【2021模块复习】第六章 第4节 数列求和+参考答案

合集下载

高三一轮复习讲义第6章第4节数列求和及答案

高三一轮复习讲义第6章第4节数列求和及答案

数列求和1.等差数列的前n 项和公式S n =n (a 1+a n )2=na 1+n (n -1)2d . 2.等比数列的前n 项和公式S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q=a 1(1-q n )1-q ,q ≠1. 3.一些常见数列的前n 项和公式(1)1+2+3+4+…+n =n (n +1)2. (2)1+3+5+7+…+2n -1=n 2. (3)2+4+6+8+…+2n =n (n +1). (4)12+22+…+n 2=n (n +1)(2n +1)6. 【知识拓展】数列求和的常用方法(1)公式法等差、等比数列或可化为等差、等比数列的可直接使用公式求和.(2)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.(3)裂项相消法把数列的通项拆成两项之差求和,正负相消剩下首尾若干项.常见的裂项公式①1n (n +1)=1n -1n +1;②1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1; ③1n +n +1=n +1-n . (4)倒序相加法把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广.(5)错位相减法主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广.(6)并项求和法一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5050.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q.( ) (2)当n ≥2时,1n 2-1=12(1n -1-1n +1).( ) (3)求S n =a +2a 2+3a 3+…+na n 之和时,只要把上式等号两边同时乘以a 即可根据错位相减法求得.( )(4)数列{12n +2n -1}的前n 项和为n 2+12n .()(5)推导等差数列求和公式的方法叫做倒序求和法,利用此法可求得sin 21°+sin 22°+sin 23°+…+sin 288°+sin 289°=44.5.( )考点自测1.设{a n }是公差不为0的等差数列,a 1=2,且a 1,a 3,a 6成等比数列,则{a n }的前n 项和S n 等于() A.n 2+7n 4 B.n 2+5n 3 C.2n 2+3n 4D .n 2+n2.(教材改编)数列{a n }中,a n =1n (n +1),若{a n }的前n 项和S n =20172018,则n 等于( )A .2016B .2017C .2018D .20193.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100等于( )A .200B .-200C .400D .-4004.若数列{a n }的通项公式为a n =2n +2n -1,则数列{a n }的前n 项和S n =________.5.数列{a n }的通项公式为a n =n cos n π2,其前n 项和为S n ,则S 2017=________.题型分类深度剖析题型一分组转化法求和例1已知数列{a n }的前n 项和S n =n 2+n 2,n ∈N *.(1)求数列{a n }的通项公式; (2)设b n =2n a +(-1)n a n ,求数列{b n }的前2n 项和.已知数列{a n }的通项公式是a n =2·3n -1+(-1)n ·(ln2-ln3)+(-1)n n ln3,求其前n 项和S n .题型二错位相减法求和例2已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1.(1)求数列{b n }的通项公式; (2)令c n =(a n +1)n +1(b n +2)n ,求数列{c n }的前n 项和T n .设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q ,已知b 1=a 1,b 2=2,q =d ,S 10=100.(1) 求数列{a n },{b n }的通项公式;(2) 当d >1时,记c n =a n b n,求数列{c n }的前n 项和T n .题型三裂项相消法求和命题点1形如a n =1n (n +k )型 例3S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +3.(1)求{a n }的通项公式; (2)设b n =1a n a n +1,求数列{b n }的前n 项和.命题点2形如a n =1n +n +k 型例4已知函数f (x )=x a 的图象过点(4,2),令a n =1f (n +1)+f (n ),n ∈N *.记数列{a n }的前n 项和为S n , 则S 2017=________.在数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n ⎝⎛⎭⎫S n -12. (1)求S n 的表达式; (2)设b n =S n 2n +1,求{b n }的前n 项和T n .四审结构定方案典例已知数列{a n }的前n 项和S n =-12n 2+kn (其中k ∈N *),且S n 的最大值为8. (1)确定常数k ,并求a n ;(2)设数列⎩⎨⎧⎭⎬⎫9-2a n 2n 的前n 项和为T n ,求证:T n <4.课时作业1.数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n 的值等于( ) A .n 2+1-12n B .2n 2-n +1-12n C .n 2+1-12n -1D .n 2-n +1-12n2.