多旋翼飞行原理(改)
多旋翼无人机的结构和原理

多旋翼无人机的结构和原理
翼型的升力:
升力的来龙去脉这是空气动力学中的知识,研究的内容十分广泛,本文只关注通识理论,阐述对翼型升力和旋翼升力的原理。
根据流体力学的基本原理,流动慢的大气压强较大,而流动快的大气压强较小。
由于机翼一般是不对称的,上表面比较凸,而下表面比较平(翼型),流过机翼上表面的气流就类似于较窄地方的流水,流速较快,而流过机翼下表面的气流正好相反,类似于较宽地方的流水,流速较上表面的气流慢。
大气施加与机翼下表面的压力(方向向上)比施加于机翼上表面的压力(方向向下)大,二者的压力差便形成了升力。
[摘自升力是怎样产生的]。
所以对于通常所说的飞机,都是需要助跑,当飞机的速度达到一定大小时,飞机两翼所产生的升力才能抵消重力,从而实现飞行。
旋翼的升力飞机,直升机和旋翼机三种起飞原理是不同的。
飞机依靠助跑来提供速度以达到足够的升力,而直升机依靠旋翼的控制旋转在不进行助跑的条件下实现垂直升降,直升机的旋转是动力系统提供的,而旋翼旋转会产生向上的升力和空气给旋翼的反作用力矩,在设计中需要提供平衡旋翼反作用扭矩的方法,通常有单旋翼加尾桨式(尾桨通常是垂直安装)、双旋翼纵列式(旋转方向相反以抵消反作用扭矩)等;而旋翼机则介于飞机和直升机之间,旋翼机的旋翼不与动力系统相连,由飞行过程中的前方气流吹动旋翼旋转产生升力(像大风车一样),即旋翼为自转式,传递到机身上的扭矩很小,无需专门抵消。
而待设计的四旋翼飞行器实质上是属于直升机的范畴,需要由动力系统提供四个旋翼的旋转动力,同时旋翼旋转产生的扭矩需要进行抵消,因此本着结构简单控制方便,选择类似双旋翼纵列式加横列式的直升机模型,两个旋翼旋转方向与另外两个旋翼旋转方向必须相反以抵消陀螺效应和空机动力扭矩。
多旋翼无人机的飞行原理PPT课件

多旋翼无人机操控原理——六种运动
要操控无人机,就要操控它的各种运动,如图1-10所示,无人机 的整个飞行轨迹都是靠操控它的这六种运动来实现的。
多旋翼无人机操控原理——运动控制
①垂直运动控制。 当同时增加或减小4个旋翼的升力时,无人机垂直上升或下降;当 四旋翼产生的升力总和等于机体的自重时,四旋翼无人机便保持平衡状 态。四个旋翼同时增加升力,无人机就开始垂直上升。
两个物体之间的作用力和反作用力,在同一直线上,大小相等, 方向相反。牛顿第三运动定律也称为作用力与反作用力定律。
在多旋翼无人机的操控中,要用到此定律,比如多旋翼无人机的 自旋操控就是通过控制正桨和反桨作用在无人机上的扭矩大小来实现 的。
主要知识点回顾——欠驱动系统
欠驱动系统就是指系统的独立控制变量个数小于系统自由度个数 的一种非线性系统,多旋翼无人机就是典型的欠驱动系统,由于高度 非线性、参数摄动、多目标控制要求及控制量受限等原因,所以控制 难度较大。
主要知识点回顾——牛顿第二运动定律
物体的加速度跟物体所受的合外力成正比,跟物体的质量成反比。 牛顿第二运动定律也称为加速度定律,它表明力的瞬时作用规律:力 和加速度同时产生,同时变化,同时消失。
所以,无人机的姿态和飞行速度的改变,需要在相应的方向上有 力的作用。
主要知识点回顾——牛顿第三运动定律
主要知识点回顾——全驱动系统
和欠驱动系统不同,全驱动系统的独立控制变量个数等于系统自 由度个数,具有操纵灵活、控制算法设计简单等特点,固定翼无人机 就是典型的全驱动系统。
飞行原理
主要知识回顾
多旋翼无人机飞行 原理
多旋翼无人机操控原理——飞行模式
四旋翼无人机的飞行模式有两种,左图为十字模式,右图为X字模 式。如前所述,多旋翼无人机根据旋翼桨距是否可控分为两类:旋翼 变距类和旋翼变速类,而电动多旋翼无人机基本都属于旋翼变速类, 下面就以旋翼变速类四旋翼无人机的十字模式为例,来对多旋翼无人 机操控原理进行介绍。
