中考数学全真模拟试题(十六)

合集下载

江苏省镇江市丹阳市2024届中考数学全真模拟试卷含解析

江苏省镇江市丹阳市2024届中考数学全真模拟试卷含解析

江苏省镇江市丹阳市2024年中考数学全真模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如果23510a a +-=,那么代数式()()()5323+232a a a a +--的值是( )A .6B .2C .-2D .-62.如图,在平面直角坐标系中,半径为2的圆P 的圆心P 的坐标为(﹣3,0),将圆P 沿x 轴的正方向平移,使得圆P 与y 轴相切,则平移的距离为( )A .1B .3C .5D .1或53.已知函数y =ax 2+bx +c 的图象如图所示,则关于x 的方程ax 2+bx +c ﹣4=0的根的情况是A .有两个相等的实数根B .有两个异号的实数根C .有两个不相等的实数根D .没有实数根4.如图所示,将矩形ABCD 的四个角向内折起,恰好拼成一个既无缝隙又无重叠的四边形EFGH ,若EH=3,EF=4,那么线段AD 与AB 的比等于( )A .25:24B .16:15C .5:4D .4:35.1903年、英国物理学家卢瑟福通过实验证实,放射性物质在放出射线后,这种物质的质量将减少,减少的速度开始较快,后来较慢,实际上,放射性物质的质量减为原来的一半所用的时间是一个不变的量,我们把这个时间称为此种放射性物质的半衰期,如图是表示镭的放射规律的函数图象,根据图象可以判断,镭的半衰期为( )A .810 年B .1620 年C .3240 年D .4860 年6.如图,正方形ABCD 内接于圆O ,AB =4,则图中阴影部分的面积是( )A .416π-B .816π-C .1632π-D .3216π-7.如图,在△ABC 中,AB=AC=3,BC=4,AE 平分∠BAC 交BC 于点E ,点D 为AB 的中点,连接DE ,则△BDE 的周长是( )A .3B .4C .5D .68.如图,AD ∥BE ∥CF ,直线l 1,l 2与这三条平行线分别交于点A ,B ,C 和点D ,E ,F .已知AB =1,BC =3,DE =2,则EF 的长为( )A .4B ..5C .6D .89.如图 1 是某生活小区的音乐喷泉, 水流在各个方向上沿形状相同的抛物线路径落下,其中一个喷水管喷水的最大高度为 3 m ,此时距喷水管的水平距离为 1 m ,在如图 2 所示的坐标系中,该喷水管水流喷出的高度y (m )与水平距离x (m )之间的函数关系式是( )A .()213y x =--+B .()2213y x =-+ C .()2313y x =-++ D .()2313y x =--+ 10.随着我国综合国力的提升,中华文化影响日益增强,学中文的外国人越来越多,中文已成为美国居民的第二外语,美国常讲中文的人口约有210万,请将“210万”用科学记数法表示为( )A .70.2110⨯B .62.110⨯C .52110⨯D .72.110⨯二、填空题(共7小题,每小题3分,满分21分)11.如图,正比例函数y 1=k 1x 和反比例函数y 2=2k x的图象交于A (﹣1,2),B (1,﹣2)两点,若y 1>y 2,则x 的取值范围是_____.12.如图,已知//9060 BC 24AD BC B C AD ∠=︒∠=︒==,,,,点M 为边BC 中点,点E F 、在线段AB CD 、上运动,点P 在线段MC 上运动,连接EF EP PF 、、,则EPF ∆周长的最小值为______.13.三角形的每条边的长都是方程2680x x -+=的根,则三角形的周长是 .14.如图,为了测量某棵树的高度,小明用长为2m 的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m ,与树相距15m ,则树的高度为_________m.15.如图,点D 为矩形OABC 的AB 边的中点,反比例函数(0)k y x x=>的图象经过点D ,交BC 边于点E.若△BDE 的面积为1,则k =________16.如图,在□ABCD 中,AC 与BD 交于点M ,点F 在AD 上,AF =6cm ,BF =12cm ,∠FBM =∠CBM ,点E 是BC 的中点,若点P 以1cm/秒的速度从点A 出发,沿AD 向点F 运动;点Q 同时以2cm/秒的速度从点C 出发,沿CB 向点B 运动.点P 运动到F 点时停止运动,点Q 也同时停止运动.当点P 运动_____秒时,以点P 、Q 、E 、F 为顶点的四边形是平行四边形.17.欣欣超市为促销,决定对A ,B 两种商品统一进行打8折销售,打折前,买6件A 商品和3件B 商品需要54元,买3件A 商品和4件B 商品需要32元,打折后,小敏买50件A 商品和40件B 商品仅需________元.三、解答题(共7小题,满分69分)18.(10分)如图,数轴上的点A 、B 、C 、D 、E 表示连续的五个整数,对应数分别为a 、b 、c 、d 、e .(1)若a+e=0,则代数式b+c+d= ;(2)若a 是最小的正整数,先化简,再求值:;(3)若a+b+c+d=2,数轴上的点M 表示的实数为m (m 与a 、b 、c 、d 、e 不同),且满足MA+MD=3,则m 的范围是 .19.(5分)某校为选拔一名选手参加“美丽邵阳,我为家乡做代言”主题演讲比赛,经研究,按图所示的项目和权数对选拔赛参赛选手进行考评(因排版原因统计图不完整).下表是李明、张华在选拔赛中的得分情况:项目选手服装普通话主题演讲技巧李明85 70 80 85张华90 75 75 80结合以上信息,回答下列问题:求服装项目的权数及普通话项目对应扇形的圆心角大小;求李明在选拔赛中四个项目所得分数的众数和中位数;根据你所学的知识,帮助学校在李明、张华两人中选择一人参加“美丽邵阳,我为家乡做代言”主题演讲比赛,并说明理由.20.(8分)先化简,再求值:(12a+-1)÷212aa-+,其中a=31+21.(10分)太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业,如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB的长度相同,均为300cm,AB的倾斜角为,BE=CA=50cm,支撑角钢CD,EF与底座地基台面接触点分别为D,F,CD垂直于地面,于点E.两个底座地基高度相同(即点D,F到地面的垂直距离相同),均为30cm,点A到地面的垂直距离为50cm,求支撑角钢CD和EF的长度各是多少cm(结果保留根号)22.(10分)某农场用2台大收割机和5台小收割机同时工作2小时共收割小麦3.6公顷,3台大收割机和2台小收割机同时工作5小时共收割小麦8公顷.1台大收割机和1台小收割机每小时各收割小麦多少公顷?23.(12分)某化妆品店老板到厂家选购A、B两种品牌的化妆品,若购进A品牌的化妆品5套,B品牌的化妆品6套,需要950元;若购进A品牌的化妆品3套,B品牌的化妆品2套,需要450元.(1)求A、B两种品牌的化妆品每套进价分别为多少元?(2)若销售1套A品牌的化妆品可获利30元,销售1套B品牌的化妆品可获利20元;根据市场需求,店老板决定购进这两种品牌化妆品共50套,且进货价钱不超过4000元,应如何选择进货方案,才能使卖出全部化妆品后获得最大利润,最大利润是多少?24.(14分)如图,在四边形ABCD中,AD∥BC,BA=BC,BD平分∠ABC.求证:四边形ABCD是菱形;过点D 作DE⊥BD,交BC的延长线于点E,若BC=5,BD=8,求四边形ABED的周长.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解题分析】【分析】将所求代数式先利用单项式乘多项式法则、平方差公式进行展开,然后合并同类项,最后利用整体代入思想进行求值即可.【题目详解】∵3a2+5a-1=0,∴3a2+5a=1,∴5a(3a+2)-(3a+2)(3a-2)=15a2+10a-9a2+4=6a2+10a+4=2(3a2+5a)+4=6,故选A.【题目点拨】本题考查了代数式求值,涉及到单项式乘多项式、平方差公式、合并同类项等,利用整体代入思想进行解题是关键.2、D【解题分析】分圆P在y轴的左侧与y轴相切、圆P在y轴的右侧与y轴相切两种情况,根据切线的判定定理解答.【题目详解】当圆P在y轴的左侧与y轴相切时,平移的距离为3-2=1,当圆P在y轴的右侧与y轴相切时,平移的距离为3+2=5,故选D.【题目点拨】本题考查的是切线的判定、坐标与图形的变化-平移问题,掌握切线的判定定理是解题的关键,解答时,注意分情况讨论思想的应用.3、A【解题分析】根据抛物线的顶点坐标的纵坐标为4,判断方程ax2+bx+c﹣4=0的根的情况即是判断函数y=ax2+bx+c的图象与直线y=4交点的情况.【题目详解】∵函数的顶点的纵坐标为4,∴直线y=4与抛物线只有一个交点,∴方程ax2+bx+c﹣4=0有两个相等的实数根,故选A.【题目点拨】本题考查了二次函数与一元二次方程,熟练掌握一元二次方程与二次函数间的关系是解题的关键.4、A【解题分析】先根据图形翻折的性质可得到四边形EFGH是矩形,再根据全等三角形的判定定理得出Rt△AHE≌Rt△CFG,再由勾股定理及直角三角形的面积公式即可解答.【题目详解】∵∠1=∠2,∠3=∠4,∴∠2+∠3=90°,∴∠HEF=90°,同理四边形EFGH的其它内角都是90°,∴四边形EFGH是矩形,∴EH=FG(矩形的对边相等),又∵∠1+∠4=90°,∠4+∠5=90°,∴∠1=∠5(等量代换),同理∠5=∠7=∠8,∴∠1=∠8,∴Rt△AHE≌Rt△CFG,∴AH=CF=FN,又∵HD=HN,∴AD=HF,在Rt△HEF中,EH=3,EF=4,根据勾股定理得,又∵HE•EF=HF•EM,∴EM=125,又∵AE=EM=EB(折叠后A、B都落在M点上),∴AB=2EM=245,∴AD:AB=5:245=2524=25:1.故选A【题目点拨】本题考查的是图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,折叠以后的图形与原图形全等.5、B【解题分析】根据半衰期的定义,函数图象的横坐标,可得答案.【题目详解】由横坐标看出1620年时,镭质量减为原来的一半,故镭的半衰期为1620年,故选B.【题目点拨】本题考查了函数图象,利用函数图象的意义及放射性物质的半衰期是解题关键.6、B【解题分析】连接OA、OB,利用正方形的性质得出OA=ABcos45°,根据阴影部分的面积=S⊙O-S正方形ABCD列式计算可得.【题目详解】解:连接OA、OB,∵四边形ABCD是正方形,∴∠AOB=90°,∠OAB=45°,∴OA=ABcos45°=4×222,所以阴影部分的面积=S⊙O-S正方形ABCD=π×(2)2-4×4=8π-1.故选B.【题目点拨】本题主要考查扇形的面积计算,解题的关键是熟练掌握正方形的性质和圆的面积公式.7、C【解题分析】根据等腰三角形的性质可得BE=12BC=2,再根据三角形中位线定理可求得BD、DE长,根据三角形周长公式即可求得答案.【题目详解】解:∵在△ABC中,AB=AC=3,AE平分∠BAC,∴BE=CE=12BC=2,又∵D是AB中点,∴BD=12AB=32,∴DE是△ABC的中位线,∴DE=12AC=32,∴△BDE的周长为BD+DE+BE=32+32+2=5,故选C.【题目点拨】本题考查了等腰三角形的性质、三角形中位线定理,熟练掌握三角形中位线定理是解题的关键.8、C【解题分析】解:∵AD∥BE∥CF,根据平行线分线段成比例定理可得AB DE BC EF=, 即123EF=, 解得EF =6,故选C.9、D【解题分析】根据图象可设二次函数的顶点式,再将点(0,0)代入即可.【题目详解】解:根据图象,设函数解析式为()2y a x h k =-+由图象可知,顶点为(1,3)∴()213y a x =-+,将点(0,0)代入得()20013a =-+解得3a =-∴()2313y x =--+故答案为:D .【题目点拨】本题考查了是根据实际抛物线形,求函数解析式,解题的关键是正确设出函数解析式.10、B【解题分析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【题目详解】210万=2100000,2100000=2.1×106,故选B .【题目点拨】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.二、填空题(共7小题,每小题3分,满分21分)11、x <﹣2或0<x <2【解题分析】仔细观察图像,图像在上面的函数值大,图像在下面的函数值小,当y2>y2,即正比例函数的图像在上,反比例函数的图像在下时,根据图像写出x的取值范围即可.【题目详解】解:如图,结合图象可得:①当x<﹣2时,y2>y2;②当﹣2<x<0时,y2<y2;③当0<x<2时,y2>y2;④当x>2时,y2<y2.综上所述:若y2>y2,则x的取值范围是x<﹣2或0<x<2.故答案为x<﹣2或0<x<2.【题目点拨】本题考查了图像法解不等式,解题的关键是仔细观察图像,全面写出符合条件的x的取值范围.12、213【解题分析】作梯形ABCD关于AB的轴对称图形,将BC'绕点C'逆时针旋转120°,则有GE'=FE',P与Q是关于AB的对称点,当点F'、G、P三点在一条直线上时,△FEP的周长最小即为F'G+GE'+E'P,此时点P与点M重合,F'M为所求长度;过点F'作F'H⊥BC',M是BC中点,则Q是BC'中点,由已知条件∠B=90°,∠C=60°,BC=2AD=4,可得C'Q=F'C'=2,∠F'C'H=60°,所以3HC'=1,在Rt△MF'H中,即可求得F'M.【题目详解】作梯形ABCD关于AB的轴对称图形,作F关于AB的对称点G,P关于AB的对称点Q,∴PF=GQ,将BC'绕点C'逆时针旋转120°,Q点关于C'G的对应点为F',∴GF'=GQ,设F'M交AB于点E',∵F关于AB的对称点为G,∴GE'=FE',∴当点F'、G 、P 三点在一条直线上时,△FEP 的周长最小即为F'G+GE'+E'P ,此时点P 与点M 重合,∴F'M 为所求长度;过点F'作F'H ⊥BC',∵M 是BC 中点,∴Q 是BC'中点,∵∠B=90°,∠C=60°,BC=2AD=4,∴C'Q=F'C'=2,∠F'C'H=60°,∴3HC'=1,∴MH=7,在Rt △MF'H 中,F'M ()2222F H MH 37213=+=+=';∴△FEP 的周长最小值为213故答案为:13【题目点拨】本题考查了动点问题的最短距离,涉及的知识点有:勾股定理,含30度角直角三角形的性质,能够通过轴对称和旋转,将三角形的三条边转化为线段的长是解题的关键.13、6或2或12【解题分析】首先用因式分解法求得方程的根,再根据三角形的每条边的长都是方程2680x x -+=的根,进行分情况计算.【题目详解】由方程2680x x -+=,得x =2或1.当三角形的三边是2,2,2时,则周长是6;当三角形的三边是1,1,1时,则周长是12;当三角形的三边长是2,2,1时,2+2=1,不符合三角形的三边关系,应舍去;当三角形的三边是1,1,2时,则三角形的周长是1+1+2=2.综上所述此三角形的周长是6或12或2.14、7【解题分析】设树的高度为x m ,由相似可得6157262x +==,解得7x =,所以树的高度为7m 15、1【解题分析】 分析:设D (a ,k a ),利用点D 为矩形OABC 的AB 边的中点得到B (2a ,k a ),则E (2a ,2k a),然后利用三角形面积公式得到12•a•(k a -2k a)=1,最后解方程即可. 详解:设D (a ,k a ), ∵点D 为矩形OABC 的AB 边的中点,∴B (2a ,k a), ∴E (2a ,2k a ), ∵△BDE 的面积为1, ∴12•a•(k a -2k a)=1,解得k=1. 故答案为1.点睛:本题考查了反比例函数解析式的应用,根据解析式设出点的坐标,结合矩形的性质并利用平面直角坐标系中点的特征确定三角形的两边长,进而结合三角形的面积公式列出方程求解,可确定参数k 的取值.16、3或1【解题分析】由四边形ABCD 是平行四边形得出:AD ∥BC ,AD=BC ,∠ADB=∠CBD ,又由∠FBM=∠CBM ,即可证得FB=FD ,求出AD 的长,得出CE 的长,设当点P 运动t 秒时,点P 、Q 、E 、F 为顶点的四边形是平行四边形,根据题意列出方程并解方程即可得出结果.【题目详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC ,∴∠ADB=∠CBD ,∵∠FBM=∠CBM ,∴∠FBD=∠FDB,∴FB=FD=12cm,∵AF=6cm,∴AD=18cm,∵点E是BC的中点,∴CE=12BC=12AD=9cm,要使点P、Q、E、F为顶点的四边形是平行四边形,则PF=EQ即可,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意得:6-t=9-2t或6-t=2t-9,解得:t=3或t=1.故答案为3或1.【题目点拨】本题考查了平行四边形的判定与性质、等腰三角形的判定与性质以及一元一次方程的应用等知识.注意掌握分类讨论思想的应用是解此题的关键.17、1【解题分析】设A、B两种商品的售价分别是1件x元和1件y元,根据题意列出x和y的二元一次方程组,解方程组求出x和y 的值,进而求解即可.【题目详解】解:设A、B两种商品的售价分别是1件x元和1件y元,根据题意得63=54 {34=32x yx y++,解得x=8 {y=2.所以0.8×(8×50+2×40)=1(元).即打折后,小敏买50件A商品和40件B商品仅需1元.故答案为1.【题目点拨】本题考查了利用二元一次方程组解决现实生活中的问题.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.三、解答题(共7小题,满分69分)18、(1)0;(1),;(3) ﹣1<x<1.【解题分析】(1)根据a+e=0,可知a与e互为相反数,则c=0,可得b=-1,d=1,代入可得代数式b+c+d的值;(1)根据题意可得:a=1,将分式计算并代入可得结论即可;(3)先根据A、B、C、D、E为连续整数,即可求出a的值,再根据MA+MD=3,列不等式可得结论.【题目详解】解:(1)∵a+e=0,即a、e互为相反数,∴点C表示原点,∴b、d也互为相反数,则a+b+c+d+e=0,故答案为:0;(1)∵a是最小的正整数,∴a=1,则原式=÷[+]=÷=•=,当a=1时,原式==;(3)∵A、B、C、D、E为连续整数,∴b=a+1,c=a+1,d=a+3,e=a+4,∵a+b+c+d=1,∴a+a+1+a+1+a+3=1,4a=﹣4,a=﹣1,∵MA+MD=3,∴点M再A、D两点之间,∴﹣1<x<1,故答案为:﹣1<x <1.【题目点拨】本题考查了分式的化简求值,解题的关键是熟练的掌握分式的相关知识点.19、(1)服装项目的权数是10%,普通话项目对应扇形的圆心角是72°;(2)众数是85,中位数是82.5;(3)选择李明参加“美丽邵阳,我为家乡做代言”主题演讲比赛,理由见解析.【解题分析】(1)根据扇形图用1减去其它项目的权重可求得服装项目的权重,用360度乘以普通话项目的权重即可求得普通话项目对应扇形的圆心角大小;(2)根据统计表中的数据可以求得李明在选拔赛中四个项目所得分数的众数和中位数;(3)根据统计图和统计表中的数据可以分别计算出李明和张华的成绩,然后比较大小,即可解答本题.【题目详解】(1)服装项目的权数是:1﹣20%﹣30%﹣40%=10%,普通话项目对应扇形的圆心角是:360°×20%=72°;(2)明在选拔赛中四个项目所得分数的众数是85,中位数是:(80+85)÷2=82.5; (3)李明得分为:85×10%+70×20%+80×30%+85×40%=80.5, 张华得分为:90×10%+75×20%+75×30%+80×40%=78.5, ∵80.5>78.5,∴李明的演讲成绩好,故选择李明参加“美丽邵阳,我为家乡做代言”主题演讲比赛.【题目点拨】本题考查了扇形统计图、中位数、众数、加权平均数,明确题意,结合统计表和统计图找出所求问题需要的条件,运用数形结合的思想进行解答是解题的关键.20、【解题分析】分析:首先将括号里面的分式进行通分,然后将分式的分子和分母进行因式分解,然后将除法改成乘法进行约分化简,最后将a 的值代入化简后的式子得出答案.详解:原式=()()22111112211.11a a a a a a a a a a-----+÷===++--+-将1a =代入得:原式=()11333131=-=--+ 点睛:本题主要考查的是分式的化简求值,属于简单题型.解决这个问题的关键就是就是将括号里面的分式进行化成同分母.21、29033cm 【解题分析】过点A 作AG CD ⊥,垂足为G ,利用三角函数求出CG ,从而求出GD ,继而求出CD .连接FD 并延长与BA 的延长线交于点H ,利用三角函数求出CH ,由图得出EH ,再利用三角函数值求出EF .【题目详解】过点A 作AG CD ⊥,垂足为G .则30CAG ∠=︒,在Rt ACG 中,()1sin 3050252CG AC cm =︒=⨯=, 由题意,得()GD 503020cm =-=,∴()252045CD CG GD cm =+=+=,连接FD 并延长与BA 的延长线交于点H . 由题意,得30H ∠=︒.在Rt CDH 中,()290sin 30CD CH CD cm ===︒, ∴()300505090290EH EC CH AB BE AC CH cm =+=--+=--+=.在Rt EFH 中,()32903tan 3029033EF EH cm =︒=⨯=. 答:支角钢CD 的长为45cm ,EF 的长为29033cm .考点:三角函数的应用22、1台大收割机和1台小收割机每小时各收割小麦0.4hm 2和0.2hm 2.【解题分析】此题可设1台大收割机和1台小收割机每小时各收割小麦x 公顷和y 公顷,根据题中的等量关系列出二元一次方程组解答即可【题目详解】设1台大收割机和1台小收割机每小时各收割小麦x 公顷和y 公顷根据题意可得()22x 5y 3.6{ 5328x y +=+=解得0.4{ 0.2x y == 答:每台大小收割机每小时分别收割0.4公顷和0.2公顷.【题目点拨】此题主要考查了二元一次方程组的实际应用,解题关键在于弄清题意,找到合适的等量关系23、(1)A 、B 两种品牌得化妆品每套进价分别为100元,75元;(2)A 种品牌得化妆品购进10套,B 种品牌得化妆品购进40套,才能使卖出全部化妆品后获得最大利润,最大利润是1100元【解题分析】(1)求A 、B 两种品牌的化妆品每套进价分别为多少元,可设A 种品牌的化妆品每套进价为x 元,B 种品牌的化妆品每套进价为y 元.根据两种购买方法,列出方程组解方程;(2)根据题意列出不等式,求出m 的范围,再用代数式表示出利润,即可得出答案.【题目详解】(1)设A 种品牌的化妆品每套进价为x 元,B 种品牌的化妆品每套进价为y 元.得5695032450x y x y +⎧⎨+⎩== 解得:10075x y ⎧⎨⎩==, 答:A 、B 两种品牌得化妆品每套进价分别为100元,75元.(2)设A 种品牌得化妆品购进m 套,则B 种品牌得化妆品购进(50﹣m )套.根据题意得:100m +75(50﹣m )≤4000,且50﹣m ≥0,解得,5≤m ≤10,利润是30m +20(50﹣m )=1000+10m ,当m 取最大10时,利润最大,最大利润是1000+100=1100,所以A种品牌得化妆品购进10套,B种品牌得化妆品购进40套,才能使卖出全部化妆品后获得最大利润,最大利润是1100元.【题目点拨】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.24、(1)详见解析;(2)1.【解题分析】(1)根据平行线的性质得到∠ADB=∠CBD,根据角平分线定义得到∠ABD=∠CBD,等量代换得到∠ADB=∠ABD,根据等腰三角形的判定定理得到AD=AB,根据菱形的判定即可得到结论;(2)由垂直的定义得到∠BDE=90°,等量代换得到∠CDE=∠E,根据等腰三角形的判定得到CD=CE=BC,根据勾股定理得到DE=22=6,于是得到结论.BE BD【题目详解】(1)证明:∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AD=AB,∵BA=BC,∴AD=BC,∴四边形ABCD是平行四边形,∵BA=BC,∴四边形ABCD是菱形;(2)解:∵DE⊥BD,∴∠BDE=90°,∴∠DBC+∠E=∠BDC+∠CDE=90°,∵CB=CD,∴∠DBC=∠BDC,∴∠CDE=∠E,∴CD=CE=BC,∴BE=2BC=10,∵BD=8,∴DE6,∵四边形ABCD是菱形,∴AD=AB=BC=5,∴四边形ABED的周长=AD+AB+BE+DE=1.【题目点拨】本题考查了菱形的判定和性质,角平分线定义,平行线的性质,勾股定理,等腰三角形的性质,正确的识别图形是解题的关键.。