设等比数列{a n }的前n 项和为S n ,已知a 1=2016,且a n +2a n +1+a n +2=0(n ∈N *),则S 2016等于( )A .0B .2016C .2015D .20143.等差数列{a n }的通项公式为a n =2n +1,其前n 项和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 的前10项的和为( ) A .120B .70C .75D .1004.在数列{a n }中,若a n +1+(-1)n a n =2n -1,则数列{a n }的前12项和等于( )A .76B .78C .80D .825.已知函数f (n )=⎩⎪⎨⎪⎧n 2 (当n 为奇数时),-n 2(当n 为偶数时),且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100等于( ) A .0B .100C .-100D .102006.设数列{a n }的通项公式为a n =2n -7,则|a 1|+|a 2|+…+|a 15|等于( )A .153B .210C .135D .1207.已知数列{a n }的通项公式为a n =1n +n +1,若前n 项和为10,则项数n 为________.8.在等差数列{a n }中,a 1>0,a 10·a 11<0,若此数列的前10项和S 10=36,前18项和S 18=12,则数列{|a n |}的前18项和T 18的值是________.9.若已知数列的前四项是112+2,122+4,132+6,142+8,则数列的前n 项和为______________.*10.已知正项数列{a n }的前n 项和为S n ,∀n ∈N *,2S n =a 2n +a n .令b n =1a n a n +1+a n +1a n,设{b n }的前n 项和为T n ,则在T 1,T 2,T 3,…,T 100中有理数的个数为________.11.已知数列{a n }中,a 1=3,a 2=5,且{a n -1}是等比数列.(1)求数列{a n }的通项公式;(2)若b n =na n ,求数列{b n }的前n 项和T n .12.已知{a n }是等比数列,前n 项和为S n (n ∈N *),且1a 1-1a 2=2a 3,S 6=63. (1)求数列{a n }的通项公式;(2)若对任意的n ∈N *,b n 是log 2a n 和log 2a n +1的等差中项,求数列{(-1)n b 2n }的前2n 项和.*13.若数列{a n }的前n 项和为S n ,点(a n ,S n )在y =16-13x 的图象上(n ∈N *). (1)求数列{a n }的通项公式;(2)若c 1=0,且对任意正整数n 都有c n +1-c n =12log n a .求证:对任意正整数n ≥2,总有13≤1c 2+1c 3+1c 4+…+1c n <34.数列求和1.等差数列的前n 项和公式S n =n (a 1+a n )2=na 1+n (n -1)2d . 2.等比数列的前n 项和公式S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q=a 1(1-q n )1-q ,q ≠1. 3.一些常见数列的前n 项和公式(1)1+2+3+4+…+n =n (n +1)2.(2)1+3+5+7+…+2n -1=n 2. (3)2+4+6+8+…+2n =n (n +1).(4)12+22+…+n 2=n (n +1)(2n +1)6. 【知识拓展】数列求和的常用方法(1)公式法等差、等比数列或可化为等差、等比数列的可直接使用公式求和.(2)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.(3)裂项相消法把数列的通项拆成两项之差求和,正负相消剩下首尾若干项.常见的裂项公式①1n (n +1)=1n -1n +1;②1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1; ③1n +n +1=n +1-n . (4)倒序相加法把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广.(5)错位相减法主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广.(6)并项求和法一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5050.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q.(√) (2)当n ≥2时,1n 2-1=12(1n -1-1n +1).(√) (3)求S n =a +2a 2+3a 3+…+na n 之和时,只要把上式等号两边同时乘以a 即可根据错位相减法求得.(×)(4)数列{12n +2n -1}的前n 项和为n 2+12n .(×) (5)推导等差数列求和公式的方法叫做倒序求和法,利用此法可求得sin 21°+sin 22°+sin 23°+…+sin 288°+sin 289°=44.5.(√)考点自测1.设{a n }是公差不为0的等差数列,a 1=2,且a 1,a 3,a 6成等比数列,则{a n }的前n 项和S n 等于()A.n 2+7n 4B.n 2+5n 3C.2n 2+3n 4D .n 2+n 答案A解析设等差数列的公差为d ,则a 1=2,a 3=2+2d ,a 6=2+5d .又∵a 1,a 3,a 6成等比数列,∴a 23=a 1·a 6. 即(2+2d )2=2(2+5d ),整理得2d 2-d =0.∵d ≠0,∴d =12.∴S n =na 1+n (n -1)2d =n 24+74n . 2.