多旋翼飞行原理

多 旋 翼 无 人 飞 行 器 常 见 机 型 介 绍
性
安全稳定 (1)S1000采用V型8旋翼设计,配合DJI飞控使用时即使某一轴被意外停止工作
也能最大幅度保证飞机处于稳定状态。
(2)机身板内部集成了含DJI专利同轴接头的电源分布设计;主电源线选用 AS150防火花插头与XT150的组合,可以防止用户插错电池极性,也能有效
多 旋 翼 无 人 飞 行 器 常 见 机 型 介 绍
的防止电池自短路。 (3)从中心板到机臂、起落架等多处均使用全碳纤维材料,系统在低自重的基 础上做到了最高的结构强度。
在靠近全球主要机场时,在机场中心一定区域范围内,飞行器的飞行将会受
到限制。
Phantom 2 Vision+ 与其它Phantom飞行器的区别
多 旋 翼 无 人 飞 行 器 常 见 机 型 介 绍
多 旋 翼 无 人 飞 行 器 常 见 机 型 介 绍
多 旋 翼 无 人 飞 行 器 常 见 机 型 介 绍
多 旋 翼 飞 行 原 理
一般情况下,多旋翼飞行器可以通过调节不同电机的转速来实现4个方向 上的运动,分别为:垂直、俯仰、横滚和偏航。
多 旋 翼 飞 行 原 理
垂直运动,即升降控制
在图(a)中,两对电机转向相反,可以平衡其对机身的反扭矩,当同时
增加四个电机的输出功率,旋翼转速增加使得总的拉力增大,当总拉力足以克 服整机的重量时,四旋翼飞行器便离地垂直上升;反之,同时减小四个电机的 输出功率,四旋翼飞行器则垂直下降,直至平衡落地,实现了沿z轴的垂直运 动。当外界扰动量为零时,在旋翼产生的升力等于飞行器的自重时,飞行器便 保持悬停状态。保证四个旋翼转速同步增加或减小是垂直运动的关键。
多旋翼evtol技术原理

多旋翼evtol技术原理全文共四篇示例,供读者参考第一篇示例:随着城市交通越来越拥挤,传统陆地交通方式的瓶颈日益凸显。
人们对于更高效、更便捷的出行方式的需求也越来越迫切。
而在这个背景下,多旋翼eVTOL技术成为了备受瞩目的交通未来方向之一。
eVTOL(Electric Vertical Takeoff and Landing)即垂直起降式电动飞行器,是一种以电动推进系统为动力的垂直起降无人机。
相比于传统的飞行器,eVTOL在动力系统、起降方式、飞行模式等方面都具有独特的优势。
而多旋翼则是一种多个旋翼共同工作,实现飞行的飞行器结构形式,可实现垂直起降和稳定飞行。
多旋翼eVTOL技术的原理主要包括以下几个方面:1. 电动推进系统:eVTOL采用电动推进系统作为动力装置,相比传统的燃油动力,在能源利用效率、环保性等方面更具优势。
电动推进系统包括电池、电动机、电子速控等组件,通过电能转化为机械能驱动旋翼转动,实现飞行。
2. 多旋翼结构:多旋翼eVTOL采用多个旋翼进行协同工作,使得飞行器能够实现垂直起降和稳定飞行。
不同于传统直升机的旋翼数量较少,多旋翼eVTOL通常采用4个以上的旋翼作为动力装置。
3. 飞行控制系统:多旋翼eVTOL飞行过程中需要进行精准的飞行控制,以实现稳定飞行和精准操作。
飞行控制系统包括传感器、控制算法、执行机构等多个部分,通过实时监测飞行状态和环境情况,以及调节电力输出和控制旋翼转速,实现飞行器的操控。
4. 高度保护系统:在多旋翼eVTOL飞行中,高度保护系统是至关重要的。
通过高度传感器实时监测飞行器的高度,以及控制飞行器的升降,确保飞行器在不同高度下的稳定飞行和安全降落。
5. 能量管理系统:eVTOL飞行器的电池容量和能量管理系统设计对于飞行时间、载荷能力等方面都有着重要影响。
能量管理系统需要根据飞行任务需求和电池状态实时调整能源输出,以确保飞行器能够完成飞行任务。
