合成蛋白质的“模板”,各种蛋白质就是以其相应的mRNA为“模板”,用各种氨基酸为原料合成的。mRNA不同,所合成的蛋白质也就各异。所以蛋白质生物合成的过程,贯穿了从DNA分子到蛋白质分子之间遗传信息的传递和体现的过程。 mRNA生成后,遗传信息由mRNA传递给新合成的蛋白质,即由核苷酸序列转换为蛋白质的氨基酸序列。这一过程称为翻译(translation)。翻译的基本原理见图14-1。 由图14-1可见,mRNA穿过核膜进入胞质后,多个核糖体(亦称核蛋白体,图中为四个)附着其上,形成多核糖体。作为原料的各种氨基酸在其特异的搬运工具(tRNA)携带下,在多核糖体上以肽键互相结合,生成具有一定氨基酸序列的特定多肽链。 合成后从核糖体释下的多肽链,不一定具有生物学活性。有的需经一定处理,有的需与其他成分(别的多肽链或糖、脂等)结合才能形成活性蛋白质。 第一节参与蛋白质生物合成的物质 参与蛋白质合成的物质,除氨基酸外,还有mRNA(“模板”)、tRNA(“特异的搬运工具”)、核糖体(“装配机”)、有关的酶(氨基酰tRNA合成酶与某些蛋白质因子),以及ATP、GTP等供能物质与必要的无机离子等。 一、mRNA与遗传密码 天然蛋白质有1010~1011种,组成蛋白质的氨基酸却只有20种。这20种氨基 1

第十八节:蛋白质的合成及转运 考研生物化学精编辅导讲义

第十八节:蛋白质的合成及转运 ?翻译以mRNA为直接模板,tRNA为氨基酸运载体,核蛋白体为装配场所,共同协调完成蛋白质生物合成的过程。也就是把mRNA的碱基排列顺序转译成多肽链中氨基酸的排列顺序。 ?三大进展使蛋白质合成的主要过程得到认识 ①蛋白质合成的部位-核糖体;②氨基酸被氨酰tRNA激活;③遗传密码子。 1.遗传密码 ?密码子是指编码一个特定氨基酸的三联体核苷酸。 ?编码连续氨基酸的密码子中没有标点。 起始密码子:AUG(Met), (少数情况下GUG(Val)) ? ?终止密码子:UAA,UAG,UGA(无义密码子并非总是无义的,是稀有氨基酸如磷酸丝氨酸、硒半胱氨酸(UGA)掺入肽链的正常途径) ? ?遗传密码的特性 ①连续性;②读码不重叠性;③通用性;④简并性;⑤摆动性(变偶性)。 ?简并性:每一个氨基酸可能有一个以上的密码子;(甲硫氨酸AUG和色氨酸只有一个密码子)?摆动性:大多数密码子的第三个碱基与其反密码子的相应配对比较松,使一些tRNA能识别多个密码子 ?意义:密码子和反密码子相互作用平衡了准确性和速度的需要。 ?密码子的特性 ①无标点符号;②读码不重复;③一定的防突变功能。 ?碱基丢失――后续氨基酸全改变 ?一个碱基突变――一个氨基酸改变 ?密码子第三个碱基改变――氨基酸可能不变(简并性,摆动性) ?阅读框移动和RNA编辑――――― 一些mRNA在翻译前就被编辑。 ?在一些病毒DNA中发现不同阅读框中的重复基因 (密码子结构与氨基酸侧链极性之间有一定关系. 1)氨基酸侧链极性性质在多数情况下由密码子的第二个碱基决定。第二个碱基为嘧啶(Y)时,氨基酸侧链为非极性,第二个碱基为嘌呤(P)时,氨基酸侧链侧有极性. 2)当第一个碱基为U或A,第二个碱基为C,第三个碱基无特异性时,所决定的氨基酸侧链为极性不带电; 3)当第一个碱基不是U,第二个碱基是G时,氨基酸侧链则带电。在此前提下,若第一个是C或A时,表示带正电

蛋白翻译后修饰(研究生高级生化)

蛋白翻译后修饰(齐以涛老师) 上课老师没说重点 1.蛋白的概念:由许多氨基酸通过肽键相连形成的高分子含氮化合 物。 2.蛋白后修饰概念和意义(PPT4-5) 3.蛋白后修饰种类 1. 切除加工 2. 糖基化 3. 羟基化 4. 甲基化 5. 磷酸化 6. 乙酰化 7. 泛素化 8. 类泛素化 9. … 200. … 磷酸化修饰 1.概念: 磷酸化是通过蛋白质磷酸化激酶将ATP的磷酸基转移到蛋 白的特定位点上的过程。大部分细胞过程实际上是被可逆 的蛋白磷酸化所调控的,至少有30%的蛋白被磷酸化修饰