黑龙江省重点中学2024届中考数学全真模拟试题含解析

黑龙江省重点中学2024届中考数学全真模拟试题含解析

黑龙江省重点中学2024届中考数学全真模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于,否则就有危险,那么梯子的长至少为( ) A .8米B .米C .米D .米2.某校在国学文化进校园活动中,随机统计50名学生一周的课外阅读时间如表所示,这组数据的众数和中位数分别是( ) 学生数(人) 5 8 14 19 4 时间(小时) 6 78 910 A .14,9B .9,9C .9,8D .8,93.在平面直角坐标系中,若点A(a ,-b)在第一象限内,则点B(a ,b)所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限4.1903年、英国物理学家卢瑟福通过实验证实,放射性物质在放出射线后,这种物质的质量将减少,减少的速度开始较快,后来较慢,实际上,放射性物质的质量减为原来的一半所用的时间是一个不变的量,我们把这个时间称为此种放射性物质的半衰期,如图是表示镭的放射规律的函数图象,根据图象可以判断,镭的半衰期为( )A .810 年B .1620 年C .3240 年D .4860 年5.若关于x 的一元二次方程2690kx x -+=有两个不相等的实数根,则k 的取值范围( ) A .1k <B .0k ≠C .1k <且0k ≠D .0k >6.甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好都是1.6米,方差分别是,,则在本次测试中,成绩更稳定的同学是()A.甲B.乙C.甲乙同样稳定D.无法确定7.九年级学生去距学校10 km的博物馆参观,一部分学生骑自行车先走,过了20 min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为x km/h,则所列方程正确的是( )A.1010123x x=-B.1010202x x=-C.1010123x x=+D.1010202x x=+8.如图,等腰直角三角形纸片ABC中,∠C=90°,把纸片沿EF对折后,点A恰好落在BC上的点D处,点CE=1,AC=4,则下列结论一定正确的个数是()①∠CDE=∠DFB;②BD>CE;③BC=2CD;④△DCE与△BDF的周长相等.A.1个B.2个C.3个D.4个9.如图,在△ABC中,AB=AC,AD和CE是高,∠ACE=45°,点F是AC的中点,AD与FE,CE分别交于点G、H,∠BCE=∠CAD,有下列结论:①图中存在两个等腰直角三角形;②△AHE≌△CBE;③BC•AD=2AE2;④S△ABC=4S△ADF.其中正确的个数有()A.1 B.2 C.3 D.410.为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有()A.1种B.2种C.3种D.4种二、填空题(共7小题,每小题3分,满分21分)11.利用1个a×a的正方形,1个b×b的正方形和2个a×b的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式________.12.用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为____. 13.已知平面直角坐标系中的点A (2,﹣4)与点B 关于原点中心对称,则点B 的坐标为_____ 14.若关于x 的方程x 2-2x+sinα=0有两个相等的实数根,则锐角α的度数为___.15.如图,矩形OABC 的边OA ,OC 分别在x 轴,y 轴上,点B 在第一象限,点D 在边BC 上,且∠AOD =30°,四边形OA′B′D 与四边形OABD 关于直线OD 对称(点A′和A ,点B′和B 分别对应).若AB =2,反比例函数y =kx(k≠0)的图象恰好经过A′,B ,则k 的值为_____.16.如图,利用标杆BE 测量建筑物的高度,已知标杆BE 高1.2m ,测得 1.6,12.4AB m BC m ==,则建筑物CD 的高是__________m .17.已知抛物线y =-x 2+mx +2-m ,在自变量x 的值满足-1≤x≤2的情况下.若对应的函数值y 的最大值为6,则m 的值为__________.三、解答题(共7小题,满分69分)18.(10分)某学校为弘扬中国传统诗词文化,在九年级随机抽查了若干名学生进行测试,然后把测试结果分为4个等级;A 、B 、C 、D ,对应的成绩分别是9分、8分、7分、6分,并将统计结果绘制成两幅如图所示的统计图.请结合图中的信息解答下列问题:(1)本次抽查测试的学生人数为,图①中的a的值为;(2)求统计所抽查测试学生成绩数据的平均数、众数和中位数.19.(5分)如图在由边长为1个单位长度的小正方形组成的12×12网格中,已知点A,B,C,D均为网格线的交点在网格中将△ABC绕点D顺时针旋转90°画出旋转后的图形△A1B1C1;在网格中将△ABC放大2倍得到△DEF,使A 与D为对应点.20.(8分)如图1,图2…、图m是边长均大于2的三角形、四边形、…、凸n边形.分别以它们的各顶点为圆心,以1为半径画弧与两邻边相交,得到3条弧、4条弧…、n条弧.(1)图1中3条弧的弧长的和为,图2中4条弧的弧长的和为;(2)求图m中n条弧的弧长的和(用n表示).21.(10分)如图,在△ABC中,∠ABC=90°,BD⊥AC,垂足为D,E为BC边上一动点(不与B、C重合),AE、BD交于点F.(1)当AE平分∠BAC时,求证:∠BEF=∠BFE;(2)当E运动到BC中点时,若BE=2,BD=2.4,AC=5,求AB的长.22.(10分)如图,以AB 边为直径的⊙O 经过点P ,C 是⊙O 上一点,连结PC 交AB 于点E ,且∠ACP =60°,PA =PD .试判断PD 与⊙O 的位置关系,并说明理由;若点C 是弧AB 的中点,已知AB =4,求CE •CP 的值.23.(12分)如图,AB 是⊙O 的一条弦,E 是AB 的中点,过点E 作EC ⊥OA 于点C ,过点B 作⊙O 的切线交CE 的延长线于点D . (1)求证:DB=DE;(2)若AB=12,BD=5,求⊙O 的半径.24.(14分)已知边长为2a 的正方形ABCD ,对角线AC 、BD 交于点Q ,对于平面内的点P 与正方形ABCD ,给出如下定义:如果2a PQ a <<,则称点P 为正方形ABCD 的“关联点”.在平面直角坐标系xOy 中,若A (﹣1,1),B (﹣1,﹣1),C (1,﹣1),D (1,1).(1)在11,02P ⎛⎫- ⎪⎝⎭,213,22P ⎛⎫ ⎪ ⎪⎝⎭,()30,2P 中,正方形ABCD 的“关联点”有_____; (2)已知点E 的横坐标是m ,若点E 在直线3y x =上,并且E 是正方形ABCD 的“关联点”,求m 的取值范围; (3)若将正方形ABCD 沿x 轴平移,设该正方形对角线交点Q 的横坐标是n ,直线31y x =+与x 轴、y 轴分别相交于M 、N 两点.如果线段MN 上的每一个点都是正方形ABCD 的“关联点”,求n 的取值范围.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分) 1、C 【解题分析】此题考查的是解直角三角形 如图:AC=4,AC ⊥BC ,∵梯子的倾斜角(梯子与地面的夹角)不能>60°. ∴∠ABC≤60°,最大角为60°.即梯子的长至少为米,故选C.2、C【解题分析】解:观察、分析表格中的数据可得:∵课外阅读时间为1小时的人数最多为11人,∴众数为1.∵将这组数据按照从小到大的顺序排列,第25个和第26个数据的均为2,∴中位数为2.故选C.【题目点拨】本题考查(1)众数是一组数据中出现次数最多的数;(2)中位数的确定要分两种情况:①当数据组中数据的总个数为奇数时,把所有数据按从小到大的顺序排列,中间的那个数就是中位数;②当数据组中数据的总个数为偶数时,把所有数据按从小到大的顺序排列,中间的两个数的平均数是这组数据的中位数.3、D【解题分析】先根据第一象限内的点的坐标特征判断出a、b的符号,进而判断点B所在的象限即可.【题目详解】∵点A(a,-b)在第一象限内,∴a>0,-b>0,∴b<0,∴点B((a,b)在第四象限,故选D.【题目点拨】本题考查了点的坐标,解决本题的关键是牢记平面直角坐标系中各个象限内点的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.4、B【解题分析】根据半衰期的定义,函数图象的横坐标,可得答案.【题目详解】由横坐标看出1620年时,镭质量减为原来的一半,故镭的半衰期为1620年, 故选B . 【题目点拨】本题考查了函数图象,利用函数图象的意义及放射性物质的半衰期是解题关键. 5、C 【解题分析】根据一元二次方程的定义结合根的判别式即可得出关于a 的一元一次不等式组,解之即可得出结论. 【题目详解】解:∵关于x 的一元二次方程2690kx x -+=有两个不相等的实数根,∴ 20(6)490k k ≠⎧⎨=--⨯>⎩, 解得:k<1且k≠1. 故选:C . 【题目点拨】本题考查了一元二次方程的定义、根的判别式以及解一元一次不等式组,根据一元二次方程的定义结合根的判别式列出关于a 的一元一次不等式组是解题的关键. 6、A 【解题分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定. 【题目详解】∵S 甲2=1.4,S 乙2=2.5, ∴S 甲2<S 乙2,∴甲、乙两名同学成绩更稳定的是甲; 故选A . 【题目点拨】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定. 7、C 【解题分析】试题分析:设骑车学生的速度为xkm/h,则汽车的速度为2xkm/h,由题意得,1010123x x=+.故选C.考点:由实际问题抽象出分式方程.8、D【解题分析】等腰直角三角形纸片ABC中,∠C=90°,∴∠A=∠B=45°,由折叠可得,∠EDF=∠A=45°,∴∠CDE+∠BDF=135°,∠DFB+∠B=135°,∴∠CDE=∠DFB,故①正确;由折叠可得,DE=AE=3,∴=∴BD=BC﹣DC=4﹣1,∴BD>CE,故②正确;∵BC=4,CD=4,∴CD,故③正确;∵AC=BC=4,∠C=90°,∴,∵△DCE的周长,由折叠可得,DF=AF,∴△BDF的周长+(4﹣),∴△DCE与△BDF的周长相等,故④正确;故选D.点睛:本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.9、C【解题分析】①图中有3个等腰直角三角形,故结论错误;②根据ASA证明即可,结论正确;③利用面积法证明即可,结论正确;④利用三角形的中线的性质即可证明,结论正确. 【题目详解】∵CE ⊥AB ,∠ACE=45°, ∴△ACE 是等腰直角三角形, ∵AF=CF , ∴EF=AF=CF ,∴△AEF ,△EFC 都是等腰直角三角形, ∴图中共有3个等腰直角三角形,故①错误,∵∠AHE+∠EAH=90°,∠DHC+∠BCE=90°,∠AHE=∠DHC , ∴∠EAH=∠BCE ,∵AE=EC ,∠AEH=∠CEB=90°, ∴△AHE ≌△CBE ,故②正确,∵S △ABC =12BC•AD=12AB•CE ,AE ,AE=CE ,∴CE 2,故③正确, ∵AB=AC ,AD ⊥BC , ∴BD=DC , ∴S △ABC =2S △ADC , ∵AF=FC , ∴S △ADC =2S △ADF , ∴S △ABC =4S △ADF . 故选C . 【题目点拨】本题考查相似三角形的判定和性质、等腰直角三角形的判定和性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题. 10、B 【解题分析】首先设毽子能买x 个,跳绳能买y 根,根据题意列方程即可,再根据二元一次方程求解. 【题目详解】解:设毽子能买x 个,跳绳能买y 根,根据题意可得:3x+5y=35,y=7-35 x,∵x、y都是正整数,∴x=5时,y=4;x=10时,y=1;∴购买方案有2种.故选B.【题目点拨】本题主要考查二元一次方程的应用,关键在于根据题意列方程.二、填空题(共7小题,每小题3分,满分21分)11、a1+1ab+b1=(a+b)1【解题分析】试题分析:两个正方形的面积分别为a1,b1,两个长方形的面积都为ab,组成的正方形的边长为a+b,面积为(a+b)1,所以a1+1ab+b1=(a+b)1.点睛:本题考查了运用完全平方公式分解因式,关键是理解题中给出的各个图形之间的面积关系.12、4 3【解题分析】试题分析:1204=2180rππ⨯,解得r=43.考点:弧长的计算.13、(﹣2,4)【解题分析】根据点P(x,y)关于原点对称的点为(-x,-y)即可得解.【题目详解】解:∵点A (2,-4)与点B关于原点中心对称,∴点B的坐标为:(-2,4).故答案为:(-2,4).【题目点拨】此题主要考查了关于原点对称点的性质,正确掌握横纵坐标的关系是解题关键.14、30°【解题分析】试题解析:∵关于x 的方程2sin 0x α+=有两个相等的实数根, ∴()2241sin 0,α=--⨯⨯= 解得:1sin 2α=, ∴锐角α的度数为30°;故答案为30°.15 【解题分析】解:∵四边形ABCO 是矩形,AB=1,∴设B (m ,1),∴OA=BC=m ,∵四边形OA′B′D 与四边形OABD 关于直线OD 对称,∴OA′=OA=m ,∠A′OD=∠AOD=30°∴∠A′OA=60°,过A′作A′E ⊥OA 于E ,∴OE=12m ,A′E=2m ,∴A′(12m ), ∵反比例函数k y x=(k≠0)的图象恰好经过点A′,B ,∴12 ,∴,∴故答案为316、10.5【解题分析】先证△AEB∽△ABC,再利用相似的性质即可求出答案. 【题目详解】解:由题可知,BE⊥AC,DC⊥AC∵BE//DC,∴△AEB∽△ADC,∴BE AB CD AC=,即:1.2 1.61.612.4 CD=+,∴CD=10.5(m).故答案为10.5.【题目点拨】本题考查了相似的判定和性质.利用相似的性质列出含所求边的比例式是解题的关键.17、m=8或【解题分析】求出抛物线的对称轴分三种情况进行讨论即可.【题目详解】抛物线的对称轴,抛物线开口向下,当,即时,抛物线在-1≤x≤2时,随的增大而减小,在时取得最大值,即解得符合题意.当即时,抛物线在-1≤x≤2时,在时取得最大值,即无解.当,即时,抛物线在-1≤x≤2时,随的增大而增大,在时取得最大值,即解得符合题意.综上所述,m的值为8或故答案为:8或【题目点拨】考查二次函数的图象与性质,注意分类讨论,不要漏解.三、解答题(共7小题,满分69分)18、(1)50、2;(2)平均数是7.11;众数是1;中位数是1.【解题分析】(1)根据A等级人数及其百分比可得总人数,用C等级人数除以总人数可得a的值;(2)根据平均数、众数、中位数的定义计算可得.【题目详解】(1)本次抽查测试的学生人数为14÷21%=50人,a%=1250×100%=2%,即a=2.故答案为50、2;(2)观察条形统计图,平均数为1492081274650⨯+⨯+⨯+⨯=7.11.∵在这组数据中,1出现了20次,出现的次数最多,∴这组数据的众数是1.∵将这组数据从小到大的顺序排列,其中处于中间的两个数都是1,∴882+=1,∴这组数据的中位数是1.【题目点拨】本题考查了众数、平均数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.19、(1)见解析(2)见解析【解题分析】(1)根据旋转变换的定义和性质求解可得;(2)根据位似变换的定义和性质求解可得.【题目详解】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△DEF 即为所求.【题目点拨】本题主要考查作图﹣位似变换与旋转变换,解题的关键是掌握位似变换与旋转变换的定义与性质.20、 (1)π, 2π;(2)(n ﹣2)π.【解题分析】(1)利用弧长公式和三角形和四边形的内角和公式代入计算;(2)利用多边形的内角和公式和弧长公式计算.【题目详解】(1)利用弧长公式可得312111180180180n n n πππ⨯⨯⨯++=π, 因为n 1+n 2+n 3=180°. 同理,四边形的=31241111180180180180n n n n ππππ⨯⨯⨯⨯+++=2π, 因为四边形的内角和为360度;(2)n 条弧=31241111(2)1801 (180180180180180)n n n n n πππππ⨯⨯⨯⨯-⨯⨯++++==(n ﹣2)π. 【题目点拨】本题考查了多边形的内角和定理以及扇形的面积公式和弧长的计算公式,理解公式是关键.21、(1)证明见解析;(1)2【解题分析】分析:(1)根据角平分线的定义可得∠1=∠1,再根据等角的余角相等求出∠BEF =∠AFD ,然后根据对顶角相等可得∠BFE =∠AFD ,等量代换即可得解;(1)根据中点定义求出BC ,利用勾股定理列式求出AB 即可.详解:(1)如图,∵AE 平分∠BAC ,∴∠1=∠1.∵BD ⊥AC ,∠ABC =90°,∴∠1+∠BEF =∠1+∠AFD =90°,∴∠BEF =∠AFD .∵∠BFE=∠AFD(对顶角相等),∴∠BEF=∠BFE;(1)∵BE=1,∴BC=4,由勾股定理得:AB=22AC BC-=2254-=2.点睛:本题考查了直角三角形的性质,勾股定理的应用,等角的余角相等的性质,熟记各性质并准确识图是解题的关键.22、(1)PD是⊙O的切线.证明见解析.(2)1.【解题分析】试题分析:(1)连结OP,根据圆周角定理可得∠AOP=2∠ACP=120°,然后计算出∠PAD和∠D的度数,进而可得∠OPD=90°,从而证明PD是⊙O的切线;(2)连结BC,首先求出∠CAB=∠ABC=∠APC=45°,然后可得AC长,再证明△CAE∽△CPA,进而可得,然后可得CE•CP的值.试题解析:(1)如图,PD是⊙O的切线.证明如下:连结OP,∵∠ACP=60°,∴∠AOP=120°,∵OA=OP,∴∠OAP=∠OPA=30°,∵PA=PD,∴∠PAO=∠D=30°,∴∠OPD=90°,∴PD是⊙O的切线.(2)连结BC,∵AB是⊙O的直径,∴∠ACB=90°,又∵C为弧AB的中点,∴∠CAB=∠ABC=∠APC=45°,∵AB=4,AC=Absin45°=.∵∠C=∠C,∠CAB=∠APC,∴△CAE∽△CPA,∴,∴CP•CE=CA2=()2=1.考点:相似三角形的判定与性质;圆心角、弧、弦的关系;直线与圆的位置关系;探究型.23、(1)证明见解析;(2)15 2【解题分析】试题分析:(1)由切线性质及等量代换推出∠4=∠5,再利用等角对等边可得出结论;(2)由已知条件得出sin ∠DEF 和sin ∠AOE 的值,利用对应角的三角函数值相等推出结论.试题解析:(1)∵DC ⊥OA , ∴∠1+∠3=90°, ∵BD 为切线,∴OB ⊥BD , ∴∠2+∠5=90°,∵OA=OB , ∴∠1=∠2,∵∠3=∠4,∴∠4=∠5,在△DEB 中, ∠4=∠5,∴DE=DB.(2)作DF ⊥AB 于F ,连接OE ,∵DB=DE , ∴EF=12BE=3,在 RT △DEF 中,EF=3,DE=BD=5,EF=3 , ∴DF=22534-=∴sin ∠DEF=DF DE = 45 , ∵∠AOE=∠DEF , ∴在RT △AOE 中,sin ∠AOE=45AE AO = , ∵AE=6, ∴AO=152. 【题目点拨】本题考查了圆的性质,切线定理,三角形相似,三角函数等知识,结合图形正确地选择相应的知识点与方法进行解题是关键.24、(1)正方形ABCD 的“关联点”为P 2,P 3;(2)1222m ≤≤或2122m -≤≤-;(3)33233n ≤≤-. 【解题分析】(1)正方形ABCD 的“关联点”中正方形的内切圆和外切圆之间(包括两个圆上的点),由此画出图形即可判断; (2)因为E 是正方形ABCD 的“关联点”,所以E 在正方形ABCD 的内切圆和外接圆之间(包括两个圆上的点),因为E 在直线3y x =上,推出点E 在线段FG 上,求出点F 、G 的横坐标,再根据对称性即可解决问题;(3)因为线段MN 上的每一个点都是正方形ABCD 的“关联点”,分两种情形:①如图3中,MN 与小⊙Q 相切于点F ,求出此时点Q 的横坐标;②M 如图4中,落在大⊙Q 上,求出点Q 的横坐标即可解决问题;【题目详解】(1)由题意正方形ABCD 的“关联点”中正方形的内切圆和外切圆之间(包括两个圆上的点),观察图象可知:正方形ABCD 的“关联点”为P 2,P 3;(2)作正方形ABCD 的内切圆和外接圆,∴OF =1,2OG =.∵E 是正方形ABCD 的“关联点”,∴E 在正方形ABCD 的内切圆和外接圆之间(包括两个圆上的点),∵点E 在直线3y x =上,∴点E 在线段FG 上.分别作FF ’⊥x 轴,GG ’⊥x 轴,∵OF =1,2OG =∴12OF '=,22OG '=. ∴1222m ≤≤. 根据对称性,可以得出2122m -≤≤-. ∴122m ≤≤212m ≤≤-. (3)∵33M ⎛⎫- ⎪ ⎪⎝⎭、N (0,1), ∴33OM =,ON =1. ∴∠OMN =60°.∵线段MN 上的每一个点都是正方形ABCD的“关联点”,①MN 与小⊙Q 相切于点F ,如图3中,∵QF =1,∠OMN =60°, ∴233QM =. ∵33OM =, ∴33OQ =. ∴13,03Q ⎛⎫ ⎪ ⎪⎝⎭. ②M 落在大⊙Q 上,如图4中,∵2QM =33OM =, ∴32OQ =∴232Q ⎫⎪⎪⎭. 332n ≤≤【题目点拨】本题考查一次函数综合题、正方形的性质、直线与圆的位置关系等知识,解题的关键是理解题意,学会寻找特殊位置解决数学问题,属于中考压轴题.。