(教材改编)数列{a n }中,a n =1n (n +1),若{a n }的前n 项和S n =20172018,则n 等于() A .2016B .2017C .2018D .2019答案B解析a n =1n (n +1)=1n -1n +1, S n =a 1+a 2+…+a n=(1-12+12-13+…+1n -1n +1)=1-1n +1=n n +1. 令n n +1=20172018,得n =2017. 3.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100等于()A .200B .-200C .400D .-400答案B解析S 100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200.4.若数列{a n }的通项公式为a n =2n +2n -1,则数列{a n }的前n 项和S n =________.答案2n +1-2+n 2 解析S n =2(1-2n )1-2+n (1+2n -1)2=2n +1-2+n 2. 5.数列{a n }的通项公式为a n =n cos n π2,其前n 项和为S n ,则S 2017=________. 答案1008解析因为数列a n =n cos n π2呈周期性变化,观察此数列规律如下:a 1=0,a 2=-2,a 3=0,a 4=4. 故S 4=a 1+a 2+a 3+a 4=2.a 5=0,a 6=-6,a 7=0,a 8=8,故a 5+a 6+a 7+a 8=2,∴周期T =4.∴S 2017=S 2016+a 2017=20164×2+2017·cos 20172π=1008.题型分类深度剖析题型一分组转化法求和例1已知数列{a n }的前n 项和S n =n 2+n 2,n ∈N *. (1)求数列{a n }的通项公式;(2)设b n =2n a+(-1)n a n ,求数列{b n }的前2n 项和.解(1)当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=n 2+n 2-(n -1)2+(n -1)2=n . a 1也满足a n =n ,故数列{a n }的通项公式为a n =n .(2)由(1)知a n =n ,故b n =2n +(-1)n n .记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+…+22n )+(-1+2-3+4-…+2n ).记A =21+22+…+22n ,B =-1+2-3+4-…+2n ,则A =2(1-22n )1-2=22n +1-2, B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n .故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2. 引申探究本例(2)中,求数列{b n }的前n 项和T n .解由(1)知b n =2n +(-1)n ·n .当n 为偶数时,T n =(21+22+…+2n )+[-1+2-3+4-…-(n -1)+n ]=2-2n +11-2+n 2=2n +1+n 2-2; 当n 为奇数时,T n =(21+22+…+2n )+[-1+2-3+4-…-(n -2)+(n -1)-n ]=2n +1-2+n -12-n =2n +1-n 2-52. ∴T n =⎩⎨⎧ 2n +1+n 2-2,n 为偶数,2n +1-n 2-52,n 为奇数.思维升华分组转化法求和的常见类型(1)若a n =b n ±c n ,且{b n },{c n }为等差或等比数列,可采用分组求和法求{a n }的前n 项和.(2)通项公式为a n =⎩⎪⎨⎪⎧b n ,n 为奇数,c n ,n 为偶数的数列,其中数列{b n },{c n }是等比数列或等差数列,可采用分组求和法求和.提醒:某些数列的求和是将数列转化为若干个可求和的新数列的和或差,从而求得原数列的和,注意在含有字母的数列中对字母的讨论.已知数列{a n }的通项公式是a n =2·3n -1+(-1)n ·(ln2-ln3)+(-1)n n ln3,求其前n 项和S n . 解S n =2(1+3+…+3n -1)+[-1+1-1+…+(-1)n ]·(ln 2-ln 3)+[-1+2-3+…+(-1)n n ]ln 3, 所以当n 为偶数时,S n =2×1-3n 1-3+n 2ln3=3n +n 2ln3-1; 当n 为奇数时,S n =2×1-3n 1-3-(ln2-ln3)+(n -12-n )ln3 =3n -n -12ln3-ln2-1. 综上所述,S n=⎩⎨⎧ 3n +n 2ln3-1,n 为偶数,3n -n -12ln3-ln2-1,n 为奇数.题型二错位相减法求和例2已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1.(1)求数列{b n }的通项公式;(2)令c n =(a n +1)n +1(b n +2)n ,求数列{c n }的前n 项和T n . 解(1)由题意知,当n ≥2时,a n =S n -S n -1=6n +5,当n =1时,a 1=S 1=11,满足上式,所以a n =6n +5.设数列{b n }的公差为d .由⎩⎪⎨⎪⎧ a 1=b 1+b 2,a 2=b 2+b 3, 即⎩⎪⎨⎪⎧ 11=2b 1+d ,17=2b 1+3d ,可解得⎩⎪⎨⎪⎧b 1=4,d =3,所以b n =3n +1. (2)由(1)知,c n =(6n +6)n +1(3n +3)n =3(n +1)·2n +1, 又T n =c 1+c 2+…+c n ,得T n =3×[2×22+3×23+…+(n +1)×2n +1], 2T n =3×[2×23+3×24+…+(n +1)×2n +2]. 两式作差,得-T n =3×[2×22+23+24+…+2n +1-(n +1)×2n +2] =3×⎣⎢⎡⎦⎥⎤4+4(1-2n)1-2-(n +1)×2n +2=-3n ·2n +2, 所以T n =3n ·2n +2. 