有源钳位正激原理与设计实例

合集下载

有源钳位正激电路的分析设计

有源钳位正激电路的分析设计

有源箝位正激变换器电路分析设计1.引言有隔离变换器的DC/DC变换器按照铁芯磁化方式,可分为双端变换器和单端变换器。

和双端变换器比较,单端变换器线路简单、无功率管共导通问题、也不存在高频变换器单向偏磁和瞬间饱和问题,但由于高频变换器工作在磁滞回线一侧,利用率低。

因此,它只适用于中小功率输出场合。

单端正激变换器是一个隔离开关变换器,隔离型变换器的一个根本特点是有一个用于隔离的高频变压器,所以可以用于高电压的场合。

由于引入了高频变压器极大的增加了变换器的种类,丰富了变换器的功能,也有效的扩大了变换器的使用范围。

单端正激变换器拓扑以其结构简单、工作可靠、成本低廉而被广泛应用于独立的离线式中小功率电源设计中。

在计算机、通讯、工业控制、仪器仪表、医疗设备等领域,这类电源具有广阔的市场需求。

当今,节能和环保已成为全球对耗能设备的基本要求。

所以,供电单元的效率和电磁兼容性自然成为开关电源的两项重要指标。

而传统的单端正激拓扑,由于其磁特性工作在第一象限,并且是硬开关工作模式,决定了该电路存在一些固有的缺陷:变压器体积大,损耗大;开关器件电压应力高,开关损耗大;dv/dt和di/dt大等。

为了克服这些缺陷,提出了有源钳位正激变换器拓扑,从根本上变了单端正激变换器的运行特性,并且能够实现零电压软开关工作模式,从而大量地减少了开关器件和变压器的功耗,降低了dv/dt和di/dt,改善了电磁兼容性。

因此,有源钳位正激变换器拓扑迅速获得了广泛的应用。

本文主要介绍Flyback 型有源箝位正激变换器的稳态工作原理与电路设计。

2. 有源箝位正激变换器电路的介绍有源箝位正激变换器由有源箝位支路和功率输出电路组成。

有源箝位支路由箝位开关和箝位电容串联组成,并联在主开关或变压器原边绕组两端。

利用箝位电容及开关管的输出电容与变压器绕组的激磁电感谐振创造主开关和箝位开关的Z VS工作条件,并在主开关关断期间,利用箝位电容的电压限制主开关两端的电压基本保持不变,从而避免了主开关过大的电压应力;另一方面,在正激变换器中采用有源箝位技术还可实现变压器铁芯的自动磁复位,并可以使激磁电流沿正负两个方向流动,使其工作在双向对称磁化状态,提高了铁芯的利用率。

有源钳位正激变换器的理论分析和设计方法

有源钳位正激变换器的理论分析和设计方法

有源钳位正激变换器的理论分析和设计方法刘耀平(深圳华德电子有限公司,广东深圳518066)摘要:零电压软开关有源钳位正激变换器拓扑非常适合中小功率开关电源的设计。

增加变压器励磁电流或应用磁饱和电感均能实现零电压软开关工作模式。

基于对零电压软开关有源钳位正激变换器拓扑的理论分析,提出了一套实用的优化设计方法。

实验结果验证了理论分析和设计方法。

关键词:有源钳位;正激变换器;零电压软开关1引言单端正激变换器拓扑以其结构简单、工作可靠、成本低廉而被广泛应用于独立的离线式中小功率电源设计中。

在计算机、通讯、工业控制、仪器仪表、医疗设备等领域,这类电源具有广阔的市场需求。

当今,节能和环保已成为全球对耗能设备的基本要求。

所以,供电单元的效率和电磁兼容性自然成为开关电源的两项重要指标。

而传统的单端正激拓扑,由于其磁特性工作在第一象限,并且是硬开关工作模式,决定了该电路存在一些固有的缺陷:变压器体积大,损耗大;开关器件电压应力高,开关损耗大;d v/d t和d i/d t大,EMI问题难以处理。