2024届黑龙江省哈尔滨阿城区六校联考中考数学全真模拟试卷含解析

2024届黑龙江省哈尔滨阿城区六校联考中考数学全真模拟试卷含解析

2024届黑龙江省哈尔滨阿城区六校联考中考数学全真模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(共10小题,每小题3分,共30分)1.下列运算正确的是()A.a2•a3=a6B.(12)﹣1=﹣2 C.16=±4 D.|﹣6|=62.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN等于()A.125B.95C.65D.1653.如图,点D、E分别为△ABC的边AB、AC上的中点,则△ADE的面积与四边形BCED的面积的比为()A.1:2 B.1:3 C.1:4 D.1:14.如图是由5个大小相同的正方体搭成的几何体,这个几何体的俯视图是()A.B.C.D.5.函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>1;②b+c+1=1;③3b+c+6=1;④当1<x<3时,x2+(b﹣1)x+c<1.其中正确的个数为A .1B .2C .3D .46.下列命题是真命题的是( ) A .如果a +b =0,那么a =b =0 B .16的平方根是±4 C .有公共顶点的两个角是对顶角D .等腰三角形两底角相等7.若(x ﹣1)0=1成立,则x 的取值范围是( ) A .x =﹣1B .x =1C .x≠0D .x≠18.平面直角坐标系内一点()2, 3P -关于原点对称点的坐标是( ) A .()3,2-B .()2,3C .()2,3--D .()2,3-9.如图,热气球的探测器显示,从热气球A 看一栋楼顶部B 的仰角为30°,看这栋楼底部C 的俯角为60°,热气球A 与楼的水平距离为120米,这栋楼的高度BC 为( )A .160米B .(60+1603)C .1603米D .360米10.如图所示的工件,其俯视图是( )A .B .C .D .二、填空题(本大题共6个小题,每小题3分,共18分) 11.分解因式:x 3﹣2x 2+x=______.12.如图,△ABC 内接于⊙O ,AB 是⊙O 的直径,点D 在圆O 上,BD =CD ,AB =10,AC =6,连接OD 交BC 于点E ,DE =______.13.在△ABC 中,∠A :∠B :∠C=1:2:3,它的最小边的长是2cm ,则它的最大边的长是_____cm . 14.一机器人以0.2m/s 的速度在平地上按下图中的步骤行走,那么该机器人从开始到停止所需时间为__s .15.如图,半径为5的半圆的初始状态是直径平行于桌面上的直线b ,然后把半圆沿直线b 进行无滑动滚动,使半圆的直径与直线b 重合为止,则圆心O 运动路径的长度等于_____.16.如图,点A 、B 、C 是⊙O 上的点,且∠ACB =40°,阴影部分的面积为2π,则此扇形的半径为______.三、解答题(共8题,共72分)17.(8分)先化简,再求值:22211·1441x x x x x x -++--+-,其中x 是从-1、0、1、2中选取一个合适的数. 18.(8分)(1)计算:|﹣3|+5)0﹣(﹣12)﹣2﹣2cos60°;(2)先化简,再求值:(1111a a --+)+2421a a +-,其中a=﹣2. 19.(8分)体育老师为了解本校九年级女生1分钟“仰卧起坐”体育测试项目的达标情况,从该校九年级136名女生中,随机抽取了20名女生,进行了1分钟仰卧起坐测试,获得数据如下: 收集数据:抽取20名女生的1分钟仰卧起坐测试成绩(个)如下:38 46 42 52 55 43 59 46 25 38 35 45 51 48 57 49 47 53 58 49 (1)整理、描述数据:请你按如下分组整理、描述样本数据,把下列表格补充完整: 范围 25≤x≤29 30≤x≤34 35≤x≤39 40≤x≤44 45≤x≤49 50≤x≤54 55≤x≤59 人数(说明:每分钟仰卧起坐个数达到49个及以上时在中考体育测试中可以得到满分) (2)分析数据:样本数据的平均数、中位数、满分率如下表所示: 平均数 中位数 满分率 46.847.545%得出结论:①估计该校九年级女生在中考体育测试中1分钟“仰卧起坐”项目可以得到满分的人数为 ; ②该中心所在区县的九年级女生的1分钟“仰卧起坐”总体测试成绩如下: 平均数 中位数 满分率 45.34951.2%请你结合该校样本测试成绩和该区县总体测试成绩,为该校九年级女生的1分钟“仰卧起坐”达标情况做一下评估,并提出相应建议.20.(8分)已知:如图,在半径是4的⊙O 中,AB 、CD 是两条直径,M 是OB 的中点,CM 的延长线交⊙O 于点E ,且EM >MC ,连接DE ,DE=15. (1)求证:△AMC ∽△EMB ; (2)求EM 的长; (3)求sin ∠EOB 的值.21.(8分)关于x 的一元二次方程()23220x k x k -+++=.求证:方程总有两个实数根;若方程有一根小于1,求k的取值范围.22.(10分)如图,在平面直角坐标系中,等边三角形ABC 的顶点B 与原点O 重合,点C 在x 轴上,点C 坐标为(6,0),等边三角形ABC 的三边上有三个动点D 、E 、F (不考虑与A 、B 、C 重合),点D 从A 向B 运动,点E 从B 向C 运动,点F 从C 向A 运动,三点同时运动,到终点结束,且速度均为1cm/s ,设运动的时间为ts ,解答下列问题: (1)求证:如图①,不论t 如何变化,△DEF 始终为等边三角形.(2)如图②过点E 作EQ ∥AB ,交AC 于点Q ,设△AEQ 的面积为S ,求S 与t 的函数关系式及t 为何值时△AEQ 的面积最大?求出这个最大值.(3)在(2)的条件下,当△AEQ 的面积最大时,平面内是否存在一点P ,使A 、D 、Q 、P 构成的四边形是菱形,若存在请直接写出P 坐标,若不存在请说明理由?23.(12分)P 是C 外一点,若射线PC 交C 于点A ,B 两点,则给出如下定义:若0PA PB 3<⋅≤,则点P 为C的“特征点”.()1当O 的半径为1时.①在点()1P 2,0、()2P 0,2、()3P 4,0中,O 的“特征点”是______;②点P 在直线y x b =+上,若点P 为O 的“特征点”.求b 的取值范围;()2C 的圆心在x 轴上,半径为1,直线y x 1=+与x 轴,y 轴分别交于点M ,N ,若线段MN 上的所有点都不是C的“特征点”,直接写出点C 的横坐标的取值范围.24.已知关于x 的方程()22210x k x k --+=有两个实数根12,x x .求k 的取值范围;若12121x x x x +=-,求k 的值;参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解题分析】运用正确的运算法则即可得出答案.【题目详解】A、应该为a5,错误;B、为2,错误;C、为4,错误;D、正确,所以答案选择D项.【题目点拨】本题考查了四则运算法则,熟悉掌握是解决本题的关键.2、A【解题分析】连接AM,根据等腰三角形三线合一的性质得到AM⊥BC,根据勾股定理求得AM的长,再根据在直角三角形的面积公式即可求得MN的长.【题目详解】解:连接AM,∵AB=AC,点M为BC中点,∴AM⊥CM(三线合一),BM=CM,∵AB=AC=5,BC=6,∴BM=CM=3,在Rt△ABM中,AB=5,BM=3,∴根据勾股定理得:AM= 22-AB BM= 22-53=4,又S △AMC =12MN•AC=12AM•MC , ∴MN=·AM CMAC= 125.故选A . 【题目点拨】综合运用等腰三角形的三线合一,勾股定理.特别注意结论:直角三角形斜边上的高等于两条直角边的乘积除以斜边. 3、B 【解题分析】根据中位线定理得到DE ∥BC ,DE=12BC ,从而判定△ADE ∽△ABC ,然后利用相似三角形的性质求解. 【题目详解】解:∵D 、E 分别为△ABC 的边AB 、AC 上的中点, ∴DE 是△ABC 的中位线, ∴DE ∥BC ,DE=12BC , ∴△ADE ∽△ABC ,∴△ADE 的面积:△ABC 的面积=21()2=1:4, ∴△ADE 的面积:四边形BCED 的面积=1:3; 故选B . 【题目点拨】本题考查三角形中位线定理及相似三角形的判定与性质. 4、A 【解题分析】分析:根据从上面看得到的图形是俯视图,可得答案.详解:从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形, 故选:A .点睛:本题考查了简单组合体的三视图,从上面看得到的图形是俯视图. 5、B 【解题分析】分析:∵函数y=x 2+bx+c 与x 轴无交点,∴b 2﹣4c <1;故①错误。

2022年中考数学全真模拟卷16

2022年中考数学全真模拟卷16

中考数学全真模拟卷一、选择题(本大题共6小题,每小题3分,共18分)1.(2020·重庆南岸区·九年级一模)下列各数中,比﹣2小的数是( )A .﹣3B .﹣1C .0D .12.(2020·山西九年级专题练习)下列计算正确的是( ).A .3362x x x +=B .33x x x ÷=C .()222x y x y +=+D .()236x x -=3.(2020·甘肃九年级二模)图中几何体的俯视图是( )A .B .C .D .4.(2020·山东省济南稼轩学校)某企业1~5月份利润的变化情况如图所示,以下说法与图中反映的信息相符的是( ).A .1~2月份利润的增长快于2~3月份利润的增长B .1~4月份利润的极差与1~5月份利润的极差不同C .1~5月份利润的众数是130万元D .1~5月份利润的中位数为120万元5.(2020·广东九年级二模)如图,圆内接正方形ABCD ,在弧BC 上有一点E ,则tan AEB ∠的值为( )A .1 BCD6.(2020·陕西西安市·九年级零模)关于二次函数y =2x 2﹣mx +m ﹣2,以下结论:①抛物线交x 轴有交点;②不论m 取何值,抛物线总经过点(1,0);③若m >6,抛物线交x 轴于A 、B 两点,则AB >1;④抛物线的顶点在y =﹣2(x ﹣1)2图象上.其中正确的序号是( )A .①②③④B .①②③C .①②④D .②③④二、填空题(本大题共6小题,每小题3分,共18分)7.(2020·南昌市第十九中学九年级月考)-1999-1= _______.8.(2020·内蒙古包头市·九年级二模)截止到年5月12日18时,全球感染新型冠状肺炎的人数已经超过415万人,携手抗击疫情,刻不容缓.请将415万用科学记数法表示为_________.9.(2020·山东菏泽市·九年级其他模拟)不等式组131722523(1)x xx x ⎧-≤-⎪⎨⎪->+⎩的解集是______________;10.(2020·四川省通江县民胜职业高级中学九年级月考)已知α,β是方程x 2﹣3x ﹣4=0的两个实数根,则α2+αβ﹣3α的值为_____.11.(2020·陕西九年级其他模拟)如图,在矩形ABCD 中,AB =4,BC =8,延长BA 至E ,使AE =AB ,以AE为边向右侧作正方形AEFG ,O 为正方形AEFG 的中心,若过点O 的一条直线平分该组合图形的面积,并分别交EF 、BC 于点M 、N ,则线段MN 的长为_____.12.(2019·江西赣州市·九年级其他模拟)如图,在菱形ABCD 中,对角线AC 、BD 相交于点O 、AC =8cm 、BD =6cm ,点P 为AC 上一动点,点P 以1cm /的速度从点A 出发沿AC 向点C 运动.设运动时间为ts ,当t =_____s 时,△PAB 为等腰三角形.三、(本大题共5小题,每小题6分,共30分)13.(2019·江西九年级二模)(1)计算:()()()2232323x x x +-+-;(2)如图,90A D∠=∠=︒,AC DB =,AC 、DB 相交于点O .求证:OB OC =.14.(2020·河南洛阳市·东方二中九年级其他模拟)先化简,再求值:1()2aa÷3(2)2aa,请从-1、0、1中选取一个合适的数作为a的值代入求值.15.(2020·湖北孝感市·九年级其他模拟)如图,射线OA放置在4×5的正方形虚线网格中,现请你在图中找出格点(即每个小正方形的顶点)B,并连接OB、AB使△AOB为直角三角形,并且(1)使tan∠AOB的值为1;(2)使tan∠AOB的值为12.16.(2020·江西赣州市·九年级二模)某教室的开关控制板上有四个外形完全相同的开关,其中两个分别控制A、B两盏电灯,另两个分别控制C、D两个吊扇.已知电灯、吊扇均正常,且处于不工作状态,开关与电灯、电扇的对应关系未知.(1)若四个开关均正常,则任意按下一个开关,正好一盏灯亮的概率是多少;(2)若其中一个控制电灯的开关坏了,则任意按下两个开关,正好一盏灯亮和一个扇转的概率是多少.请用树状图法或列表法加以说明.17.(2020·渠县崇德实验学校九年级期末)楚天汽车销售公司5月份销售某种型号汽车,当月该型号汽车的进价为30万元/辆,若当月销售量超过5辆时,每多售出1辆,所有售出的汽车进价均降低0.1万元/辆.根据市场调查,月销售量不会突破30台.(1)设当月该型号汽车的销售量为x辆(x≤30,且x为正整数),实际进价为y万元/辆,求y与x的函数关系式;(2)已知该型号汽车的销售价为32万元/辆,公司计划当月销售利润25万元,那么该月需售出多少辆汽车?(注:销售利润=销售价﹣进价)四、(本大题共3小题,每小题8分,共24分)18.(2020·江苏九年级一模)面对今年的新冠疫情,某区所有中学开展了“停课不停学”活动.该区教育主管部门随机调查了一些家长对该活动的态度(A:无所谓;B:赞成;C:反对),并将调查结果绘制成图①和图②的统计图.请根据图中提供的信息,解答下列问题:(1)在图①中,C部分所占扇形的圆心角度数为°;(2)将图②补充完整;(3)根据抽样调查结果,估计该区30000名中学生家长中有多少人持赞成态度.19.(2020·辽宁葫芦岛市·中考真题)如图,小明利用学到的数学知识测量大桥主架在水面以上的高度AB,在观测点C处测得大桥主架顶端A的仰角为30°,测得大桥主架与水面交汇点B的俯角为14°,观测点与大桥主架的水平距离CM为60A B C M在同一平面内)米,且AB垂直于桥面.(点,,,(1)求大桥主架在桥面以上的高度AM ;(结果保留根号)(2)求大桥主架在水面以上的高度AB .(结果精确到1米)(参考数据sin140.24,cos140.97,tan14 1.73︒︒︒≈≈≈≈)20.(2020·江苏苏州市·九年级二模)如图,在平面直角坐标系xOy 中,直线y =2x +b 经过点A (﹣2,0),与y 轴交于点B ,与反比例函数y k x =(x >0)交于点C (m ,6),过B 作BD ⊥y 轴,交反比例函数y kx=(x >0)于点D ,连接AD ,CD . (1)求b ,k 的值;(2)求△ACD 的面积;(3)设E 为直线AB 上一点,过点E 作EF ∥x 轴,交反比例函数y kx=(x >0)于点F ,若以点A ,O ,E ,F 为顶点的四边形为平行四边形,求点E 的坐标.五、(本大题共2小题,每小题9分,共18分)21.(2020·四川成都市·九年级其他模拟)已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BD于点F,交⊙O于点D,AC与BD交于点G,点E为OC的延长线上一点,且∠OEB=∠ACD.(1)求证:BE是⊙O的切线;(2)求证:CD2=CG•CA;(3)若⊙O的半径为52,BG的长为154,求tan∠CAB.22.(2020·湖北武汉市·九年级一模)已知抛物线y=ax2+bx+c的顶点为D (65,-145),经过点C (0,-1),且与x轴交于A、B两点(A在B的左侧).(1) 求抛物线的解析式:(2) P为抛物线上一点,连CP交OD于点Q,若S△COQ=S△PDQ,求P点的横坐标;(3)点M为直线BC下方抛物线上一点,过M的直线与x轴、y轴分别交于E、F,且与抛物线有且只有一个公共点.若∠FCM=∠OEF,求点M的坐标.六、(本大题共12分)23.(2020·湖南岳阳市·知源学校九年级其他模拟)我们定义:如图1、图2、图3,在△ABC中,把AB绕点A顺时针旋转α(0°<α<180°)得到AB′,把AC绕点A逆时针旋转β得到AC′,连接B′C′,当α+β=180°时,我们称△AB'C′是△ABC的“旋补三角形”,△AB′C′边B'C′上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.图1、图2、图3中的△AB′C′均是△ABC的“旋补三角形”.(1)①如图2,当△ABC为等边三角形时,“旋补中线”AD与BC的数量关系为:AD=BC;②如图3,当∠BAC=90°,BC=8时,则“旋补中线”AD长为.(2)在图1中,当△ABC为任意三角形时,猜想“旋补中线”AD与BC的数量关系,并给予证明.。