多旋翼eVTOL技术的发展不仅可以改变未来城市交通的面貌,也有望推动航空运输行业的进步。
多旋翼无人机飞行原理

多旋翼无人机飞行原理
首先,马达提供动力,驱动旋翼旋转。
这些马达可以是电动机或燃气发动机,取决于无人机的类型和用途。
旋翼是无人机最关键的组件之一,它由一个或多个旋翼叶片组成。
这些叶片通常呈螺旋状排列,以便可以通过它们的旋转产生升力和推力。
控制系统通过控制每个旋翼的速度和方向来控制无人机的飞行。
这个控制系统可以是机械式的,使用连杆和曲轴来控制旋转,也可以是电子式的,通过电子传感器和电动机控制器来实现。
当无人机起飞时,控制系统会增加旋翼的速度,让它们开始旋转。
旋翼的旋转会产生升力,将无人机推离地面。
当无人机获得足够的升力时,它可以开始在空中飞行。
为了控制无人机的航向和姿态,控制系统会调整每个旋翼的速度和方向。
通过增加或减小每个旋翼的速度,无人机可以向前或向后飞行,向左或向右飞行,或者向上或向下飞行。
通过调整每个旋翼的方向,无人机可以旋转或倾斜。
此外,多旋翼无人机还可以通过调整旋翼的速度和方向来进行悬停和悬停飞行。
当控制系统使每个旋翼的速度和方向相等时,无人机将停止移动并悬停在空中。
总结起来,多旋翼无人机的飞行原理是通过旋翼的旋转产生升力和推力,控制无人机的移动和姿态。
控制系统通过调整每个旋翼的速度和方向来实现这一目标,从而实现无人机的平衡、稳定和操控。
多旋翼无人机飞行原理

多旋翼无人机飞行原理
多旋翼无人机是一种通过多个旋翼进行飞行的无人机器,其飞行原理主要是通过旋翼的升力产生来实现飞行。
在多旋翼无人机中,旋翼的设计和工作原理对于飞行性能至关重要。
首先,多旋翼无人机的飞行原理涉及到空气动力学和机械工程的知识。
在飞行过程中,旋翼通过加速气流来产生升力,从而支撑无人机的重量。
旋翼的设计和布局直接影响着无人机的飞行性能,包括稳定性、操控性和飞行效率等方面。
其次,多旋翼无人机的飞行原理还涉及到飞行控制系统。
通过调节旋翼的转速和倾斜角度,飞行控制系统可以实现无人机的升降、前进、后退、转向等各种飞行动作。
飞行控制系统的精密度和稳定性直接影响着无人机的飞行性能和安全性。
另外,多旋翼无人机的飞行原理还涉及到能源系统。
旋翼的旋转需要消耗大量的能量,而无人机需要携带足够的能源来支撑飞行任务的完成。
因此,能源系统的设计和管理对于无人机的续航能力和飞行效率具有重要影响。
此外,多旋翼无人机的飞行原理还涉及到传感器和数据处理系统。
无人机需要通过传感器获取周围环境的信息,并通过数据处理系统实现自主飞行、避障和任务执行等功能。
传感器的精度和数据处理系统的算法对于无人机的智能化和自主性具有重要影响。
总的来说,多旋翼无人机的飞行原理是一个复杂的系统工程,涉及到空气动力学、机械工程、飞行控制、能源系统、传感器和数据处理等多个领域。
只有在这些方面都取得了良好的平衡和协调,无人机才能够实现稳定、高效、安全的飞行。
随着科技的不断进步,多旋翼无人机的飞行原理也在不断完善和创新,为无人机的发展开辟了更加广阔的空间。
无人机飞行原理—多旋翼无人机飞行原理

方式安排,抵消反转矩。如图所示,电机1和电机3逆时针转动、电动机2和4则顺时针转动,四个电机的反
转矩彼此抵消。
左 + 右 = 右 + 左
四、多旋翼无人机飞行原理
操纵性
1、垂直运动
垂直运动,是指无人机克服自身重力进行上升和下降的运动。是其最基本的功能,X型四旋翼
1 = 2 , 3 = 4
1 + 2 + 3 +4 =
当3 + 4 > 1 +2 时,则无人机在转矩的作用下将绕着纵轴(X轴)产生转动,即右横滚运动;若
3 + 4 < 1 +2 ,则无人在转矩的作用下将绕着纵轴(X轴)产生转动,将实现左横滚运动。
四、多旋翼无人机飞行原理