为了克服这些缺陷,文献[1][2][3]提出了有源钳位正激变换器拓扑,从根本上改变了单端正激变换器的运行特性,并且能够实现零电压软开关工作模式,从而大量地减少了开关器件和变压器的功耗,降低了d v/d t和d i/d t,改善了电磁兼容性。

因此,有源钳位正激变换器拓扑迅速获得了广泛的应用。

然而,有源钳位正激变换器并非完美无缺,零电压软开关特性也并非总能实现。

因而,在工业应用中,对该电路进行优化设计显得尤为重要。

本文针对有源钳位正激变换器拓扑,进行了详细的理论分析,指出了该电路的局限性,并给出了一种优化设计方法。

2正激有源钳位变换器的工作原理如图1所示,有源钳位正激变换器拓扑与传统的单端正激变换器拓扑基本相同,只是增加了辅助开关S a(带反并二极管)和储能电容C s,以及谐振电容C ds1、C ds2,且略去了传统正激变换器的磁恢复电路。

有源钳位正激原理与设计实例

有源钳位正激原理与设计实例

有源钳位正激原理与设计实例
有源钳位正激原理与设计实例
单端正激变换器具有结构简单、工作可靠、成本低廉、输入输出电气隔离、易于多路输出等优点,因而被广泛应用在中小功率变换场合。