浙江省金华市四校2024届中考数学全真模拟试题含解析

浙江省金华市四校2024届中考数学全真模拟试题含解析

浙江省金华市四校2024学年中考数学全真模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.用圆心角为120°,半径为6cm 的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是( )A .2 cmB .32cmC .42cmD .4cm2.如图,在△ABC 中,∠B =90°,AB =3cm ,BC =6cm ,动点P 从点A 开始沿AB 向点B 以1cm /s 的速度移动,动点Q 从点B 开始沿BC 向点C 以2cm /s 的速度移动,若P ,Q 两点分别从A ,B 两点同时出发,P 点到达B 点运动停止,则△PBQ 的面积S 随出发时间t 的函数关系图象大致是( )A .B .C .D .3.解分式方程2x 23x 11x++=--时,去分母后变形为 A .()()2x 23x 1++=- B .()2x 23x 1-+=-C .()()2x 231?x -+=- D .()()2x 23x 1-+=- 4.下列计算,结果等于a 4的是( )A .a+3aB .a 5﹣aC .(a 2)2D .a 8÷a 2 5.一个几何体的三视图如图所示,则该几何体的表面积是( )A .24+2πB .16+4πC .16+8πD .16+12π6.用配方法解方程x 2﹣4x+1=0,配方后所得的方程是( )A .(x ﹣2)2=3B .(x+2)2=3C .(x ﹣2)2=﹣3D .(x+2)2=﹣37.已知方程2520x x -+=的两个解分别为1x 、2x ,则1212x x x x +-的值为()A .7-B .3-C .7D .38.如图,在Rt △ABC 中,∠C=90°,∠CAB 的平分线交BC 于D ,DE 是AB 的垂直平分线,垂足为E ,若BC=3,则DE 的长为( )A .1B .2C .3D .49.据报道,南宁创客城已于2015年10月开城,占地面积约为14400平方米,目前已引进创业团队30多家,将14400用科学记数法表示为( )A .14.4×103B .144×102C .1.44×104D .1.44×10﹣410.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .11.某一超市在“五•一”期间开展有奖促销活动,每买100元商品可参加抽奖一次,中奖的概率为13.小张这期间在该超市买商品获得了三次抽奖机会,则小张( )A .能中奖一次B .能中奖两次C .至少能中奖一次D .中奖次数不能确定 12.下列解方程去分母正确的是( )A .由,得2x ﹣1=3﹣3xB.由,得2x﹣2﹣x=﹣4C.由,得2y-15=3yD.由,得3(y+1)=2y+6二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若不等式(a+1)x>a+1的解集是x<1,则a的取值范围是_________.14.如图,在菱形ABCD中,AB=3,∠B=120°,点E是AD边上的一个动点(不与A,D重合),EF∥AB交BC 于点F,点G在CD上,DG=DE.若△EFG是等腰三角形,则DE的长为_____.15.如图,点D是线段AB的中点,点C是线段AD的中点,若CD=1,则AB=________________.16.在某一时刻,测得一根长为1.5m的标杆的影长为3m,同时测得一根旗杆的影长为26m,那么这根旗杆的高度为_____m.17.若一个棱柱有7个面,则它是______棱柱.18.如图,在菱形ABCD中,点E、F在对角线BD上,BE=DF=13BD,若四边形AECF为正方形,则tan∠ABE=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图1,菱形ABCD,AB=4,∠ADC=120o,连接对角线AC、BD交于点O,(1)如图2,将△AOD沿DB平移,使点D与点O重合,求平移后的△A′BO与菱形ABCD重合部分的面积. (2)如图3,将△A′BO绕点O逆时针旋转交AB于点E′,交BC于点F,①求证:BE′+BF=2,②求出四边形OE′BF的面积.20.(6分)甲、乙两组工人同时开始加工某种零件,乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)之间的函数图象如下图所示.求甲组加工零件的数量y与时间x之间的函数关系式.求乙组加工零件总量a的值.21.(6分)2013年我国多地出现雾霾天气,某企业抓住商机准备生产空气净化设备,该企业决定从以下两个投资方案中选择一个进行投资生产,方案一:生产甲产品,每件产品成本为a元(a为常数,且40<a<100),每件产品销售价为120元,每年最多可生产125万件;方案二:生产乙产品,每件产品成本价为80元,每件产品销售价为180元,每年可生产120万件,另外,年销售x万件乙产品时需上交0.5x2万元的特别关税,在不考虑其它因素的情况下:(1)分别写出该企业两个投资方案的年利润y1(万元)、y2(万元)与相应生产件数x(万件)(x为正整数)之间的函数关系式,并指出自变量的取值范围;(2)分别求出这两个投资方案的最大年利润;(3)如果你是企业决策者,为了获得最大收益,你会选择哪个投资方案?22.(8分)解不等式组:2(2)3{3122x xx+>-≥-,并将它的解集在数轴上表示出来.23.(8分)(1)观察猜想如图①点B、A、C在同一条直线上,DB⊥BC,EC⊥BC且∠DAE=90°,AD=AE,则BC、BD、CE之间的数量关系为______;(2)问题解决如图②,在Rt△ABC中,∠ABC=90°,CB=4,AB=2,以AC为直角边向外作等腰Rt△DAC,连结BD,求BD的长;(3)拓展延伸如图③,在四边形ABCD中,∠ABC=∠ADC=90°,CB=4,AB=2,DC=DA,请直接写出BD的长.24.(10分)如图所示,在▱ABCD中,E是CD延长线上的一点,BE与AD交于点F,DE=12 CD.(1)求证:△ABF∽△CEB;(2)若△DEF的面积为2,求▱ABCD的面积.25.(10分)如图,为了测量山顶铁塔AE的高,小明在27m高的楼CD底部D测得塔顶A的仰角为45°,在楼顶C 测得塔顶A的仰角36°52′.已知山高BE为56m,楼的底部D与山脚在同一水平线上,求该铁塔的高AE.(参考数据:sin36°52′≈0.60,tan36°52′≈0.75)26.(12分)已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE = AF.求证:BE = DF;连接AC交EF于点O,延长OC至点M,使OM = OA,连接EM、FM.判断四边形AEMF是什么特殊四边形?并证明你的结论.27.(12分)定义:若四边形中某个顶点与其它三个顶点的距离相等,则这个四边形叫做等距四边形,这个顶点叫做这个四边形的等距点.(1)判断:一个内角为120°的菱形等距四边形.(填“是”或“不是”)(2)如图2,在5×5的网格图中有A、B两点,请在答题卷给出的两个网格图上各找出C、D两个格点,使得以A、B、C、D为顶点的四边形为互不全等的“等距四边形”,画出相应的“等距四边形”,并写出该等距四边形的端点均为非等距点的对角线长.端点均为非等距点的对角线长为端点均为非等距点的对角线长为(3)如图1,已知△ABE与△CDE都是等腰直角三角形,∠AEB=∠DEC=90°,连结A D,AC,BC,若四边形ABCD 是以A为等距点的等距四边形,求∠BCD的度数.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解题分析】利用扇形的弧长公式可得扇形的弧长;让扇形的弧长除以2π即为圆锥的底面半径,利用勾股定理可得圆锥形筒的高.【题目详解】L=1206180π⨯=4π(cm);圆锥的底面半径为4π÷2π=2(cm),226242-cm).故选C.【题目点拨】此题考查了圆锥的计算,用到的知识点为:圆锥侧面展开图的弧长=2n r180π;圆锥的底面周长等于侧面展开图的弧长;圆锥的底面半径,母线长,高组成以母线长为斜边的直角三角形.2、C【解题分析】根据题意表示出△PBQ的面积S与t的关系式,进而得出答案.【题目详解】由题意可得:PB=3﹣t,BQ=2t,则△PBQ的面积S=12PB•BQ=12(3﹣t)×2t=﹣t2+3t,故△PBQ的面积S随出发时间t的函数关系图象大致是二次函数图象,开口向下.故选C.【题目点拨】此题主要考查了动点问题的函数图象,正确得出函数关系式是解题关键.3、D【解题分析】试题分析:方程22311xx x++=--,两边都乘以x-1去分母后得:2-(x+2)=3(x-1),故选D.考点:解分式方程的步骤.4、C【解题分析】根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘进行计算即可.【题目详解】A.a+3a=4a,错误;B.a5和a不是同类项,不能合并,故此选项错误;C.(a2)2=a4,正确;D.a8÷a2=a6,错误.故选C.【题目点拨】本题主要考查了同底数幂的乘除法,以及幂的乘方,关键是正确掌握计算法则.5、D【解题分析】根据三视图知该几何体是一个半径为2、高为4的圆柱体的纵向一半,据此求解可得.【题目详解】该几何体的表面积为2×12•π•22+4×4+12×2π•2×4=12π+16, 故选:D .【题目点拨】 本题主要考查由三视图判断几何体,解题的关键是根据三视图得出几何体的形状及圆柱体的有关计算.6、A【解题分析】方程变形后,配方得到结果,即可做出判断.【题目详解】方程2410x x +=﹣,变形得:241x x =﹣﹣,配方得:24414x x +=+﹣﹣,即223x =(﹣),故选A .【题目点拨】本题考查的知识点是了解一元二次方程﹣配方法,解题关键是熟练掌握完全平方公式.7、D【解题分析】由根与系数的关系得出x 1+x 2=5,x 1•x 2=2,将其代入x 1+x 2−x 1•x 2中即可得出结论.【题目详解】解:∵方程x 2−5x +2=0的两个解分别为x 1,x 2,∴x 1+x 2=5,x 1•x 2=2,∴x 1+x 2−x 1•x 2=5−2=1.故选D .【题目点拨】本题考查了根与系数的关系,解题的关键是根据根与系数的关系得出x 1+x 2=5,x 1•x 2=2.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系得出两根之和与两根之积是关键.8、A【解题分析】试题分析:由角平分线和线段垂直平分线的性质可求得∠B=∠CAD=∠DAB=30°,∵DE 垂直平分AB ,∴DA=DB ,∴∠B=∠DAB ,∵AD 平分∠CAB ,∴∠CAD=∠DAB , ∵∠C=90°,∴3∠CAD=90°,∴∠CAD=30°,∵AD平分∠CAB,DE⊥AB,CD⊥AC,∴CD=DE=BD,∵BC=3,∴CD=DE=1考点:线段垂直平分线的性质9、C【解题分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【题目详解】14400=1.44×1.故选C.【题目点拨】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10、B【解题分析】分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A.是轴对称图形,不是中心对称图形;B.是轴对称图形,也是中心对称图形;C.是轴对称图形,不是中心对称图形;D.是轴对称图形,不是中心对称图形.故选B.点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.11、D【解题分析】由于中奖概率为13,说明此事件为随机事件,即可能发生,也可能不发生.【题目详解】解:根据随机事件的定义判定,中奖次数不能确定.故选D.【题目点拨】解答此题要明确概率和事件的关系:()①,为不可能事件;=P A0()=②为必然事件;P A1()③<<为随机事件.0P A112、D【解题分析】根据等式的性质2,A方程的两边都乘以6,B方程的两边都乘以4,C方程的两边都乘以15,D方程的两边都乘以6,去分母后判断即可.【题目详解】A.由,得:2x﹣6=3﹣3x,此选项错误;B.由,得:2x﹣4﹣x=﹣4,此选项错误;C.由,得:5y﹣15=3y,此选项错误;D.由,得:3(y+1)=2y+6,此选项正确.故选D.【题目点拨】本题考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、a<﹣1【解题分析】不等式(a+1)x>a+1两边都除以a+1,得其解集为x<1,∴a+1<0,解得:a<−1,故答案为a<−1.点睛:本题主要考查解一元一次不等式,解答此题的关键是掌握不等式的性质,再不等式两边同加或同减一个数或式子,不等号的方向不变,在不等式的两边同乘或同除一个正数或式子,不等号的方向不变,在不等式的两边同乘或同除一个负数或式子,不等号的方向改变.14、1或33 【解题分析】 由四边形ABCD 是菱形,得到BC ∥AD ,由于EF ∥AB ,得到四边形ABFE 是平行四边形,根据平行四边形的性质得到EF ∥AB ,于是得到EF=AB=3,当△EFG 为等腰三角形时,①EF=GE=3时,于是得到DE=DG=12AD÷32=1,②GE=GF 时,根据勾股定理得到DE=33. 