思维升华错位相减法求和时的注意点(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n -qS n ”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q ,已知b 1=a 1,b 2=2,q =d ,S 10=100.(1) 求数列{a n },{b n }的通项公式;(2) 当d >1时,记c n =a n b n,求数列{c n }的前n 项和T n . 解(1)由题意有⎩⎪⎨⎪⎧ 10a 1+45d =100,a 1d =2即⎩⎪⎨⎪⎧2a 1+9d =20,a 1d =2, 解得⎩⎪⎨⎪⎧ a 1=1,d =2或⎩⎪⎨⎪⎧ a 1=9,d =29.故⎩⎪⎨⎪⎧ a n =2n -1,b n =2n -1或⎩⎨⎧ a n =19(2n +79),b n =9·⎝⎛⎭⎫29n -1.(2)由d >1,知a n =2n -1,b n =2n -1,故c n =2n -12n -1,于是T n =1+32+522+723+924+…+2n -12n -1,① 12T n =12+322+523+724+925+…+2n -12n .② ①-②可得12T n =2+12+122+…+12n -2-2n -12n =3-2n +32n ,故T n =6-2n +32n -1. 题型三裂项相消法求和命题点1形如a n =1n (n +k )型 例3S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +3.(1)求{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和. 解(1)由a 2n +2a n =4S n +3,可知a 2n +1+2a n +1=4S n +1+3.即2(a n +1+a n )=a 2n +1-a 2n =(a n +1+a n )(a n +1-a n ).由a n >0,可得a n +1-a n =2.又a 21+2a 1=4a 1+3,解得a 1=-1(舍去)或a 1=3.所以{a n }是首项为3,公差为2的等差数列,通项公式为a n =2n +1.(2)由a n =2n +1可知b n =1a n a n +1=1(2n +1)(2n +3)=12⎝⎛⎭⎫12n +1-12n +3. 设数列{b n }的前n 项和为T n ,则T n =b 1+b 2+…+b n=12⎣⎡⎦⎤⎝⎛⎭⎫13-15+⎝⎛⎭⎫15-17+…+⎝⎛⎭⎫12n +1-12n +3=n 3(2n +3).命题点2形如a n =1n +n +k 型例4已知函数f (x )=x a 的图象过点(4,2),令a n =1f (n +1)+f (n ),n ∈N *.记数列{a n }的前n 项和为S n , 则S 2017=________.答案2018-1解析由f (4)=2,可得4a =2,解得a =12,则f (x )=12x . ∴a n =1f (n +1)+f (n )=1n +1+n=n +1-n , S 2017=a 1+a 2+a 3+…+a 2017=(2-1)+(3-2)+(4-3)+…+(2017-2016)+(2018-2017)=2018-1.思维升华(1)用裂项相消法求和时,要对通项进行变换,如:1n +n +k =1k(n +k -n ),1n (n +k )=1k (1n -1n +k),裂项后可以产生连续相互抵消的项.(2)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项.在数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n ⎝⎛⎭⎫S n -12. (1)求S n 的表达式;(2)设b n =S n 2n +1,求{b n }的前n 项和T n . 解(1)∵S 2n =a n ⎝⎛⎭⎫S n -12, a n =S n -S n -1 (n ≥2),∴S 2n =(S n -S n -1)⎝⎛⎭⎫S n -12, 即2S n -1S n =S n -1-S n ,①由题意得S n -1·S n ≠0,①式两边同除以S n -1·S n ,得1S n -1S n -1=2, ∴数列⎩⎨⎧⎭⎬⎫1S n 是首项为1S 1=1a 1=1,公差为2的等差数列. ∴1S n =1+2(n -1)=2n -1,∴S n =12n -1. (2)∵b n =S n 2n +1=1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1, ∴T n =b 1+b 2+…+b n =12[(1-13)+(13-15)+…+(12n -1-12n +1)]=12⎝⎛⎭⎫1-12n +1=n 2n +1. 四审结构定方案典例已知数列{a n }的前n 项和S n =-12n 2+kn (其中k ∈N *),且S n 的最大值为8. (1)确定常数k ,并求a n ;(2)设数列⎩⎨⎧⎭⎬⎫9-2a n 2n 的前n 项和为T n ,求证:T n <4.(1)S n =-12n 2+kn ――――――→S n 是关于n 的二次函数n =k 时,S n 最大――――――――→根据S n 的结构特征确定k 的值k =4;S n =-12n 2+4n ――→根据S n 求a n a n =92-n (2)9-2a n 2n =n 2n -1―――――――――→根据数列结构特征确定求和方法 T n =1+22+322+…+n -12n -2+n 2n -1――――――→错位相减法求和 计算可得T n ―→证明:T n <4 规范解答(1)解当n =k ∈N *时,S n =-12n 2+kn 取得最大值, 即8=S k =-12k 2+k 2=12k 2,故k 2=16,k =4. 当n =1时,a 1=S 1=-12+4=72,[3分] 当n ≥2时,a n =S n -S n -1=92-n .