但是它有一个固有缺点:在主开关管关断期间,必须附加一个复位电路,以实现高频变压器的磁复位,防止变压器磁芯饱和。

传统的磁复位技术包括采用第三个复位绕组技术、无损的LCD箝位技术以及RCD 箝位技术。

这三种复位技术虽然都有一定的优点,但是同时也存在一些缺陷。

(1)第三复位绕组技术采用第三个复位绕组技术正激变换器的优点是技术比较成熟,变压器能量能够回馈给电网。

它存在的缺点是:第三复位绕组使得变压器的设计和制作比较复杂;变压器磁芯不是双向对称磁化,因而利用率较低;原边主开关管承受的电压应力很大。

(2)RCD箝位技术采用RCD箝位技术正激变换器的优点是电路结构比较简单,成本低廉。

它存在的缺点是:在磁复位过程中,磁化能量大部分都消耗在箝位网络中,因而效率较低;磁芯不是双向对称磁化,磁芯利用率较低。

(3)LCD箝位技术采用无损的LCD箝位技术正激变换器的优点是磁场能量能够全部回馈给电网,效率较高。

有源钳位正激原理与设计实例。

有源钳位正激钳位电容工作原理

有源钳位正激钳位电容工作原理

有源钳位正激钳位电容工作原理
有源钳位正激钳位电容是一种特殊的电容工作原理,它通过不断变化电路的工作状态来实现电容的正激。

下面是具体的工作原理:
1. 初始状态:在没有外部信号时,有源钳位正激钳位电容内部的电路处于关闭状态,电容两端电压为0。

2. 正激开始:当外部信号输入时,根据信号的变化,电容两端会产生相应的电压变化。

这个过程中,有源钳位正激钳位电容内部的电路会根据电压变化自动切换工作状态,以实现电容的正激。

3. 工作状态切换:根据输入信号的正负变化,有源钳位正激钳位电容会通过内部的开关电路,选择性地切换工作状态。

具体来说,当输入信号为正时,有源钳位正激钳位电容会选择性地将电容与电源相连,使其被正激。

反之,当输入信号为负时,有源钳位正激钳位电容会选择性地将电容与地相连,使其被反激。

4. 反激和正激:在工作状态切换的过程中,根据输入信号的变化,有源钳位正激钳位电容会不断地进行反激和正激。

这样,电容两端的电压就能随着输入信号的变化而正常响应。

总结起来,有源钳位正激钳位电容通过内部的开关电路,根据输入信号的变化,选择性地切换工作状态,从而实现电容的正
激。

这种工作原理使得有源钳位正激钳位电容能够有效地响应输入信号的变化,并将其转化为电压输出。

有源钳位DC/DC正激变换器硬件电路及参数的设计

有源钳位DC/DC正激变换器硬件电路及参数的设计

有源钳位DC/DC正激变换器硬件电路及参数的设计摘要:开关稳压电源取代晶体管线性稳压电源已有30多年历史。

最初的开关电源一问世其电能转换效率就已经达到了60%-70%,转换效率可达到线性电源的一倍。

因此开关电源引起了人们的广泛关注。

随着社会进步,开关电源应用越来越广泛,对开关电源也提出新的要求。

开关电源要小型轻量,包括磁性元件和电容的体积重量要小。

此外要求开关电源效率要更高,性能更好,可靠性更高等。

DC-DC变换器是开关电源的主要组成部分,它是电能转换的核心,涉及到体积,转换效率等各方面的要求。

本文主要介绍有源钳位单端正激式DC/DC变换器的设计方法。

关键词:DC-DC变换器;有源钳位;设计;输入电压为28.5±5V,输出电压为12V,输出功率为50W。

一、占空比的设计当主开关管Q1开通时,变压器原方绕组所承受的电压为,Q1截止时,原方绕组承受的反向电压为钳位电容上的电压。

假设足够大,则在Q1截止期间,可以认为保持不变,则根据伏-秒积平衡可以得到:(5-1)则不难得到:(5-2)当主开关管Q1关断时,漏源电压应力为:(5-3)综合式(5-1)、(5-2)、(5-3)式可得(5-4)在相同的N、下,当输入电源电压增大时,占空比D减小。

从式(5-4)可以看出,当D变化时,开关管电压应力也随之变化。

当D=0.5左右变化时,的值变化不大,也就是说,当输入电压变化比较大时,开关管电压应力变化不大,因此有源钳位正激变换器特别适用于宽输入电源电压场合。

一般D最大可以取到0.75左右。

在设计开关电源时,应该合理选择占空比,使得当输入电压为最大和最小值,开关管的电压应力相等。

由式(4-4)可得:,(5-5)由式(5-2)可知,欲使得输入最大电压和最小电压时开关管电压应力相等,则须满足以下条件:(5-6)则可以算得=0.412,=0.588,N=1.15为了便于高频变压器的制作,取N=1,则根据式(4-4)可以得到:=0.358,=0.511二、主开关管的选择选择MOSFET的原则是:MOSFET的额定电压和电流值不小于变换器中MOSFET所承受的最大电压和最大电流,一般应该为两倍。

有源钳位正激电源变换器的工作原理及优势

有源钳位正激电源变换器的工作原理及优势

有源钳位正激电源变换器的工作原理及优势有源箝位正激电源变换器的工作原理及优势— Bob Bell, 美国国家半导体公司电源应用工程师对设计人员来说,有源箝位正激变换器有很多优点,现在正得到广泛应用。