【题目详解】 解:∵四边形ABCD 是菱形,∠B=120°,∴∠D=∠B=120°,∠A=180°-120°=60°,BC ∥AD ,∵EF ∥AB ,∴四边形ABFE 是平行四边形,∴EF ∥AB ,∴EF=AB=3,∠DEF=∠A=60°,∠EFC=∠B=120°,∵DE=DG ,∴∠DEG=∠DGE=30°,∴∠FEG=30°,当△EFG 为等腰三角形时,当EF=EG 时,EG=3,如图1,过点D 作DH ⊥EG 于H ,∴EH=12EG=32, 在Rt △DEH 中,DE=0cos30HE =1,GE=GF时,如图2,过点G作GQ⊥EF,∴EQ=123Rt△EQG中,∠QEG=30°,∴EG=1,过点D作DP⊥EG于P,∴PE=12EG=12,同①的方法得,3当EF=FG时,由∠EFG=180°-2×30°=120°=∠CFE,此时,点C和点G重合,点F和点B重合,不符合题意,故答案为13【题目点拨】本题考查了菱形的性质,平行四边形的性质,等腰三角形的性质以及勾股定理,熟练掌握各性质是解题的关键.15、4【解题分析】∵点C是线段AD的中点,若CD=1,∴AD=1×2=2,∵点D是线段AB的中点,∴AB=2×2=4,故答案为4.16、13【解题分析】根据同时同地物高与影长成比列式计算即可得解.【题目详解】解:设旗杆高度为x米,由题意得,1.5x=326,解得x=13.故答案为13.【题目点拨】本题考查投影,解题的关键是应用相似三角形.17、5【解题分析】分析:根据n棱柱的特点,由n个侧面和两个底面构成,可判断.详解:由题意可知:7-2=5.故答案为5.点睛:此题主要考查了棱柱的概念,根据棱柱的底面和侧面的关系求解是解题关键.18、1 3【解题分析】利用正方形对角线相等且互相平分,得出EO=AO=12BE,进而得出答案.【题目详解】解:∵四边形AECF为正方形,∴EF与AC相等且互相平分,∴∠AOB=90°,AO=EO=FO,∵BE=DF=13 BD,∴BE=EF=FD,∴EO=AO=12 BE,∴tan∠ABE=AOBO=13.故答案为:1 3【题目点拨】此题主要考查了正方形的性质以及锐角三角函数关系,正确得出EO=AO=12BE 是解题关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、 (1)3;(2)①2,②3【解题分析】分析:(1)重合部分是等边三角形,计算出边长即可.()2①证明:在图3中,取AB 中点E,证明OEE '≌OBF ,即可得到,EE BF '=2BE BF BE EE BE +=+=''=', ②由①知,在旋转过程60°中始终有OEE '≌,OBF 四边形OE BF '的面积等于OEB S=3.详解:(1)∵四边形为菱形,120,ADC ∠=︒∴60,ADO ∠=︒∴ABD △为等边三角形∴30,60,DAO ABO ∠=︒∠=︒∵AD //,A O '∴60,A OB ∠=︒'∴EOB △为等边三角形,边长2,OB = ∴重合部分的面积:23234⨯= ()2①证明:在图3中,取AB 中点E,由上题知,60,60,EOB E OF ∠=︒∠=︒'∴,EOE BOF ∠=∠'又∵2,60,EO OB OEE OBF '==∠=∠=︒∴OEE '≌OBF ,∴,EE BF '=∴2BE BF BE EE BE +=+=''=',②由①知,在旋转过程60°中始终有OEE '≌,OBF∴四边形OE BF '的面积等于OEB S 点睛:属于四边形的综合题,考查了菱形的性质,全等三角形的判定与性质等,熟练掌握每个知识点是解题的关键.20、(1)y=60x ;(2)300【解题分析】(1)由题图可知,甲组的y 是x 的正比例函数.设甲组加工的零件数量y 与时间x 的函数关系式为y=kx.根据题意,得6k=360,解得k=60.所以,甲组加工的零件数量y 与时间x 之间的关系式为y=60x.(2)当x=2时,y=100.因为更换设备后,乙组工作效率是原来的2倍. 所以a-100100=24.8-2.82⨯,解得a=300. 21、(1)y 1=(120-a )x (1≤x≤125,x 为正整数),y 2=100x-0.5x 2(1≤x≤120,x 为正整数);(2)110-125a (万元),10(万元);(3)当40<a <80时,选择方案一;当a=80时,选择方案一或方案二均可;当80<a <100时,选择方案二.【解题分析】(1)根据题意直接得出y 1与y 2与x 的函数关系式即可;(2)根据a 的取值范围可知y 1随x 的增大而增大,可求出y 1的最大值.又因为﹣0.5<0,可求出y 2的最大值; (3)第三问要分两种情况决定选择方案一还是方案二.当2000﹣200a >1以及2000﹣200a <1.【题目详解】解:(1)由题意得:y 1=(120﹣a )x (1≤x≤125,x 为正整数),y 2=100x ﹣0.5x 2(1≤x≤120,x 为正整数);(2)①∵40<a <100,∴120﹣a >0,即y 1随x 的增大而增大,∴当x=125时,y 1最大值=(120﹣a )×125=110﹣125a (万元)②y 2=﹣0.5(x ﹣100)2+10,∵a=﹣0.5<0,∴x=100时,y 2最大值=10(万元);(3)∵由110﹣125a >10,∴a <80,∴当40<a <80时,选择方案一;由110﹣125a=10,得a=80,∴当a=80时,选择方案一或方案二均可;由110﹣125a <10,得a >80,∴当80<a <100时,选择方案二.考点:二次函数的应用.22、-1≤x<4,在数轴上表示见解析.【解题分析】试题分析: 分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.试题解析:()223{3x 122x x +>-≥-①②, 由①得,x<4;由②得,x ⩾−1.故不等式组的解集为:−1⩽x<4.在数轴上表示为:23、(1)BC=BD+CE ,(2)10(3)32【解题分析】(1)证明△ADB ≌△EAC ,根据全等三角形的性质得到BD=AC ,EC=AB ,即可得到BC 、BD 、CE 之间的数量关系;(2)过D 作DE ⊥AB ,交BA 的延长线于E ,证明△ABC ≌△DEA ,得到DE=AB=2,AE=BC=4,Rt △BDE 中,BE=6,根据勾股定理即可得到BD 的长;(3)过D 作DE ⊥BC 于E ,作DF ⊥AB 于F ,证明△CED ≌△AFD ,根据全等三角形的性质得到CE=AF ,ED=DF ,设AF=x ,DF=y ,根据CB=4,AB=2,列出方程组,求出,x y 的值,根据勾股定理即可求出BD 的长.【题目详解】解:(1)观察猜想结论:BC=BD+CE,理由是:如图①,∵∠B=90°,∠DAE=90°,∴∠D+∠DAB=∠DAB+∠EAC=90°,∴∠D=∠EAC,∵∠B=∠C=90°,AD=AE,∴△ADB≌△EAC,∴BD=AC,EC=AB,∴BC=AB+AC=BD+CE;(2)问题解决如图②,过D作DE⊥AB,交BA的延长线于E,由(1)同理得:△ABC≌△DEA,∴DE=AB=2,AE=BC=4,Rt△BDE中,BE=6,由勾股定理得:2262210BD=+=;(3)拓展延伸如图③,过D作DE⊥BC于E,作DF⊥AB于F,同理得:△CED≌△AFD,∴CE=AF,ED=DF,设AF=x,DF=y,则42x yx y+=⎧⎨+=⎩,解得:13,xy=⎧⎨=⎩∴BF=2+1=3,DF=3,由勾股定理得:223332BD=+=.【题目点拨】考查全等三角形的判定与性质,勾股定理,二元一次方程组的应用,熟练掌握全等三角形的判定与性质是解题的关键.24、(1)见解析;(2)16【解题分析】试题分析:(1)要证△ABF ∽△CEB ,需找出两组对应角相等;已知了平行四边形的对角相等,再利用AB ∥CD ,可得一对内错角相等,则可证.(2)由于△DEF ∽△EBC ,可根据两三角形的相似比,求出△EBC 的面积,也就求出了四边形BCDF 的面积.同理可根据△DEF ∽△AFB ,求出△AFB 的面积.由此可求出▱ABCD 的面积.试题解析:(1)证明:∵四边形ABCD 是平行四边形∴∠A=∠C ,AB ∥CD∴∠ABF=∠CEB∴△ABF ∽△CEB(2)解:∵四边形ABCD 是平行四边形∴AD ∥BC ,AB 平行且等于CD∴△DEF ∽△CEB ,△DEF ∽△ABF∵DE=12CD ∴21()9DEF CEB SDE S EC ==, 21()4DEF ABF SDE S AB == ∵S △DEF =2S △CEB =18,S △ABF =8,∴S 四边形BCDF =S △BCE -S △DEF =16∴S 四边形ABCD =S 四边形BCDF +S △ABF =16+8=1.考点:1.相似三角形的判定与性质;2.三角形的面积;3.平行四边形的性质.25、52【解题分析】根据楼高和山高可求出EF,继而得出AF,在Rt△AFC中表示出CF,在Rt△ABD中表示出BD,根据CF=BD可建立方程,解出即可.【题目详解】如图,过点C作CF⊥AB于点F.设塔高AE=x,由题意得,EF=BE−CD=56−27=29m,AF=AE+EF=(x+29)m,在Rt△AFC中,∠ACF=36°52′,AF=(x+29)m,则29411636520.7533AF xCF xtan+=≈=+︒',在Rt△ABD中,∠ADB=45°,AB=x+56,则BD=AB=x+56,∵CF=BD,∴41165633x x+=+,解得:x=52,答:该铁塔的高AE为52米.【题目点拨】本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,注意利用方程思想求解,难度一般.26、(1)证明见解析;(2)四边形AEMF是菱形,证明见解析.【解题分析】(1)求简单的线段相等,可证线段所在的三角形全等,即证△ABE≌△ADF;(2)由于四边形ABCD是正方形,易得∠ECO=∠FCO=45°,BC=CD;联立(1)的结论,可证得EC=CF,根据等腰三角形三线合一的性质可证得OC(即AM)垂直平分EF;已知OA=OM,则EF、AM互相平分,再根据一组邻边相等的平行四边形是菱形,即可判定四边形AEMF是菱形.【题目详解】(1)证明:∵四边形ABCD 是正方形,∴AB=AD ,∠B=∠D=90°,在Rt △ABE 和Rt △ADF 中,∵AD AB AF AE⎧⎨⎩==, ∴Rt △ADF ≌Rt △ABE (HL )∴BE=DF ;(2)四边形AEMF 是菱形,理由为:证明:∵四边形ABCD 是正方形,∴∠BCA=∠DCA=45°(正方形的对角线平分一组对角),BC=DC (正方形四条边相等),∵BE=DF (已证),∴BC-BE=DC-DF (等式的性质),即CE=CF ,在△COE 和△COF 中,CE CF ACB ACD OC OC ⎪∠⎪⎩∠⎧⎨===,∴△COE ≌△COF (SAS ),∴OE=OF ,又OM=OA ,∴四边形AEMF 是平行四边形(对角线互相平分的四边形是平行四边形),∵AE=AF ,∴平行四边形AEMF 是菱形.27、(1)是;(2)见解析;(3)150°.【解题分析】(1)由菱形的性质和等边三角形的判定与性质即可得出结论;(2)根据题意画出图形,由勾股定理即可得出答案;(3)由SAS 证明△AEC ≌△BED ,得出AC=BD ,由等距四边形的定义得出AD=AB=AC ,证出AD=AB=BD ,△ABD 是等边三角形,得出∠DAB=60°,由SSS 证明△AED ≌△AEC ,得出∠CAE=∠DAE=15°,求出∠DAC=∠CAE+∠DAE=30°,∠BAC=∠BAE ﹣∠CAE=30°,由等腰三角形的性质和三角形内角和定理求出∠ACB和∠ACD 的度数,即可得出答案.【题目详解】解:(1)一个内角为120°的菱形是等距四边形;故答案为是;(2)如图2,图3所示:在图2中,由勾股定理得:CD ==在图3中,由勾股定理得:CD ==(3)解:连接BD .如图1所示:∵△ABE 与△CDE 都是等腰直角三角形,∴DE=EC ,AE=EB ,∠DEC+∠BEC=∠AEB+∠BEC ,即∠AEC=∠DEB ,在△AEC 和△BED 中,,DE CE AEC BED AE BE =⎧⎪∠=∠⎨⎪=⎩,∴△AEC ≌△BED (SAS ),∴AC=BD ,∵四边形ABCD 是以A 为等距点的等距四边形,∴AD=AB=AC ,∴AD=AB=BD ,∴△ABD 是等边三角形,∴∠DAB=60°,∴∠DAE=∠DAB ﹣∠EAB=60°﹣45°=15°,在△AED 和△AEC 中,,AD AC DE CE AE AE =⎧⎪=⎨⎪=⎩∴△AED ≌△AEC (SSS ),∴∠CAE=∠DAE=15°,∴∠DAC=∠CAE+∠DAE=30°,∠BAC=∠BAE ﹣∠CAE=30°,∵AB=AC ,AC=AD ,∴180301803075,75,22ACB ACD--∠==∠==∴∠BCD=∠ACB+∠ACD=75°+75°=150°.【题目点拨】本题是四边形综合题目,考查了等距四边形的判定与性质、菱形的性质、等边三角形的判定与性质、勾股定理、全等三角形的判定与性质、等腰三角形的性质、三角形内角和定理等知识;本题综合性强,有一定难度,证明三角形全等是解决问题的关键.。