2.作用位点: 丝氨酸、苏氨酸和酪氨酸是主要的磷酸化氨基酸,大多数 磷酸化蛋白质都有多个磷酸化位点,并且其磷酸化位点是 可变的。 3.实例(MAPK途径): 分裂原活化的蛋白激酶(MAPK)、分裂原活化的蛋白激酶的激酶( MAPKK)、分裂原活化的蛋白激酶的激酶之激酶(MAPKKK)。 在真核细胞中,这3种类型的激酶构成一个MAPK级联系统(MAPK cascade),通过MAPKKK-MAPKK-MAPK逐级磷酸化,将外来信号级联放大并传递下去。 具体过程如下: ? MAPKKK位于级联系统的最上游,能够通过胁迫信号感受器或者信号分子的受体,或者其本身就直接感受胞外信号刺激而发生磷酸化? MAPKKK磷酸化后变为活化状态,可以使MAPKK磷酸化 ? MAPKK始终存在于细胞质中,MAPKK磷酸化以后通过双重磷酸化作用将MAPK激活

? MAPK被磷酸化后有3种可能的去向: (1)停留在细胞质中,激活一系列其它的蛋白激酶 (2)在细胞质中使细胞骨架成分磷酸化 (3)进入细胞核,通过磷酸化转录因子,调控基因的表达 4.功能和意义: 一:调节酶蛋白及生理代谢 ①糖分解代谢中糖原磷酸化酶活性的调节,被磷酸化的酶具有活 性,去磷酸化的酶无活性 ②磷酸化或去磷酸化使胞内已存在酶的活性被激活或失活,调节 胞内活性酶的含量 二:调节转录因子活性 转录因子通常包含DNA结合结构域和转录激活结构域.转录因子在转录激活结构域或调控结构域发生磷酸化,直接影响其转录活性. c-Jun转录激活结构域的两个丝氨酸残基磷酸化,正调控c-Jun的转录活性. 三:调节转录因子核转位 ? TGF-b与其I型、II型受体结合,结合后的TGF-b I型受体识别R-Smad包括Smad2和Smad3,作用于C末端的丝氨酸使其磷酸化而被激活,激活后的R-Smad与Smad4结合转入细胞核内,发挥转录调节活性 ? NF-kB与其抑制因子IkB形成复合体时存在于胞质。当IkB磷酸

分子生物学-蛋白质生物合成和翻译后加工.doc

分子生物学-蛋白质生物合成和翻译后加工 (总分:283.00,做题时间:90分钟) 一、名词解释(总题数:15,分数:30.00) 1.密码子(codon) (分数:2.00) __________________________________________________________________________________________ 2.反密码子(anticodon) (分数:2.00) __________________________________________________________________________________________ 3.密码子的摆动性(wobbling) (分数:2.00) __________________________________________________________________________________________ 4.密码子的简并性(degeneracy) (分数:2.00) __________________________________________________________________________________________ 5.同义密码子(synonymous codon) (分数:2.00) __________________________________________________________________________________________ 6.错义突变(missense mutation) (分数:2.00) __________________________________________________________________________________________ 7.移码突变(frameshift mutation) (分数:2.00) __________________________________________________________________________________________ 8.氨酰-tRNA合成酶(aminoacyl-tRNA synthetase) (分数:2.00) __________________________________________________________________________________________ 9.同工受体-tRNA(isoacceptor tRNA) (分数:2.00) __________________________________________________________________________________________ 10.SD序列(SD sequence) (分数:2.00) __________________________________________________________________________________________ 11.蛋白质合成中进位与移位 (分数:2.00) __________________________________________________________________________________________

蛋白质翻译

蛋白质合成——翻译 1、核糖体(ribosome)组成: 2、核糖体RNA(rRNA): 3、合成机制: *在蛋白质生物合成时,tRNA活化成携带有相应氨基酸的氨基酰 -tRNA是翻译过程启动的先决条件。 *细胞内共有20余种氨酰-tRNA合成酶分别参与合成不同的氨酰 -tRNA的合成。氨酰-tRNA合成酶具有底物的绝对专一性,对氨 基酸,tRNA两种底物都能高度特异性的识别。 *tRNA分为起始tRNA(特性的识别起始密码子)和延伸tRNA,真 核生物的起始tRNA携带甲硫氨酸(Met),书写为Met-tRNAi Met; 原核生物起始tRNA携带甲酰甲硫氨酸(fMet),由于甲硫氨酸 -NH2被甲酰化,书写为fMet-tRNAi fMet。(i表示起始initiation) *同工tRNA,一种氨基酸有多种密码子,所以就有多种tRNA, 这几种代表相同氨基酸的rRNA称为同工tRNA。 *活化过程需要ATP消耗: 第一步形成氨酰腺苷酸-酶复合体。 AA+ATP+酶(E)——>AA-AMP-E+PPi (E指氨酰-tRNA合成酶) 第二步是氨酰基转移到3’端 AA-AMP-E+tRNA——>AA-tRNA+E+AMP