采用正激结构的电源变换器是高效率、大功率应用(50W 至 500 W范围)的出色选择。

虽然正激结构的普及有各种各样的原因,但设计者主要青睐的是它的简捷、性能和效率。

正激变换器来源于降压结构。

两者之间的主要区别是:正激结构变压器的输入地和输出地之间是绝缘的,另外它还有降压或升压功能。

正激结构中的变压器不会象在对称结构(如推挽、半桥和全桥)中那样,在每个开关周期内进行自复位。

正激功率变换器中使用了一些不同的复位机制,它们各有自己的优点和挑战。

对设计者而言,有源箝位正激变换器具有诸多的优点,因此现在这个拓扑被广泛应用。

图1:降压和前向拓扑结构图 1 显示了降压和正激转换器之间的相似之处。

注意两种变换功能的唯一区别是在正激变换功能中,匝数比(Ns/Np)这一名词所包含的内容。

Ns 和 Np 分别为次级匝数和初级匝数,均绕在变压器磁芯上。

图2 显示了一个变压器模型,其中包括与初级绕组并联的“励磁电感”(Lm)。

这个励磁电感可以在次级绕组开路状态下在初级端子处测量。

励磁电感中的电流与磁芯中的磁通密度成正比。

确定尺寸的某种磁芯只能支持到某个磁通密度,然后磁芯就会进入饱和。

当磁芯饱和时,电感量会急剧下降。

变压器模型中另外一个部分是与初级绕组串联的“漏感”(LL)。

漏感可以在次级绕组短路情况下在初级端子处测量。

这一名称表示杂散的初级电感,它不会耦合到次级。

图2 转换模式有源箝位电路的工作图3a 图3b图3c图 3a 到 3c 表示了有源箝位正激电源转换器的主要工作步骤。

在时刻t0 时,主功率开关(Q1)导通,在变压器初级施加一个VIN。

变压器次级绕组电压为VIN x Ns/Np。

此时的初级电流包括两个部分:来自输出电感的映射电流(IL x Ns/Np);以及在激磁电感(Lm)中上升的电流。

有源箝位正激式电路的特点及其参数设计

有源箝位正激式电路的特点及其参数设计

Science &Technology Vision科技视界0引言在烟草工业电气设备中,各种电路板和模块上的大量集成电路,需要直流5V 电源供电,通常我们用高于5V 的直流电再通过DC-DC 三端稳压模块变换(一般压差为2V)得到稳定的5V 电源。

实验室用的电源电流一般只有5A,10A,且体积偏大,不适合安装。

有源钳位正激式拓扑电路适合中小功率开关电源的设计,而且结构简单,性能好,适合在烟草工业电气设备中使用。

1有源箝位正激式电路的特点图1有源箝位正激式模型电路有源钳位正激变换器拓扑与传统的单端正激变换器拓扑基本相同,只是增加了辅助开关Qc(带反并二极管)和储能电容Cc,且略去了传统正激变换器的磁恢复电路。

开关Q1和Qc 工作在互补状态。

为了防止开关Q1和Qc 共态导通,两开关的驱动信号间留有一定的死区时间。

采用有源箝位的正激变换器的特点是:变压器是双向对称磁化的,工作在B-H 回线的第一和第三象限,变压器得到了充分利用,因此占空比可以大于0.5,而且开关管的电压应力低,适合与输入电压范围比较宽的应用场合,箝位开关管是零电压开关的,励磁能量和漏感能量全部回馈到电网。

2参数设计2.1功率变压器的设计1)工作频率的设定开关频率的提高有助于开关电源的体积减小,重量减轻。

开关频率提高又增加了开关损耗和磁芯损耗。

本方案通初步确定工作频率和最大占空比如下:工作频率f=170kHz 最大占空比=75%2)根据设计输出功率选择磁芯P O =7.5×20=150(W)考虑有20%裕量和效率,取η=80%,则150×1.2×1.25=225瓦,选择一个传递功率可达300瓦的磁芯,通过Ferroxcube 公司的磁芯手册,选材料代号为3F3的锰锌铁氧体磁芯,材料的损耗曲线如图2所示。

比损耗为100Mw/cm 3对应磁通密度摆幅为0.09T。

这里是第一次选择磁通密度摆幅。

图2比损耗与频率和峰值磁感应关系T=100℃应用面积粗略估计公式:AP=A e A w =P OK ΔBf T()4/3cm4其中:P O ———输出功率(W);ΔB ———磁通密度变化量(T);f T ———变压器工作频率(Hz);K ———0.014(正激变换器)得到AP=2720.014×0.08×170×103()4/3=1.2cm4假定选择磁芯EE32/6/20,查阅手册得到A w =130mm 2A e =130mm 2V e =5380mm 3l e =41.4mm 。