当n =1时,上式也成立. 综上,a n =92-n .[6分] (2)证明∵9-2a n 2n =n 2n -1, ∴T n =1+22+322+…+n -12n -2+n 2n -1,① 2T n =2+2+32+…+n -12n -3+n 2n -2.② ②-①,得2T n -T n =2+1+12+…+12n -2-n 2n -1 =4-12n -2-n 2n -1=4-n +22n -1.[11分] ∴T n =4-n +22n -1.∴T n <4. 课时作业1.数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n 的值等于() A .n 2+1-12n B .2n 2-n +1-12n C .n 2+1-12n -1D .n 2-n +1-12n答案A解析该数列的通项公式为a n =(2n -1)+12n , 则S n =[1+3+5+…+(2n -1)]+(12+122+…+12n )=n 2+1-12n . 2.设等比数列{a n }的前n 项和为S n ,已知a 1=2016,且a n +2a n +1+a n +2=0(n ∈N *),则S 2016等于()A .0B .2016C .2015D .2014答案A解析∵a n +2a n +1+a n +2=0(n ∈N *),∴a n +2a n q +a n q 2=0,q 为等比数列{a n }的公比,即q 2+2q +1=0,∴q =-1.∴a n =(-1)n -1·2016, ∴S 2016=(a 1+a 2)+(a 3+a 4)+…+(a 2015+a 2016)=0.3.等差数列{a n }的通项公式为a n =2n +1,其前n 项和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 的前10项的和为() A .120B .70C .75D .100答案C解析因为S n n =n +2,所以⎩⎨⎧⎭⎬⎫S n n 的前10项和为10×3+10×92=75. 4.在数列{a n }中,若a n +1+(-1)n a n =2n -1,则数列{a n }的前12项和等于()A .76B .78C .80D .82答案B解析由已知a n +1+(-1)n a n =2n -1,得a n +2+(-1)n +1·a n +1=2n +1,得a n +2+a n =(-1)n (2n -1)+(2n +1),取n =1,5,9及n =2,6,10,结果相加可得S 12=a 1+a 2+a 3+a 4+…+a 11+a 12=78.故选B.5.已知函数f (n )=⎩⎪⎨⎪⎧n 2 (当n 为奇数时),-n 2(当n 为偶数时),且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100等于() A .0B .100C .-100D .10200答案B解析由题意,得a 1+a 2+a 3+…+a 100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012=-(1+2)+(3+2)-(4+3)+…-(99+100)+(101+100)=-(1+2+…+99+100)+(2+3+…+100+101)=-50×101+50×103=100.故选B.6.设数列{a n }的通项公式为a n =2n -7,则|a 1|+|a 2|+…+|a 15|等于()A .153B .210C .135D .120答案A解析令a n =2n -7≥0,解得n ≥72.∴从第4项开始大于0, ∴|a 1|+|a 2|+…+|a 15|=-a 1-a 2-a 3+a 4+a 5+…+a 15=5+3+1+1+3+…+(2×15-7)=9+12×(1+23)2=153. 7.已知数列{a n }的通项公式为a n =1n +n +1,若前n 项和为10,则项数n 为________.答案120解析∵a n =1n +n +1=n +1-n , ∴S n =a 1+a 2+…+a n =(2-1)+(3-2)+…+(n +1-n )=n +1-1.令n +1-1=10,得n =120.8.在等差数列{a n }中,a 1>0,a 10·a 11<0,若此数列的前10项和S 10=36,前18项和S 18=12,则数列{|a n |}的前18项和T 18的值是________.答案60解析由a 1>0,a 10·a 11<0可知d <0,a 10>0,a 11<0,∴T 18=a 1+…+a 10-a 11-…-a 18=S 10-(S 18-S 10)=60.9.若已知数列的前四项是112+2,122+4,132+6,142+8,则数列的前n 项和为______________. 答案34-2n +32(n +1)(n +2)解析由前四项知数列{a n }的通项公式为a n =1n 2+2n , 由1n 2+2n =12(1n -1n +2)知, S n =a 1+a 2+a 3+…+a n -1+a n=12[1-13+12-14+13-15+…+(1n -2-1n )+(1n -1-1n +1)+(1n -1n +2)]=12[1+12-1n +1-1n +2] =34-2n +32(n +1)(n +2). *10.已知正项数列{a n }的前n 项和为S n ,∀n ∈N *,2S n =a 2n +a n .令b n =1a n a n +1+a n +1a n,设{b n }的前n 项和为T n ,则在T 1,T 2,T 3,…,T 100中有理数的个数为________.答案9解析∵2S n =a 2n +a n ,①∴2S n +1=a 2n +1+a n +1,②②-①,得2a n +1=a 2n +1+a n +1-a 2n -a n ,a 2n +1-a 2n -a n +1-a n =0,(a n +1+a n )(a n +1-a n -1)=0.