4、具体过程: (1)氨基酸活化(同上) (2)翻译的起始:真核生物中,任何一个多肽的合成都是从生成甲硫氨酸-tRNAi Met开始的,因为甲硫氨酸的特殊性,体内存在两种tRNA Met,只有甲硫氨酸-tRNAi Met才能与核糖体小亚基40S结合,起始肽链合成,普通的tRNA Met中携带的甲硫氨酸只能在延伸过程中插入到A位点参与肽链合成。 真核生物中,40S小亚基首先与Met-tRNAi Met结合,再与模版mRNA结合,最后与60S大亚基结合生成80S*mRNA*Met-tRNAi Met复合物。起始复合物的生成需要GTP供能,还需要Mg2+,NH4+和3个起始因子(IF1,IF2,IF3)。 原核生物翻过起始过程: 第一步:30S小亚基首先与起始因子IF1,IF3结合,通过SD序列与mRNA模版结合。 第二步:在IF2和GTP帮助下,fMet-tRNAi fMet进入小亚基的P位置,tRNA上的反密码子与mRNA上的起始密码子配对。 第三步:带有tRNA,mRNA,三个起始因子的小亚基复合物与50S大亚基结合,GTP水解,释放起始因子。 *30S亚基具有专一性的识别和选择mRNA起始位点的特性。30S小亚基通过其16SrRNA的3'端与mRNA的5'端起始密码子上游的碱基序列(SD序列5'-AGGAGGU-3')配对结合。 *细菌核糖体上一般存在三个与氨酰-tRNA结合的位点,A位点(aminoacyl site,第二个密码子对应位点),P位点(peptidyl site)和E位点(exit site),只有fMet-tRNAi fMet能与第一个P位点相结合,其他所有的tRNA都必须通过A位点到达P位点,再由E位点离开核糖体。 真核生物的起始阶段基本相同,只是核糖体较大,有较多的起始因子(eIF)参与,其mRNA具有m7GpppNp 帽子结构(帽子与核糖体小亚基的18SrRNA的3'端序列之间存在不同于SD序列的碱基配对型相互作用。且有一种蛋白因子(eIF-4E)——帽子结合蛋白,能专一的识别mRNA的帽子结构,与mRNA的5'端结合生成蛋白质-mRNA复合物,并利用该复合物对eIF-3的亲和力与含有eIF-3的40S亚基结合。),Met-tRNAi Met

蛋白质翻译后修饰

Chapter V Chapter V Post‐translational Modification Of Proteins

One gene more proteins One gene, more proteins https://www.360docs.net/doc/6e12690775.html,

?蛋白质翻译后修饰(PTM)是指蛋白质在翻译中或翻译后经历的个共价加工过程,即通过1个或几个氨基酸残基加上修饰的一个 基团或通过蛋白质水解剪去基团而改变蛋白质的性质。 ?从定义的角度,可以如下理解蛋白质翻译后修饰: 1. 对某氨基酸的修饰包括共价连接简单的官能团(如乙酰基或磷酸基) 1对某一氨基酸的修饰包括 和引入一些复杂结构,如脂类和糖类。 2. 将已经结束翻译的转录本产物切割成成熟的形式,如信号肽或活性肽的 加 工等。 3. 氨基酸的交联,如丝氨酸和酪氨酸。

?可以说,蛋白质组中任一蛋白质都能在翻译时或翻译后进行修饰。不同类型的修饰都会影响蛋白质的电荷状态、疏水性、构饰不同类型的修饰都会影响蛋白质的 象和(或)稳定性,最终影响其功能。 ?诸多实例表明蛋白质的修饰都采取一种可逆模式‐“开”或“关” 的状态行或者调节蛋白质的功能或者作为个真实的分的状态进行,或者调节蛋白质的功能,或者作为一个真实的分子开关。 ?目前已发现300多种不同的翻译后修饰,主要形式包括磷酸化、糖基化、乙酰化、泛素化、羧基化、核糖基化以及二硫键的配对等。 等