一种双晶体管正激有源钳位软开关电源的设计word精品文档5页

一种双晶体管正激有源钳位软开关电源的设计word精品文档5页

一种双晶体管正激有源钳位软开关电源的设计引言现在世界资源短缺,各国政府及社会各界越来越要求节能降耗。

中国政府也正秉持这一国际化趋势的理念在不断迈进,这一趋势在未来几年还会加速,这势必为响应这一国际趋势的科技型企业带来巨大的机遇。

同时对技术薄弱的电源企业就是一个巨大的考验。

在电源行业来讲,这几年大家一直致力于80PLUS的产品研发,时至今日,这项技术在大的企业已经得到普及。

接下来的方向就是如何来达到85PLUS的要求。

这对于一般的适配器或高电压直流输出的电源来讲没有什么问题,大家很容易就可以实现。

但是对于一般的PC电源或服务器电源这种带多输出中低直流电压的电源来讲,要达到85PLUS就不这么容易了。

电源目前常见的几种可以实现高效率的电路拓扑来讲,单晶体管有源钳位技术现在有很多厂商推广,但是目前使用情况还是不太普及,全桥零电压开关的技术也有人使用,也同样没有得到广泛普及。

现今在大的电源使用上大家最常用的就是双晶体管正激,目前很多厂商从300W~1200W的范围都有使用,同时可以满足80PLUS的要求,但是目前要作到85PLUS就很难,不进行一些技术变更几乎不可能。

基于目前的情况,本文介绍一种利用有源钳位技术在双晶体管正激上实现软开关的设计方法,并给出实际的设计案例及实验结果。

双晶体管正激有源钳位软开关的工作原理双晶体管正激有源钳位软开关主电路如图1所示。

参阅图2至图7,详细讲述双晶正激有源钳位开关电源的工作过程如下:1)功率传输阶段(t0~t1),如图2所示,该阶段第一主开关管VT1和第二主开关管VT2同时导通,而钳位开关管VTR1处于关断状态。

加在变压器上的输入电压使励磁电流线性上升,初级向次级经变压器传输能量。

次级VD1导通,VD2截止,L1上的电流线性上升,整流滤波后供给负载RL.在此条件下VD1和VD2刚好ZVS下导通,因其体二极管先前已经在导通状态(如图6所示)2)谐振阶段(t1~t2),如图3所示,在占空比的控制下,第一主开关管VT1和第二主开关管VT2在t1时刻同时关断,变压器磁芯极性反转。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有源钳位正激原理与设计实例
单端正激变换器具有结构简单、工作可靠、成本低廉、输入输出电气隔离、易于多路输出等优点,因而被广泛应用在中小功率变换场合。

但是它有一个固有缺点:在主开关管关断期间,必须附加一个复位电路,以实现高频变压器的磁复位,防止变压器磁芯饱和。

传统的磁复位技术包括采用第三个复位绕组技术、无损的LCD箝位技术以及RCD 箝位技术。

这三种复位技术虽然都有一定的优点,但是同时也存在一些缺陷。

(1)第三复位绕组技术采用第三个复位绕组技术正激变换器的优点是技术比较成熟,变压器能量能够回馈给电网。

它存在的缺点是:第三复位绕组使得变压器的设计和制作比较复杂;变压器磁芯不是双向对称磁化,因而利用率较低;原边主开关管承受的电压应力很大。

(2)RCD箝位技术采用RCD箝位技术正激变换器的优点是电路结构比较简单,成本低廉。

它存在的缺点是:在磁复位过程中,磁化能量大部分都消耗在箝位网络中,因而效率较低;磁芯不是双向对称磁化,磁芯利用率较低。

(3)LCD箝位技术采用无损的LCD箝位技术正激变换器的优点是磁场能量能够全部回馈给电网,效率较高。

有源钳位正激原理与设计实例。

相关文档
最新文档