中考数学综合模拟参考16卷 人教新课标版

中考数学综合模拟参考16卷 人教新课标版

中考数学综合模拟参考16卷 人教新课标版考生须知:1.本科目试卷分试题卷和答题卷两部分. 满分120分,考试时间100分钟.2.答题前,必须在答题卷的密封区内填写姓名与准考证号.3.所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应.4.考试结束后,只需上交答题卷.试题卷一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内.注意可以用多种不同的方法来选取正确答案. 1.199的平方根是 《原创》 ( )A 133B ±133C 823D ±8232.下列计算正确的是 《原创》( )A .x 5+x 5= x 10B .2x 5-x 5= x 5C .(x 5)5=x 10D .x 20÷x 2=x 103. 在直角坐标系中,点(x ,y )满足x+y<0,xy>0,则点(x ,y )在( )《原创》A .第一象限B .第二象限C .第三象限D .第四象限 4.如图大正方形中有2个小正方形,如果它们的面积分积是 S1,S2,那么S1,S2的大小关系是 《根据中考题库改编》 ( )A.S1<S2B.S1=S2C.S1>S2D.S1,S2大小关系不能确定5. 已知:关于x 的一元二次方程32=++c bx ax 的一个根为2=x ,且二次函数c bx ax y ++=2的对称轴是直线2=x ,则抛物线的顶点坐标为 《原创》( )A. (2,3)B. (2,1)C. ()3,2-D. (3,2) 6.已知:a+b+c=3,a 2+b 2+c 2=3,则a2011+b2011+c2011的值是 《原创》 ( )A 0B 3C 22005D3·220057.一个正常人在做激烈运动时,心跳速度加快,当运动停止下来后,心跳次数N (次)与时间s(分)的函数关系图像大致是《原创》()A B C D8.下面是某同学在一次数学测验中解答的填空题,其中答对的是《原创》() A 2,42±==xx则; B 2,632==xxx则若;C 212-==-+k,kxx则的一个根是; D2322+--xxx若分式的值为零,则2=x 9.按如图所示的程序计算,若开始输入的X的值是24,我们发现第一次得到的结果是12,第二次得到的结果为6,……,请你探索第2011次得到的结果为………《原创》()A. 8B. 4C. 2D. 1X为奇数 X+5X为偶数 0.5X10.某商场购进一批运动服用了1000元,每件按10元卖出,假如全部卖出这批运动服所得的钱数与买进这批运动服所用的钱数的差就是利润,按这样计算,这次买卖所得的利润刚好是买进11件运动服所用的钱数,则这批运动服有《根据书本改编》( )A 10件B 90件C 110件D 150件二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案11.分解因式: x 3 –x = 。