?加入官能团 乙酰化—通常于蛋白质的N末端加入乙酰。 磷酸化—加入磷酸根至Ser、Tyr、Thr或His。 糖化—将糖基加入Asn、羟离氨酸、Ser或Thr,形成糖蛋白。 烷基化加入如甲基或乙基等烷基。 — 甲基化—烷基化中常见的一种,在Lys、Arg等的侧链氨基上加入甲基。 生物素化—主要有组蛋白的生物素酰化修饰,由羧化全酶合成酶与组蛋白直接相互作用完成,以及生物素附加物令赖氨酸残基酰化。 以及生物素附加物令赖氨酸残基酰化 谷氨酸化—谷氨酸与导管素及其他蛋白质之间建立共价键。 甘氨酸化—一个至超过40种甘氨酸与导管素的C末端建立共价键。 异戊二烯化—加入如法呢醇及四异戊二烯等异戊二烯。 硫辛酸化—附着硫辛酸的功能性。 磷酸泛酰巯基乙胺基化—像在脂肪酸、聚酮、非核糖体肽链及白氨酸的生物合 聚酮 成中,从乙酰辅酶A加入4‘磷酸泛酰巯基乙胺基。 硫酸化—将硫酸根加入至酪氨酸。 硒化 C末端酰胺化 ‐‐‐‐‐‐‐‐

蛋白质翻译习题

一、选择题 【单选题】 1.下列氨基酸活化的叙述哪项是错误的 A.活化的部位是氨基酸的α-羧基 B.活化的部位是氨基酸的α-氨基 C.活化后的形式是氨基酰-tRNA D.活化的酶是氨基酰-tRNA合成酶 E.氨基酰tRNA既是活化形式又是运输形式 2.氨基酰tRNA的3’末端腺苷酸与氨基酸相连的基团是 A.1’-OH B.2’-磷酸 C.2’-OH D.3’-OH E.3’-磷酸3.哺乳动物的分泌蛋白在合成时含有的序列是 A.N末端具有亲水信号肽段 B.在C末端具有聚腺苷酸末端 C.N末端具有疏水信号肽段 D.N末端具有“帽结构” E.C末端具有疏水信号肽段 4.氨基酸是通过下列哪种化学键与tRNA结合的 A.糖苷键 B.磷酸酯键 C.氢键 D.酯键 E.酰胺键 5.代表氨基酸的密码子是 A.UGA B.UAG C.UAA D.UGG E.UGA和UAG 6.蛋白质生物合成中多肽链的氨基酸排列顺序取决于 A.相应tRNA专一性 B.相应氨基酰tRNA合成酶的专一性 C.相应mRNA中核苷酸排列顺序 D.相应tRNA上的反密码子 E.相应rRNA的专一性 7.与mRNA中密码5’ACG3’相对应的tRNA反密码子是 A.5’UGC3’ B.5’TGC3’ C.5’GCA3’ D.5’CGT3’ E.5’CGU3’8.不参与肽链延长的因素是 A.mRNA B.水解酶 C.转肽酶 D.GTP E.Mg2+ 9.能出现在蛋白质分子中的下列氨基酸哪一种没有遗传密码 A.色氨酸 B.甲硫氨酸 C.羟脯氨酸 D.谷氨酰胺 E.组氨酸10.多肽链的延长与下列何种物质无关 A.转肽酶 B.甲酰甲硫氨酰-tRNA C.GTP D.mRNA E.EFTu、EFTs和EFG 11.下述原核生物蛋白质生物合成特点错误的是 A.原核生物的翻译与转录偶联进行,边转录、边翻译、边降解(从5’端) B.各种RNA中mRNA半寿期最短 C.起始阶段需ATP D.有三种释放因子分别起作用 E.合成场所为70S核糖体 12.可引起合成中的肽链过早脱落的是 A.氯霉素 B.链霉素 C.嘌呤霉素 D.四环素 E.放线菌酮13.肽键形成部位是 A.核糖体大亚基 P位 B.核糖体大亚基A位 C.两者都是 D.两者都不是 E.核糖体大亚基E位14.关于核糖体叙述正确的是 A.多核糖体在一条mRNA上串珠样排列 B.多核糖体在一条DNA上串珠样排列 C.由多个核糖体大小亚基聚合而成 D.在转录过程中出现 E.在复制过程中出现 15.翻译过程中哪个过程不消耗GTP A.起始因子的释放 B.进位 C.转肽 D.移位 E.肽链的释放16.下列哪一种过程需要信号肽 A.多核糖体的合成 B.核糖体与内质网附着 C.核糖体与mRNA附着 D.分泌性蛋白质合成 E.线粒体蛋白质的合成 17.哺乳动物细胞中蛋白质合成的重要部位是 A.核仁 B.细胞核 C.粗面内质网 D.高尔基体 E.溶酶体

相关文档
最新文档