又∵{a n }为正项数列,∴a n +1-a n -1=0,即a n +1-a n =1.在2S n =a 2n +a n 中,令n =1,可得a 1=1.∴数列{a n }是以1为首项,1为公差的等差数列.∴a n =n ,∴b n =1n n +1+(n +1)n=(n +1)n -n n +1[n n +1+(n +1)n ][(n +1)n -n n +1]=(n +1)n -n n +1n (n +1)=1n -1n +1, ∴T n =1-1n +1, ∴T 1,T 2,T 3,…,T 100中有理数的个数为9.11.已知数列{a n }中,a 1=3,a 2=5,且{a n -1}是等比数列.(1)求数列{a n }的通项公式;(2)若b n =na n ,求数列{b n }的前n 项和T n .解(1)∵{a n -1}是等比数列且a 1-1=2,a 2-1=4,a 2-1a 1-1=2, ∴a n -1=2·2n -1=2n ,∴a n =2n +1. (2)b n =na n =n ·2n +n ,故T n =b 1+b 2+b 3+…+b n =(2+2×22+3×23+…+n ·2n )+(1+2+3+…+n ). 令T =2+2×22+3×23+…+n ·2n ,则2T =22+2×23+3×24+…+n ·2n +1. 两式相减,得-T =2+22+23+…+2n -n ·2n +1 =2(1-2n )1-2-n ·2n +1, ∴T =2(1-2n )+n ·2n +1=2+(n -1)·2n +1. ∵1+2+3+…+n =n (n +1)2,∴T n =(n -1)·2n +1+n 2+n +42. 12.已知{a n }是等比数列,前n 项和为S n (n ∈N *),且1a 1-1a 2=2a 3,S 6=63. (1)求数列{a n }的通项公式;(2)若对任意的n ∈N *,b n 是log 2a n 和log 2a n +1的等差中项,求数列{(-1)n b 2n }的前2n 项和. 解(1)设数列{a n }的公比为q .由已知,有1a 1-1a 1q =2a 1q 2, 解得q =2或q =-1.又由S 6=a 1·1-q 61-q=63,知q ≠-1, 所以a 1·1-261-2=63,得a 1=1.所以a n =2n -1. (2)由题意,得b n =12(log 2a n +log 2a n +1)=12(log 22n -1+log 22n )=n -12, 即{b n }是首项为12,公差为1的等差数列. 设数列{(-1)n b 2n }的前n 项和为T n ,则T 2n =(-b 21+b 22)+(-b 23+b 24)+…+(-b 22n -1+b 22n )=b 1+b 2+b 3+b 4+…+b 2n -1+b 2n =2n (b 1+b 2n )2=2n 2. *13.若数列{a n }的前n 项和为S n ,点(a n ,S n )在y =16-13x 的图象上(n ∈N *). (1)求数列{a n }的通项公式;(2)若c 1=0,且对任意正整数n 都有c n +1-c n =12log n a .求证:对任意正整数n ≥2,总有13≤1c 2+1c 3+1c 4+…+1c n <34. (1)解∵S n =16-13a n , ∴当n ≥2时,a n =S n -S n -1=13a n -1-13a n ,∴a n =14a n -1. 又∵S 1=a 1=16-13a 1,∴a 1=18,∴a n =18⎝⎛⎭⎫14n -1=⎝⎛⎭⎫122n +1. (2)证明由c n +1-c n =12log n a =2n +1,得当n ≥2时,c n =c 1+(c 2-c 1)+(c 3-c 2)+…+(c n -c n -1)=0+3+5+…+(2n -1)=n 2-1=(n +1)(n -1), 1c n =1(n +1)(n -1)=12(1n -1-1n +1), ∴1c 2+1c 3+1c 4+…+1c n=12×⎣⎡ ⎝⎛⎭⎫1-13+⎝⎛⎭⎫12-14+⎝⎛⎭⎫13-15+…+ ⎦⎤⎝⎛⎭⎫1n -1-1n +1=12⎣⎡⎦⎤⎝⎛⎭⎫1+12-⎝⎛⎭⎫1n +1n +1 =34-12⎝⎛⎭⎫1n +1n +1<34. 又∵1c 2+1c 3+1c 4+…+1c n ≥1c 2=13,∴原式得证.。

课件3:6.4 数列求和

课件3:6.4 数列求和

(2)由(1)知a2n-11a2n+1=3-2n11-2n =12(2n1-3-2n1-1), 从而数列a2n-11a2n+1的前 n 项和为12(-11-11+11-13+… +2n1-3-2n1-1)=1-n2n.
三 错位相减法求和
【例 3】(2013·湖南)设 Sn 为数列{an}的前项和,已知 a1≠0,2an-a1=S1·Sn,n∈N*
【跟踪训练 2】 已知等差数列{an}的前 n 项和 Sn 满足 S3 =0,S5=-5.
(1)求{an}的通项公式; (2)求数列{a2n-11a2n+1}的前 n 项和.
解析:(1)设{an}的公差为 d, 则 Sn=na1+nn-2 1d. 由已知可得35aa11++31d0=d=0-5 ,解得ad1==-1 1 . 故{an}的通项公式为 an=2-n.
(2)因为 an=n,所以 a1=1,Sn=1+2+…+n=nn+2 1, 所以S1n=nn2+1=2(1n-n+1 1), 所以S11+S12+…+S1n
=2[(1-12)+(12-13)+…+(1n-n+1 1)] =2(1-n+1 1)=n2+n1.
【温馨提示】使用裂项相消法求和时,要注意正负项 相消时消去了哪些项,保留了哪些项,切不可漏写未被消 去的项,未被消去的项有前后对称的特点,实质上造成正 负相消是此法的根源与目的.
(1)证明:数列ann是等差数列; (2)设 bn=3n· an,求数列{bn}的前 n 项和 Sn.
解析:(1)证明:由已知可得na+n+11=ann+1, 即na+n+11-ann=1, 所以ann是以a11=1 为首项,1 为公差的等差数列.