山东省菏泽市2024届中考数学全真模拟试卷含解析

山东省菏泽市2024届中考数学全真模拟试卷含解析

山东省菏泽市2024届中考数学全真模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(共10小题,每小题3分,共30分)1.下列现象,能说明“线动成面”的是()A.天空划过一道流星B.汽车雨刷在挡风玻璃上刷出的痕迹C.抛出一块小石子,石子在空中飞行的路线D.旋转一扇门,门在空中运动的痕迹2.如图,在Rt△ABC中,∠ACB=90°,AC=23,以点C为圆心,CB的长为半径画弧,与AB边交于点D,将BD 绕点D旋转180°后点B与点A恰好重合,则图中阴影部分的面积为()A.2233π-B.2233π-C.233π-D.233π-3.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.4.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是()A.点M B.点N C.点P D.点Q5.李老师在编写下面这个题目的答案时,不小心打乱了解答过程的顺序,你能帮他调整过来吗?证明步骤正确的顺序是( )已知:如图,在ABC 中,点D ,E ,F 分别在边AB ,AC ,BC 上,且DE //BC ,DF//AC ,求证:ADE ∽DBF .证明:①又DF//AC ,DE //BC ②,A BDF ∠∠∴=③,ADE B ∠∠∴=④,ADE ∴∽DBF .A .③②④①B .②④①③C .③①④②D .②③④①6.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( )A .B .C .D .7.下列图形中,周长不是32 m 的图形是( )A .B .C .D .8.下列多边形中,内角和是一个三角形内角和的4倍的是( )A .四边形B .五边形C .六边形D .八边形9.如图,图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,按此规律,则第(n )个图形中面积为1的正方形的个数为( )A .()12n n +B .()22n n + C .()32n n + D .()42n n +10.如图,在平面直角坐标系xOy 中,A (2,0),B (0,2),⊙C 的圆心为点C (﹣1,0),半径为1.若D 是⊙C 上的一个动点,线段DA 与y 轴交于E 点,则△ABE 面积的最小值是( )A .2B .C .D .二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,正方形ABCD 边长为3,以直线AB 为轴,将正方形旋转一周.所得圆柱的主视图(正视图)的周长是_____.12.如图,菱形OABC 的顶点O 是原点,顶点B 在y 轴上,菱形的两条对角线的长分别是6和4,反比例函数()y x 0xk =<的图象经过点C ,则k 的值为 .13.已知圆锥的底面半径为3cm ,侧面积为15πcm 2,则这个圆锥的侧面展开图的圆心角 °.14.如图,四边形OABC 是矩形,ADEF 是正方形,点A 、D 在x 轴的正半轴上,点C 在y 轴的正半轴上,点F 在AB 上,点B 、E 在反比例函数的图像上,OA=1,OC=6,则正方形ADEF 的边长为 .15.计算:(2+1)(2﹣1)= .16.已知点P (a ,b )在反比例函数y=2x的图象上,则ab=_____. 三、解答题(共8题,共72分)17.(8分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字2,3、1.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为 ;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).18.(8分)某天,甲、乙、丙三人一起乘坐公交车,他们上车时发现公交车上还有A,B,W三个空座位,且只有A,B两个座位相邻,若三人随机选择座位,试解决以下问题:(1)甲选择座位W的概率是多少;(2)试用列表或画树状图的方法求甲、乙选择相邻座位A,B的概率.19.(8分)已知点O是正方形ABCD对角线BD的中点.(1)如图1,若点E是OD的中点,点F是AB上一点,且使得∠CEF=90°,过点E作ME∥AD,交AB于点M,交CD于点N.①∠AEM=∠FEM;②点F是AB的中点;(2)如图2,若点E是OD上一点,点F是AB上一点,且使,请判断△EFC的形状,并说明理由;(3)如图3,若E是OD上的动点(不与O,D重合),连接CE,过E点作EF⊥CE,交AB于点F,当时,请猜想的值(请直接写出结论).20.(8分)(1)计算:|﹣2|﹣(π﹣2015)0+(12)﹣2﹣2sin60°12;(2)先化简,再求值:221aa a--÷(2+21aa+),其中2.21.(8分)(2017江苏省常州市)为了解某校学生的课余兴趣爱好情况,某调查小组设计了“阅读”、“打球”、“书法”和“其他”四个选项,用随机抽样的方法调查了该校部分学生的课余兴趣爱好情况(每个学生必须选一项且只能选一项),并根据调查结果绘制了如下统计图:根据统计图所提供的信息,解答下列问题:(1)本次抽样调查中的样本容量是 ;(2)补全条形统计图;(3)该校共有2000名学生,请根据统计结果估计该校课余兴趣爱好为“打球”的学生人数. 22.(10分)(2016山东省烟台市)某中学广场上有旗杆如图1所示,在学习解直角三角形以后,数学兴趣小组测量了旗杆的高度.如图2,某一时刻,旗杆AB 的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC 为4米,落在斜坡上的影长CD 为3米,AB ⊥BC ,同一时刻,光线与水平面的夹角为72°,1米的竖立标杆PQ 在斜坡上的影长QR 为2米,求旗杆的高度(结果精确到0.1米).(参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)23.(12分)如图,在ABC ∆中,AB AC =,AD 为BC 边上的中线,DE AB ⊥于点E.求证:BDE CAD ∆∆∽;若13AB =,10BC =,求线段DE 的长.24.如图,AB ∥CD ,E 、F 分别为AB 、CD 上的点,且EC ∥BF ,连接AD ,分别与EC 、BF 相交与点G 、H ,若AB =CD ,求证:AG =DH .参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解题分析】本题是一道关于点、线、面、体的题目,回忆点、线、面、体的知识;【题目详解】解:∵A、天空划过一道流星说明“点动成线”,∴故本选项错误.∵B、汽车雨刷在挡风玻璃上刷出的痕迹说明“线动成面”,∴故本选项正确.∵C、抛出一块小石子,石子在空中飞行的路线说明“点动成线”,∴故本选项错误.∵D、旋转一扇门,门在空中运动的痕迹说明“面动成体”,∴故本选项错误.故选B.【题目点拨】本题考查了点、线、面、体,准确认识生活实际中的现象是解题的关键.点动成线、线动成面、面动成体.2、B【解题分析】阴影部分的面积=三角形的面积-扇形的面积,根据面积公式计算即可.【题目详解】由旋转可知AD=BD ,∵∠ACB=90°∴CD=BD ,∵CB=CD ,∴△BCD 是等边三角形,∴∠BCD=∠CBD=60°,∴BC=23π3AC=2,∴阴影部分的面积2602360π⨯23π. 故答案选:B.【题目点拨】本题考查的知识点是旋转的性质及扇形面积的计算,解题的关键是熟练的掌握旋转的性质及扇形面积的计算. 3、B【解题分析】根据轴对称图形与中心对称图形的概念判断即可.【题目详解】解:A 、是轴对称图形,也是中心对称图形,故错误;B 、是中心对称图形,不是轴对称图形,故正确;C 、是轴对称图形,也是中心对称图形,故错误;D 、是轴对称图形,也是中心对称图形,故错误.故选B .【题目点拨】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4、C【解题分析】试题分析:∵点M ,N 表示的有理数互为相反数,∴原点的位置大约在O 点,∴绝对值最小的数的点是P 点,故选C .考点:有理数大小比较.5、B【解题分析】根据平行线的性质可得到两组对应角相等,易得解题步骤;【题目详解】证明:DE //BC ②,ADE B ∠∠∴=④,①又DF//AC ,A BDF ∠∠∴=③,ADE ∴∽DBF .故选B .【题目点拨】本题考查了相似三角形的判定与性质;关键是证明三角形相似.6、B【解题分析】由中心对称图形的定义:“把一个图形绕一个点旋转180°后,能够与自身完全重合,这样的图形叫做中心对称图形”分析可知,上述图形中,A 、C 、D 都不是中心对称图形,只有B 是中心对称图形.故选B.7、B【解题分析】根据所给图形,分别计算出它们的周长,然后判断各选项即可.【题目详解】A. L=(6+10)×2=32,其周长为32.B. 该平行四边形的一边长为10,另一边长大于6,故其周长大于32.C. L=(6+10)×2=32,其周长为32.D. L=(6+10)×2=32,其周长为32.采用排除法即可选出B故选B.【题目点拨】此题考查多边形的周长,解题在于掌握计算公式.8、C【解题分析】利用多边形的内角和公式列方程求解即可【题目详解】设这个多边形的边数为n.由题意得:(n﹣2)×180°=4×180°.解得:n=1.答:这个多边形的边数为1.故选C.【题目点拨】本题主要考查的是多边形的内角和公式,掌握多边形的内角和公式是解题的关键.9、C【解题分析】由图形可知:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+n+1=()32n n+.【题目详解】第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+(n+1)=()32n n+个.【题目点拨】本题考查了规律的知识点,解题的关键是根据图形的变化找出规律.10、C【解题分析】当⊙C与AD相切时,△ABE面积最大,连接CD ,则∠CDA=90°,∵A (2,0),B (0,2),⊙C 的圆心为点C (-1,0),半径为1,∴CD=1,AC=2+1=3,∴AD==2,∵∠AOE=∠ADC=90°,∠EAO=∠CAD ,∴△AOE ∽△ADC , ∴即,∴OE=,∴BE=OB+OE=2+∴S △ABE = BE?OA=×(2+)×2=2+故答案为C.二、填空题(本大题共6个小题,每小题3分,共18分)11、1.【解题分析】分析:所得圆柱的主视图是一个矩形,矩形的宽是3,长是2.详解:矩形的周长=3+3+2+2=1.点睛:本题比较容易,考查三视图和学生的空间想象能力以及计算矩形的周长.12、-6【解题分析】分析:∵菱形的两条对角线的长分别是6和4,∴A (﹣3,2).∵点A 在反比例函数()y x 0x k =<的图象上, ∴23k =-,解得k=-6. 【题目详解】请在此输入详解!13、1【解题分析】试题分析:根据圆锥的侧面积公式S=πrl 得出圆锥的母线长,再结合扇形面积即可求出圆心角的度数.解:∵侧面积为15πcm 2,∴圆锥侧面积公式为:S=πrl=π×3×l=15π, 解得:l=5, ∴扇形面积为15π=,解得:n=1,∴侧面展开图的圆心角是1度. 故答案为1. 考点:圆锥的计算. 14、2 【解题分析】试题分析:由OA=1,OC=6,可得矩形OABC 的面积为6;再根据反比例函数系数k 的几何意义,可知k=6,∴反比例函数的解析式为6y x =;设正方形ADEF 的边长为a ,则点E 的坐标为(a+1,a ),∵点E 在抛物线上,∴61a a =+,整理得260a a +-=,解得2a =或3a =-(舍去),故正方形ADEF 的边长是2. 考点:反比例函数系数k 的几何意义. 15、1. 【解题分析】根据平方差公式计算即可. 【题目详解】 原式=(22-12 =18-1 =1故答案为1. 【题目点拨】本题考查的是二次根式的混合运算,掌握平方差公式、二次根式的性质是解题的关键. 16、2 【解题分析】【分析】接把点P (a ,b )代入反比例函数y=2x即可得出结论.【题目详解】∵点P(a,b)在反比例函数y=2x的图象上,∴b=2a,∴ab=2,故答案为:2.【题目点拨】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.三、解答题(共8题,共72分)17、(1)23;(2)这两个数字之和是3的倍数的概率为13.【解题分析】(1)在标有数字1、2、3的3个转盘中,奇数的有1、3这2个,根据概率公式可得;(2)用列表法列出所有情况,再计算概率.【题目详解】解:(1)∵在标有数字1、2、3的3个转盘中,奇数的有1、3这2个,∴指针所指扇形中的数字是奇数的概率为23,故答案为23;(2)列表如下:由表可知,所有等可能的情况数为9种,其中这两个数字之和是3的倍数的有3种,所以这两个数字之和是3的倍数的概率为39=13.【题目点拨】本题考核知识点:求概率. 解题关键点:列出所有情况,熟记概率公式.18、(1)13;(2)13【解题分析】(1)根据概率公式计算可得;(2)画树状图列出所有等可能结果,从中找到符合要求的结果数,利用概率公式计算可得.【题目详解】解:(1)由于共有A、B、W三个座位,∴甲选择座位W的概率为13,故答案为:13;(2)画树状图如下:由图可知,共有6种等可能结果,其中甲、乙选择相邻的座位有两种,所以P(甲乙相邻)=26=13.【题目点拨】此题考查了树状图法求概率.注意树状图法适合两步或两步以上完成的事件,树状图法可以不重不漏的表示出所有等可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.19、(1)①证明见解析;②证明见解析;(2)△EFC是等腰直角三角形.理由见解析;(3).【解题分析】试题分析:(1)①过点E作EG⊥BC,垂足为G,根据ASA证明△CEG≌△FEM得CE=FE,再根据SAS证明△ABE≌△CBE 得AE=CE,在△AEF中根据等腰三角形“三线合一”即可证明结论成立;②设AM=x,则AF=2x,在Rt△DEN中,∠EDN=45°,DE=DN=x,DO=2DE=2x,BD=2DO=4x.在Rt△ABD中,∠ADB=45°,AB=BD·sin45°=4x,又AF=2x,从而AF=AB,得到点F是AB的中点.;(2)过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),再证明△AME≌△FME(SAS),从而可得△EFC是等腰直角三角形.(3)方法同第(2)小题.过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),再证明△AEM≌△FEM (ASA),得AM=FM,设AM=x,则AF=2x,DN =x,DE=x,BD=x,AB=x,=2x:x=.试题解析:(1)①过点E作EG⊥BC,垂足为G,则四边形MBGE为正方形,ME=GE,∠MFG=90°,即∠MEF+∠FEG=90°,又∠CEG+∠FEG=90°,∴∠CEG=∠FEM.又GE=ME,∠EGC=∠EMF=90°,∴△CEG≌△FEM.∴CE=FE,∵四边形ABCD为正方形,∴AB=CB,∠ABE=∠CBE=45°,BE=BE,∴△ABE≌△CBE.∴AE=CE,又CE=FE,∴AE=FE,又EM⊥AB,∴∠AEM=∠FEM.②设AM=x,∵AE=FE,又EM⊥AB,∴AM=FM=x,∴AF=2x,由四边形AMND为矩形知,DN=AM=x,在Rt△DEN 中,∠EDN=45°,∴DE=DN=x,∴DO=2DE=2x,∴BD=2DO=4x.在Rt△ABD中,∠ADB=45°,∴AB=BD·sin45°=4x·=4x,又AF=2x,∴AF=AB,∴点F是AB的中点.(2)△EFC是等腰直角三角形.过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),∴∠AEM=∠CEG,设AM=x,则DN=AM=x,DE =x,DO=3DE=3x,BD=2DO=6x.∴AB=6x,又,∴AF=2x,又AM=x,∴AM=MF=x,∴△AME≌△FME(SAS),∴AE=FE,∠AEM=∠FEM,又AE=CE,∠AEM=∠CEG,∴FE=CE,∠FEM=∠CEG,又∠MEG=90°,∴∠MEF+∠FEG=90°,∴∠CEG+∠FEG=90°,即∠CEF=90°,又FE=CE,∴△EFC是等腰直角三角形.(3)过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),∴∠AEM=∠CEG.∵EF⊥CE,∴∠FEC =90°,∴∠CEG+∠FEG=90°.又∠MEG =90°,∴∠MEF+∠FEG=90°,∴∠CEG=∠MEF,∵∠CEG =∠AEF,∴∠AEF=∠MEF,∴△AEM≌△FEM (ASA),∴AM=FM.设AM=x,则AF=2x,DN =x,DE=x,∴BD=x.∴AB=x.∴=2x:x=.考点:四边形综合题.20、(1)3(22-1【解题分析】试题分析:(1)先分别进行绝对值化简,0指数幂、负指数幂的计算,特殊三角函数值、二次根式的化简,然后再按运算顺序进行计算即可;(2)括号内先通分进行加法运算,然后再进行分式除法运算,最后代入数值进行计算即可.试题解析:(1)原式=2﹣1+4﹣2×33﹣1+4333(2)原式=()()()()()()()22 111121·111a a a aa a aa a a a a a+-+-++÷=--+=11a+,当a=2时,原式=121+=2-1.21、(1)100;(2)作图见解析;(3)1.【解题分析】试题分析:(1)根据百分比=所占人数总人数计算即可;(2)求出“打球”和“其他”的人数,画出条形图即可;(3)用样本估计总体的思想解决问题即可.试题解析:(1)本次抽样调查中的样本容量=30÷30%=100,故答案为100;(2)其他有100×10%=10人,打球有100﹣30﹣20﹣10=40人,条形图如图所示:(3)估计该校课余兴趣爱好为“打球”的学生人数为2000×40%=1人.22、13.1.【解题分析】试题分析:如图,作CM∥AB交AD于M,MN⊥AB于N,根据=,可求得CM的长,在RT△AMN中利用三角函数求得AN的长,再由MN∥BC,AB∥CM,判定四边形MNBC是平行四边形,即可得BN的长,最后根据AB=AN+BN即可求得AB的长.试题解析:如图作CM∥AB交AD于M,MN⊥AB于N.由题意=,即=,CM=,在RT△AMN中,∵∠ANM=90°,MN=BC=4,∠AMN=72°,∴tan72°=,∴AN≈12.3,∵MN ∥BC ,AB ∥CM , ∴四边形MNBC 是平行四边形, ∴BN=CM=, ∴AB=AN+BN=13.1米.考点:解直角三角形的应用. 23、(1)见解析;(2)6013DE =. 【解题分析】对于(1),由已知条件可以得到∠B=∠C ,△ABC 是等腰三角形,利用等腰三角形的性质易得AD ⊥BC ,∠ADC=90°;接下来不难得到∠ADC=∠BED ,至此问题不难证明; 对于(2),利用勾股定理求出AD ,利用相似比,即可求出DE. 【题目详解】解:(1)证明:∵AB AC =, ∴B C ∠=∠.又∵AD 为BC 边上的中线, ∴AD BC ⊥. ∵DE AB ⊥,∴90BED CDA ︒∠=∠=, ∴BDE CAD ∆∆∽. (2)∵10BC =,∴5BD =.在Rt ABD ∆中,根据勾股定理,得2212AD AB BD =-=.由(1)得BDE CAD ∆∆∽,∴BD DECA AD=, 即51312DE =, ∴6013DE =.【题目点拨】此题考查相似三角形的判定与性质,解题关键在于掌握判定定理. 24、证明见解析. 【解题分析】【分析】利用AAS 先证明∆ABH ≌∆DCG ,根据全等三角形的性质可得AH=DG ,再根据AH =AG +GH ,DG =DH +GH 即可证得AG =HD.【题目详解】∵AB ∥CD ,∴∠A =∠D ,∵CE ∥BF ,∴∠AHB =∠DGC , 在∆ABH 和∆DCG 中,A D AHB DGC AB CD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴∆ABH ≌∆DCG(AAS),∴AH =DG ,∵AH =AG +GH ,DG =DH +GH ,∴AG =HD.【题目点拨】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.。

2023年中考数学全真模拟卷(含答案)

2023年中考数学全真模拟卷(含答案)