调节电机转速,来改变总升力 的大小实现。
四、多旋翼无人机飞行原理
操纵性
2、俯仰运动
俯仰运动,是指无人机能绕横轴(Y轴)转动,以无人机机体纵轴(X轴)正方向为无人机前
进方向,X型四旋翼无人机的俯仰运动示意图。
要做俯仰运动,通过改变电动机的转速,使得升力 1 、 2 、 3 、 4 变化,不再保持相等,
相等,并且升力的合力大于重力,但仍然保持对角的反转矩之和相同,即:
1 = 2 , 3 = 4
1 + 2 > 3 +4
1 + 2 + 3 +4 >
1 + 3 = 2 +4
此时,无人机做横滚运动,升力在水平方向的分力,对左右位移进行修正和控制,横滚角为 ,当满足
升力的垂直分力与重力相等时,即 = ,在没有外力干扰的情况下,四旋翼无人机将在水平分力
多旋翼evtol技术原理_概述说明以及解释

多旋翼evtol技术原理概述说明以及解释1. 引言1.1 概述在当今现代社会中,出行交通方式的创新与进化一直是人们关注的焦点。
随着科技的不断发展,电动垂直起降(eVTOL)技术作为一种全新的交通工具正在日益受到广泛关注和研究。
多旋翼eVTOL作为其中一种重要类型,在其相对小型、机动性强以及能够实现垂直起降等特点方面具备巨大潜力。
本文将深入探讨多旋翼eVTOL技术原理、应用领域以及相关发展前景。
1.2 文章结构本文共分为五个部分进行详细论述:引言、多旋翼eVTOL技术原理、多旋翼eVTOL技术说明、多旋翼eVTOL应用领域探讨以及结论与展望。
通过这样的结构安排,我们有助于逐步了解多旋翼eVTOL技术的基本原理与概念,并深入了解其在不同领域中的广泛应用。
1.3 目的本文的主要目的是对多旋翼eVTOL技术进行概述和解释,帮助读者更好地理解这一创新交通工具的运行原理和设计要点。
同时,我们还将针对多旋翼eVTOL 技术在个人出行、城市交通、物流配送、紧急救援以及环境监测等领域中的应用进行深入探讨,并展望其未来发展前景和可能带来的社会影响与挑战。
最后,我们将给出一些建议,指明下一步多旋翼eVTOL技术研究的方向。
请注意,文中提到的多旋翼eVTOL技术是一种基于电动垂直起降概念的飞行器设计,可以实现从垂直起飞到水平飞行模式的转换。
2. 多旋翼evtol技术原理:2.1 多旋翼基本原理:多旋翼是一种通过多个旋转的机翼产生升力以实现飞行的设备。
它由多个垂直安装的电动螺旋桨组成,这些螺旋桨可以同时或分别控制转动来实现飞行任务。
通过调整不同螺旋桨的转速和/或俯仰角度,多旋翼能够在垂直起降和水平飞行之间进行平滑过渡。
2.2 eVTOL概念解释:eVTOL代表电动垂直起降,是一种使用电动螺旋桨或风扇进行垂直起降和水平飞行的飞行器。
与传统的垂直起降机相比,eVTOL采用了电动化推进系统,使其更加环保、安静且能效更高。
2.3 多旋翼eVTOL设计要点:在设计多旋翼eVTOL时,需要考虑以下几个要点:- 结构设计: 多旋翼eVTOL的结构应该具有良好的强度和刚度,在不影响性能的前提下尽可能减小重量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工艺形式:
塑胶模具注塑生产
碳纤板材CNC切割组装
(P77特点:质量轻、强度高…)
复合材料模具生产
2 .2飞控
即无人机的飞行控制系统,实时监测无人机飞行状态并控制无人机稳定飞行(P90)。 故严格来讲飞控系统包括:传感器、计算单元、和执行机构
A)传感器 三轴陀螺仪、三轴加速度计、三轴磁力计、气压高度计、GPS、超声波等
匝数:电机上线圈绕线匝数。
定子
外转子
2212、1000KV、13T
电子调速器(电调):英文名叫ESC
作用:根据飞控的控制信号,将电池的直流输入转变为一定频率的交 流输出,用于控制电机转速