(2)由(1)得ann=1+(n-1)·1=n,所以 an=n2. 从而 bn=n·3n. Sn=1×31+2×32+3×33+…+n·3n,① 3Sn=1×32+2×33+…+(n-1)·3n+n·3n+1.② ①-②得,-2Sn=31+32+…+3n-n·3n+1

数列求和(有解答)

数列求和(有解答)

高三数学复习课 数列求和★要点梳理1.求数列的前n 项和的方法 (1)公式法①等差数列的前n 项和公式S n =n (a 1+a n )2=na 1+n (n -1)2d .②等比数列的前n 项和公式(Ⅰ)当q =1时,S n =na 1; (Ⅱ)当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q1-q .(2)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (3)裂项相消法把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. (4)倒序相加法把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广. (5)错位相减法主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广. (6)并项求和法一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050. 2.常见的裂项公式 (1)1n (n +1)=1n -1n +1;(2)1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1;(3)1n +n +1=n +1-n .★基础回顾1.(2012·大纲全国)已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前100项和为( )A.100101B.99101C.99100D.101100答案 A解析 利用裂项相消法求和.设等差数列{a n }的首项为a 1,公差为d .∵a 5=5,S 5=15,∴⎩⎪⎨⎪⎧a 1+4d =5,5a 1+5×(5-1)2d =15,∴⎩⎪⎨⎪⎧a 1=1,d =1, ∴a n =a 1+(n -1)d =n . ∴1a n a n +1=1n (n +1)=1n -1n +1, ∴数列⎩⎨⎧⎭⎬⎫1a n a n +1的前100项和为1-12+12-13+…+1100-1101=1-1101=100101.2.若数列{a n }的通项公式为a n =2n +2n -1,则数列{a n }的前n 项和S n 为 ( )A.2n +n 2-1B.2n +1+n 2-1 C.2n +1+n 2-2D.2n +n 2-2答案 C解析 S n =(2+22+23+ (2))+(1+3+5+…+(2n -1))=2(1-2n )1-2+n (1+2n -1)2=2n +1-2+n 2.3.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100等于( )A.200B.-200C.400D.-400答案 B解析 S 100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3) =4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200. 4. 3·2-1+4·2-2+5·2-3+…+(n +2)·2-n =________.答案 4-n +42n解析 设S =3×12+4×122+5×123+…+(n +2)×12n ,则12S =3×122+4×123+5×124+…+(n +2)×12n 1.两式相减得12S =3×12+(122+123+…+12n )-n +22n +1.∴S =3+(12+122+…+12n -1)-n +22n =3+12[1-(12)n -1]1-12-n +22n =4-n +42n .★题型分类题型一 分组转化求和例1 已知数列{a n }是3+2-1,6+22-1,9+23-1,12+24-1,…,写出数列{a n }的通项公式并求其前n 项和S n .思维启迪 先写出通项,然后对通项变形,分组后利用等差数列、等比数列的求和公式求解. 解 由已知得,数列{a n }的通项公式为a n =3n +2n -1=3n -1+2n , ∴S n =a 1+a 2+…+a n =(2+5+…+3n -1)+(2+22+…+2n )=n (2+3n -1)2+2(1-2n )1-2=12n (3n +1)+2n +1-2.思维升华 某些数列的求和是将数列分解转化为若干个可求和的新数列的和或差,从而求得原数列的和,这就要通过对数列通项结构特点进行分析研究,将数列的通项合理分解转化.特别注意在含有字母的数列中对字母的讨论.求和S n =1+⎝⎛⎭⎫1+12+⎝⎛⎭⎫1+12+14+…+⎝⎛⎭⎫1+12+14+…+12n -1. 解 和式中第k 项为a k =1+12+14+…+12k -1=1-⎝⎛⎭⎫12k1-12=2⎝⎛⎭⎫1-12k . ∴S n =2⎣⎡⎦⎤⎝⎛⎭⎫1-12+⎝⎛⎭⎫1-122+…+⎝⎛⎭⎫1-12n =2[(1+1+…+1)-(12+122+…+12n )] n 个=2⎝ ⎛⎭⎪⎫n -12⎝⎛⎭⎫1-12n 1-12=12n -1+2n -2. 题型二 错位相减法求和例2 已知等差数列{a n }的前3项和为6,前8项和为-4. (1)求数列{a n }的通项公式;(2)设b n =(4-a n )q n -1(q ≠0,n ∈N *),求数列{b n }的前n 项和S n .思维启迪 (1)列方程组求{a n }的首项、公差,然后写出通项a n . (2)q =1时,b n 为等差数列,直接求和;q ≠1时,用错位相减法求和.解 (1)设等差数列{a n }的公差为d .由已知得⎩⎪⎨⎪⎧ 3a 1+3d =68a 1+28d =-4,解得⎩⎪⎨⎪⎧a 1=3d =-1.故a n =3+(n -1)·(-1)=4-n .(2)由(1)得,b n =n ·q n -1,于是S n =1·q 0+2·q 1+3·q 2+…+n ·q n -1.若q ≠1,将上式两边同乘以q 有qS n =1·q 1+2·q 2+…+(n -1)·q n -1+n ·q n .两式相减得到(q -1)S n =nq n -1-q 1-q 2-…-q n -1=nq n -q n-1q -1=nq n +1-(n +1)q n +1q -1.于是,S n =nq n +1-(n +1)q n +1(q -1)2.若q =1,则S n=1+2+3+…+n =n (n +1)2.