2023年中考数学全真模拟卷第一模拟(本卷满分120分,考试时间为90分钟)一、单选题(共10小题,每小题3分,共30分。

每小题给出的四个选项中只有一个选项是最符合题意的)1.2020的相反数是()A .12020B .-12020C .-2020D .±20202.据报道,中国医学研究人员通过研究获得了纯化灭活新冠病毒疫苗,该疫苗在低温电镜下呈椭圆形颗粒,最小直径约为90nm ,已知1nm =10﹣9m ,则90nm 用科学记数法表示为()A .0.09×10﹣6mB .0.9×10﹣7mC .9×10﹣8mD .90×10﹣9m3.如右图是某个几何体的三视图,该几何体为()A .长方体B .四面体C .圆柱体D .四棱锥4.下列运算正确的是()A .a 2+a 3=a 5B .a 2•a 3=a 6C .(a 2b 3)3=a 5b 6D .(a 2)3=a 65.如图,AC 与BD 相交于点O ,且OA OC =,OB OD =,则下列结论错误的是()A .AB CD =B .AC ∠=∠C .//AB CD D .OA OD=6.对一批校服进行抽查,统计合格校服的套数,得到合格校服的频率频数表如下:抽取件数501001502005008001000合格频数3080120140445720900合格频率0.60.80.80.70.890.90.9估计出售1200套校服,其中合格校服大约有()A .1080套B .960套C .840套D .720套8.已知函数3y x =-,113y x =-+,6y kx =+的图象交于一点,则k 值为().A .2B .2-C .3D .3-8.如图,将长方形纸片ABCD ,沿折痕MN 折叠,B 分别落在A 1,B 1的位置,A 1B 1交AD 于点E ,若∠BNM =65°,以下结论:①∠B 1NC =50°;②∠A 1ME =50°;③A 1M ∥B 1N ;④∠DEB 1=40°.正确的个数有()A .1个B .2个C .3个D .4个9.如图,某社会实践学习小组为测量学校A 与河对岸江景房B 之间的距离,在学校附近选一点C ,利用测量仪器测得60A ∠=︒,90C ∠=︒,AC =300米.由此可求得学校与江景房之间的距离AB 等于()A .150米B .600米C .800米D .1200米10.如图是二次函数y =ax 2+bx +c 的图象,对于下列说法:其中正确的有()①ac >0,②2a +b >0,③4ac <b 2,④a +b +c <0,⑤当x >0时,y 随x 的增大而减小,A .5个B .4个C .3个D .2个二、填空题(本大题共7小题,每小题4分,共28分)11.函数16y x =-中,自变量x 的取值范围是_____.12.在创建“平安校园”活动中,鄂州市某中学组织学生干部在校门口值日,其中五位同学5月份值日的次数分别是4,4,5,x ,6.已知这组数据的平均数是5,则这组数据的中位数是________.13.如图,已知AB ∥CD ∥EF ,FC 平分∠AFE ,∠C =25°,则∠A 的度数是_____.14.如图,在矩形ABCD 中,8AB =,6BC =,以B 为圆心,适当的长为半径画弧,交BD ,BC 于M ,N 两点;再分别以M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线BP 交CD 于点F ;再以B 为圆心,BD 的长为半径画弧,交射线BP 于点E ,则EF 的长为______.15.如图,在平面直角坐标系中,矩形ABCD 的BC 边落在y 轴上,其它部分均在第二象限,双曲线k y x=过点A ,延长对角线CA 交x 轴于点E ,以从AD 、AE 为边作平行四边形AEFD ,若平行四边形AEFD 的面积为2,则k 的值为_____.16.如图,将△ABC 沿BC 边上的中线AD 平移到△A′B′C′的位置,已知△ABC 的面积为18,阴影部分三角形的面积为8,若AA′=1,则A′D 的值为______.17.如图,由两个长为2,宽为1的长方形组成“7”字图形.(1)将一个“7”字图形按如图摆放在平面直角坐标系中,记为“7”字图形ABCDEF ,其中顶点A 位于x 轴上,顶点B ,D 位于y 轴上,O 为坐标原点,则OBOA的值为____.(2)在(1)的基础上,继续摆放第二个“7”字图形得顶点1F ,摆放第三个“7”字图形得顶点2F ,依此类推,…,摆放第a 个“7”字图形得顶点-1n F ,…,则顶点2019F 的坐标为_____.三、解答题(本大题共3小题,每小题6分,共18分)18.先化简再求值:223422)1121x x x x x x ++-÷---+(,其中x 取﹣1、+1、﹣2、﹣3中你认为合理的数.19.某校为了组织一项球类对抗赛,在本校随机调查了若干名学生,对他们每人最喜欢的一项球类运动进行了统计,并绘制成如图①、②所示的条形和扇形统计图.根据统计图中的信息,解答下列问题:(1)求本次被调查的学生人数,并补全条形统计图;(2)若全校有1500名学生,请你估计该校最喜欢篮球运动的学生人数;(3)根据调查结果,请你为学校即将组织的一项球类对抗赛提出一条合理化建议.20.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,BC 交⊙O 于点E.若D 为AC 的中点,求证:DE 是⊙O 的切线.四、解答题(本大题共3小题,每小题8分,共24分)21.已知点()11,A x y ,()22,B x y 是反比例函数(0)ky k x=≠图象上两点.(1)若点A ,B 关于原点中心对称,求122157x y x y -的值(则用含k 的代数式表示).(2)设11x a =-,21x a =+,若12y y <,求a 的取值范围.22.某玩具店购进一批甲、乙两款乐高积木,它们的进货单价之和是720元.甲款积木零售单价比进货单价多80元.乙款积木零售价比进货单价的1.5倍少120元,按零售单价购买甲款积木4盒和乙款积木2盒,共需要2640元.(1)分别求出甲乙两款积木的进价.(2)该玩具店平均一个星期卖出甲款积木40盒和乙款积木24盒,经调查发现,甲款积木零售单价每降低2元,平均一个星期可多售出甲款积木4盒,商店决定把甲款积木的零售价下降()0m m >元,乙款积木的零售价和销量都不变.在不考虑其他因素的条件下,为了顾客能获取更多的优惠,当m 为多少时,玩具店一个星期销售甲、乙两款积木获取的总利润恰为5760元.23.关于三角函数有如下的公式:①cos(α+β)=cos αcos β﹣sin αsin β;②sin(α+β)=sin αcos β+cos αsin β;③()()tan tan tan 1tan tan 01tan tan αβαβαβαβ++=-⋅≠-⋅;利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值,如()(11tan 45tan 60tan105tan 456021tan 45tan 60+︒+︒︒=︒+︒==-+-︒⋅︒.根据上面的知识,你可以选择适当的公式解决下面的实际问题:(1)求tan 75︒,cos75°的值;(2)如图,直升机在一建筑物CD 上方的点Α处测得建筑物顶端点D 的俯角α为60°,底端点C 的俯角为75°,此时直升机与建筑物CD 的水平距离BC 为30m 求建筑物CD 的高.五、解答题(本大题共2小题,每小题10分,共20分)24.在△ABC中,∠BAC=90°,AB=AC,在△ABC的外部作∠ACM,使得∠ACM=12∠ABC,点D是直线BC上的动点,过点D作直线CM的垂线,垂足为E,交直线AC于F.(1)如图1所示,当点D与点B重合时,延长BA,CM交点N,证明:DF=2EC;(2)当点D在直线BC上运动时,DF和EC是否始终保持上述数量关系呢?请你在图2中画出点D运动到CB延长线上某一点时的图形,并证明此时DF与EC的数量关系.25.如图,已知二次函数y=ax2+bx+3的图象交x轴于点A(1,0),B(3,0),交y轴于点C.(1)求这个二次函数的表达式;(2)点P是直线BC下方抛物线上的一动点,求△BCP面积的最大值;(3)直线x=m分别交直线BC和抛物线于点M,N,当△BMN是等腰三角形时,直接写出m的值.2023年中考数学全真模拟卷(答案)第一模拟(本卷满分120分,考试时间为90分钟)一、单选题(共10小题,每小题3分,共30分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学全真模拟试题(十六)一、选择题(每小题2分,共30分,下列各题所附的四个选项中,有且只有一个是正确的)1 )A 、4±B 、4C 、2±D 、22、下列计算中,正确的是( )A 1=B 4=C 、2=2= 3、1纳米=0.000000001米,则2.5纳米用科学记数法表示为( )A 、2.5×10-8米B 、2.5×10-9米C 、2.5×10-10米D 、2.5×109米 4、计算2221x x x -⎛⎫÷- ⎪⎝⎭,所得的正确结果是( ) A 、x B 、1x -C 、1xD 、2x x--5、在ABC ∆中,A ∠、B ∠都是锐角,且1sin 2A =,tanB =ABC ∆的形状是( )A 、直角三角形B 、钝角三角形C 、锐角三角形D 、不能确定 6、已知菱形的边长为6,一个内角为60︒,则菱形较短的对角线长是( )A 、、、3 D 、6 7、已知5a =,2b =,且0a b +<,则ab 的值是( )A 、10B 、-10C 、10或-10D 、-3或-7 8、点()1,m ,()2,n 在函数1y x =-+的图象上,则m 、n 的关系是( ) A 、m n ≤ B 、m n = C 、m n < D 、m n > 9、二次函数22y x =-的图象大致是( )10、矩形面积为4,长y 是宽x 的函数,其函数图像大致是( )11、在直角坐标系中,若一点的横坐标与纵坐标互为相反数,则该点一定不在( ) A 、直线y x =-上 B 、抛物线2y x = C 、直线y x =上 D 、双曲线1y x=12、已知两点A 、B ,若以点A 和点B 为其中两个顶点作位置不同的等腰直角三角形,一共可作( )A 、2个B 、4个C 、6个D 、8个13、一个形式如圆锥的冰淇淋纸筒,其底面直径为6cm ,母线长为5cm ,围成这样的冰淇淋纸筒所需纸片的面积是( )A 、266cm π B 、230cm π C 、228cm π D 、215cm π14、如图,四边形ABCD 内接于O ,AB 为O 的直径,CM 切O 于点C ,60BCM ∠=︒,则B ∠的正切值是( )A 、12 B 、2D 15、已知第一个三角形的周长为1,它的三条中位线组成第二个三角形,第二个三角形的三条中位线又组成第三个三角形,以此类推,则第2003个三角形的周长为( )A 、200012 B 、200112 C 、200212 D 、200312二、填空题(每小题2分,共16分)16、某公司员,月工资由m 元增长了10%后达到_________元。

17、分解因式39x x -=__________。

18、在函数y =中,自变量x 的取值范围是_________。

19、如图,在O 中,若半径OC 与弦AB 互相平分,且6AB cm =,则OC =_____cm 。

20、要做两个形状为三角形的框架,其中一个三角形框架的三边长分别为4,5,6,另一个三角形框架的一边长为2,欲使这两个三角形相似,三角形框架的两边长可以是_________。

21、下面的扑克牌中,牌面是中心对称图形的是_______________。

(填序号)22、三角形纸片ABC 中,55A ∠=︒,75B ∠=︒,将纸片的一角折叠,使点C 落在ABC ∆内(如图),则12∠+∠的度数为_______________。

23、小明上周三在超市花10元钱买了几袋牛奶,周日再去买时,恰遇超市搞优惠酬宾活动,同样的牛奶,每袋比周三便宜0.5元,结果小明只比上次多花了2元钱,却比上次多买了2袋牛奶,若设他上周三买了x 袋牛奶,则根据题意列得方程为__________。

三、解下列各题(第24~26题每题5分,第27题7分,共22分)24、计算:()231213-⎛⎫-++ ⎪⎝⎭25、解不等式组43315x x x x -≥⎧⎪-⎨>--⎪⎩,并把解集在数轴上表示出来。

26、如图,有一长方形的地,长为x 米,宽为120米,建筑商将它分成三部分:甲、乙、丙。

甲和乙为正方形。

现计划甲建设住宅区,乙建设商场,丙开辟成公司。

若已知丙地的面积为3200平方米,试求x 的值。

27、在本学期某次考试中,某校初二⑴、初二⑵两班学生数学成绩统计如下表:请根据表格提供的信息回答下列问题:⑴二⑴班平均成绩为_________分,二⑵班平均成绩为________分,从平均成绩看两个班成绩谁优谁次?⑵二⑴班众数为________分,二⑵班众数为________分。

从众数看两个班的成绩谁优谁次?____________________。

⑶已知二⑴班的方差大于二⑵班的方差,那么说明什么?四、(本题5分)28、如图,ABCD 是正方形,点E 在BC 上,DF AE ⊥于F ,请你在AE 上确定一点G ,使ABG DAF ∆≅∆,并说明理由。

五、(本题9分)29、小明和小亮进行百米赛跑,小明比小亮跑得快,如果两人同时起跑,小明肯定赢,现在小明让小亮先跑若干米,两人的路程y (米)分别与小明追赶时间x (秒)的函数关系如图所示。

⑴小明让小亮先跑了多少米?⑵分别求出表示小明、小亮的路程与时间的函数关系式。

⑶谁将赢得这场比赛?请说明理由。

30、小明和小刚用如图所示的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明得2分;当所转到的数字之积为偶数时,小刚得1分。

这个游戏对双方公平吗?若公平,说明理由。

若不公平,如何修改规则才能使游戏对双方公平?七、(本题7分)31、如图,A 、B 两座城市相距100千米,现计划在这两座城市之间修筑一条高等级公路(即线段AB )。

经测量,森林保护区中心P 点在A 城市的北偏东30°方向,B 城市的北偏西45°方向上,已知森林保护区的范围在以P 为圆心,50千米为半径的圆形区域内。

请问:计划修筑的这条高等级公路会不会穿越保护区,为什么?八、(本题8分)32、如图,在矩形ABCD 中,20AB cm =,4BC cm =,点P 从A 开始沿折线A-B-C-D以4cm/s 的速度移动,点Q 从C 开始沿CD 边以1cm/s 的速度移动,如果点P 、Q 分别从A 、C 同时出发,当其中一点到达D 时,另一点也随之停止运动。

设运动时间为t(s)。

⑴t 为何值时,四边形APQD 为矩形?⑵如图10-20,如果P 和Q 的半径都是2cm ,那么t 为何值时,P 和Q 外切。

33、旋转是一种常见的全等变换,图⑴中ABC ∆绕点O 旋转后得到A B C '''∆,我们称点A 和点A '、点B 和点B '、点C 和点C '分别是对应点,把点O 称为旋转中心。

⑴观察图⑴,想一想,旋转变换具有哪些特点呢?请写出其中三个特点:___________________________________________________________________________ ___________________________________________________________________________⑵图⑵中,ABC ∆顺时针旋转后,线段AB 的对应线段为线段DE ,请你利用圆规、直尺等工具,①作出旋转中心O ,②作出ABC ∆绕点O 旋转后的DEF ∆。

(要求保留作图痕迹,并说明作法)十、(本题9分)34、已知梯形ABCD 中,AD ∥BC ,且AD BC <,5AD =,2AB DC ==。

⑴如图,P 为AD 上的一点,满足BPC A ∠=∠,求AP 的长; ⑵如果点P 在AD 边上移动(点P 与点A 、D 不重合),且满足BPE A ∠=∠,PE 交直线BC 于点E ,同时交直线DC 于点Q 。

①当点Q 在线段DC 的延长线上时,设AP x =,CQ y =,求y 关于x 的函数关系式,并写出自变量x 的取值范围;②写1CE =时,写出AP 的长(不必写解答过程)中考数学全真模拟试题(十六)参考答案一、1、B 2、B 3、B 4、C 5、A 6、D 7、C 8、D 9、B 10、B 11、D 12、C 13、D 14、B 15、C二、16、1.1m 17、()()33x x x +- 18、2x ≥且3x ≠ 19、 20、52cm ,3cm 或85cm ,125cm 或43cm ,53cm 21、①③ 22、100° 23、1012122x x -=+三、24、解原式=891-+= 25、解得:21x -<≤ 图略26、根据题意,得()()1201201203200x x ---=⎡⎤⎣⎦,即2360320000x x -+=,解得1200x =,2160x =。

答:x 的值为200米或160米。

27、解:⑴80分;80分;一样。

⑵70分;90分;二⑵班成绩优。

⑶二⑴班的方差大于二⑵班的方差,说明二⑴班的学生成绩不很稳定,波动较大。

四、28、证明:作BG AE ⊥于G ,ABCD 是正方形,DF AE ⊥,90AFD AGB ∴∠=∠=︒,90DAF GAB ∠+∠=︒ ,90DAF ADF ∠+∠=︒, ADF GAB ∴∠=∠,又AD AB =, ADF BAG ∴∆≅∆。

五、29、⑴小明让小亮先跑10米⑵小明:1l kx b =+经过()0,10,()5,40,1610l x ∴=+。

小亮:21l k x =经过()5,35,17k ∴=,27l x ∴= ⑶小明百米赛跑:115x =秒;小亮百米赛跑:21007x =秒, ∴小亮赢得这场比赛。

六、30、公平。

将两个转盘所转到的数字求积:从表中可以得到:26P =积为奇数,46P =积为偶数,∴小明的积分为24266⨯=,小刚的积分为44166⨯=。

七、31、解:P D A B ⊥于D ,设P D x =,在R t A P D ∆,30APD ∠=︒,则t a n 303A D x x =⋅︒=。

在Rt BPD ∆,45BPD ∠=︒,BD PD x ∴==,100AB = ,1003x x +=,(150x ∴=-米50>米。

∴这条高等级公路不会穿越保护区。

八、32、⑴根据题意,当AP DQ =时,四边形APQD 为矩形。

此时,420t t =-,解得4()t s =。

⑵当4PQ =时,P 与Q 外切。

①如果点P 在AB 上运动。

只有当四边形APQD 为矩形时,4PQ =。

由⑴,得4()t s =。

②如果点P 在BC 上运动。

相关文档
最新文档