电调规格:(1)电流 。电调能够承受的瞬时极限电流
(2)供电能力(BEC功能)
电池:多旋翼无人机常选用锂电池(Lipo)作为无人机的电源,常见的有6S1P、4S、3S
多旋翼飞行原理
1 飞行原理
旋翼航空器飞行主要靠旋
翼产生的拉力。
当旋翼由发动机通过旋转
轴带动旋转时,旋翼给空气以
作用力矩(或称扭矩),空气 必 然在同一时间以大小相等、方 向相反的反作用 力矩作用于 旋翼(或称反扭矩),从而再通
必 须 抵
过旋 翼将这一反作用力矩传
消
递到直升机 机体上。如果不
反
采取措施予以平衡,那么这个
B)计算单元:飞控板上用于计算的芯片单元 飞控算法:
C)执行机构:动力系统 MEMS微机电系统使得这些传感器能够集成在很小的电路板上
控制指令(遥控器、地面站)
传感器检 测的数据
计算单元
执行机构
数据处理及控制算法(软件层面)
传感器数据融合与滤波
姿态、轨迹控制
外环控制
内环控制
开源飞控: 非开源飞控:(性能稳定)
PMU
飞控 IMU
指示灯
本次考试机型所用飞控系统
GPS
三种模式: GPS 姿态增稳 手动
2.3 .动力子系统
动力子系统包括:桨、电机、电调、电池
桨:
桨径与桨距(螺距、总距):桨径表示直径、桨距表示旋转一圈前进的距离 如:某桨型号为1755(17055),则表示 该桨的直径为17英寸,桨距为5.5英寸
扭
反作用力矩就会使直升机逆旋 翼转动方向旋转
矩
尾翼抵消反扭矩
四个动作
悬停和上下飞行时
f2
f3
f4
f1 f6
f5
前后飞行时
f1
f2
f6
f5
f3
f4
左右飞行时
f1
f6 f2
f5 f3
f4
反扭改变航向
f2
偏航动作
f3
f4
顺桨加速,机体逆转。逆
转加速,机体顺转 f1
f6
f5
f5
2 多旋翼无人机系统的组成部分
关键参数: 电池容量(Ah或者mah):16000mah表示可以在16A电流下放电1小时 电池电压:单位伏特(V),单片电池充满4.2V
放电倍率(C):能够承受的最大放电电流倍数 充电倍率: 放电终止电压 放电温度
后续安排:
通信链路、任务设备、地面站路径规划、无 人机调试、飞前检查与应急
感谢!!
无刷电机
电刷
优点:减少火花干扰、摩擦阻力减小、 耐磨、噪声小、内阻低
电机规格与关键参数:
大小尺寸:4位数表示,前两位表示定子线圈直径、后两位表示电机定子线 圈高度(如2212电机)
KV值:转速/V,空载ቤተ መጻሕፍቲ ባይዱ不带桨)情况下,无 刷电机输入电压每增加1V,电机增加的转 速值。(P127KV与桨的关系)
正桨与反桨:反桨CW、正桨CCW( CounterClockWise )
正桨符合右手定则
1英寸=25.4mm
桨的静平衡与动平衡: 静平衡:桨在静止状态下的平衡性能
动平衡:桨在运动状态下的平衡性能
在桨的静平衡与动平衡校正中:先动平衡在静平衡
桨的材质:塑胶桨、木桨、碳桨
塑胶桨: 优点:续航长(小旋翼) 缺点:桨身软、大拉力下易变形(悬停时候稳、飞航线则易抖)
多
飞行平台分系统
旋
翼
无
链路分系统
人
机
系 统
地面站分系统
结构子系统 飞控子系统 动力子系统 机载链路子系统 地面链路子系统
遥测子系统(显示) 遥控子系统(操控)
2 .1多旋翼飞行平台 常见的布局形式:
+形布局
X形布局 H形布局
Y形布局 共轴布局
结构形式:
带边框 无边框 手动水平变形 手动垂直变形 自动脚架收放 自动整体变形
木桨:硬度高、质量轻、在多旋翼上用的较少 优点:震动极小、静平衡完美、无颤震、便宜 缺点:效率低于原装APC、低于同尺寸碳桨
碳桨:效率稍低于同尺寸原装APC 优点:硬度高、刚度高不变形、效率高、颤震小 缺点:价格高、极脆、碰到硬物易受损
电机:多旋翼使用的普遍是外转子三相交流无刷同步电机
有刷电机