所以S n=⎩⎪⎨⎪⎧n (n +1)2,q =1nq n +1-(n +1)q n +1(q -1)2,q ≠1.已知等差数列{a n }满足a 2=0,a 6+a 8=-10.(1)求数列{a n }的通项公式; (2)求数列⎩⎨⎧⎭⎬⎫a n 2n -1的前n 项和.解 (1)设等差数列{a n }的公差为d ,由已知条件可得⎩⎪⎨⎪⎧ a 1+d =0,2a 1+12d =-10,解得⎩⎪⎨⎪⎧a 1=1,d =-1.故数列{a n }的通项公式为a n =2-n .(2)设数列⎩⎨⎧⎭⎬⎫a n 2n -1的前n 项和为S n ,即S n =a 1+a 22+…+a n2n -1, ①故S 1=1,S n 2=a 12+a 24+…+a n2n .②所以,当n >1时,①-②得S n 2=a 1+a 2-a 12+…+a n -a n -12n -1-a n 2n =1-(12+14+…+12n -1)-2-n 2n =1-(1-12n -1)-2-n 2n =n 2n . 所以S n =n 2n -1.当n =1时也成立.综上,数列⎩⎨⎧⎭⎬⎫a n 2n -1的前n 项和S n =n 2n -1.题型三 裂项相消法求和例3 在数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n ⎝⎛⎭⎫S n -12. (1)求S n 的表达式; (2)设b n =S n2n +1,求{b n }的前n 项和T n .思维启迪 第(1)问利用a n =S n -S n -1 (n ≥2)后,再同除S n -1·S n 转化为⎩⎨⎧⎭⎬⎫1S n 的等差数列即可求S n .第(2)问求出{b n }的通项公式,用裂项相消法求和. 解 (1)∵S 2n =a n ⎝⎛⎭⎫S n -12,a n =S n -S n -1 (n ≥2), ∴S 2n =(S n -S n -1)⎝⎛⎭⎫S n -12,即2S n -1S n =S n -1-S n , ①由题意得S n -1·S n ≠0, ①式两边同除以S n -1·S n ,得1S n -1S n -1=2,∴数列⎩⎨⎧⎭⎬⎫1S n 是首项为1S 1=1a 1=1,公差为2的等差数列.∴1S n =1+2(n -1)=2n -1,∴S n =12n -1. (2)∵b n =S n 2n +1=1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1,∴T n =b 1+b 2+…+b n =12[(1-13)+(13-15)+…+(12n -1-12n +1)]=12⎝⎛⎭⎫1-12n +1=n2n +1.已知等差数列{a n }的公差d ≠0,它的前n 项和为S n ,若S 5=70,且a 2,a 7,a 22成等比数列.(1)求数列{a n }的通项公式; (2)设数列⎩⎨⎧⎭⎬⎫1S n 的前n 项和为T n ,求证:16≤T n <38.(1)解 ∵数列{a n }是等差数列且S 5=70, ∴5a 1+10d =70. ①∵a 1,a 7,a 22成等比数列,∴a 27=a 2a 22, 即(a 1+6d )2=(a 1+d )(a 1+21d ) ②由①,②解得a 1=6,d =4或a 1=14,d =0(舍去), ∴a n =4n +2.(2)证明 由(1)可得S n =2n 2+4n ,所以1S n =12n 2+4n =14(1n -1n +2).所以T n =1S 1+1S 2+1S 3+…+1S n -1+1S n=14(11-13)+14(12-14)+14(13-15)+…+14(1n -1-1n +1)+14(1n -1n +2)=38-14(1n +1+1n +2). ∵T n -38=-14(1n +1+1n +2)<0,∴T n <38.∵T n -1-T n =-14(1n -1n +2)<0,∴数列{T n }是递增数列,∴T n ≥T 1=16.∴16≤T n <38. 典例:(12分)(2012·江西)已知数列{a n }的前n 项和S n =-12n 2+kn (其中k ∈N *),且S n 的最大值为8.(1)确定常数k ,并求a n ; (2)求数列⎩⎨⎧⎭⎬⎫9-2a n 2n 的前n 项和T n .解 (1)当n =k ∈N *时,S n =-12n 2+kn 取得最大值,即8=S k =-12k 2+k 2=12k 2,故k 2=16,k =4.当n =1时,a 1=S 1=-12+4=72,[3分]当n ≥2时,a n =S n -S n -1=92-n .当n =1时,上式也成立,综上,a n =92-n .(2)因为9-2a n 2n =n 2n -1,所以T n =1+22+322+…+n -12n -2+n2n -1,①所以2T n =2+2+32+…+n -12n -3+n2n -2 ②②-①:2T n -T n =2+1+12+…+12n -2-n 2n -1=4-12n -2-n2n -1=4-n +22n -1[11分]故T n =4-n +22n -1.[12分]★提炼思想与方法 1.方法与技巧非等差、等比数列的一般数列求和,主要有两种思想:(1)转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相消来完成;(2)不能转化为等差或等比的特殊数列,往往通过裂项相消法、错位相减法、倒序相加法等来求和. 2.失误与防范1.直接应用公式求和时,要注意公式的应用范围,如当等比数列公比为参数(字母)时,应对其公比是否为1进行讨论.2.在应用错位相减法时,注意观察未合并项的正负号.3.在应用裂项相消法时,要注意消项的规律具有对称性,即前剩多少项则后剩多少项.★练出高分A 组 专项基础训练 (时间:40分钟)一、选择题1.已知数列{a n }:12,13+23,14+24+34,…,110+210+310+…+910,…,若b n =1a n a n +1,那么数列{b n }的前n 项和S n 为 ( )A.nn +1 B.4nn +1C.3nn +1D.5nn +1答案 B解析 a n =1+2+3+…+n n +1=n2,∴b n =1a n a n +1=4n (n +1)=4(1n -1n +1),∴S n =4[(1-12)+(12-13)+…+(1n -1n +1)]=4(1-1n +1)=4nn +1.2.已知数列{a n }是等差数列,若a 9+3a 11<0,a 10·a 11<0,且数列{a n }的前n 项和S n 有最大值,那么当S n取得最小正值时,n 等于 ( )A.20B.17C.19D.21答案 C解析 由a 9+3a 11<0,得2a 10+2a 11<0,即a 10+a 11<0,又a 10·a 11<0,则a 10与a 11异号, 因为数列{a n }的前n 项和S n 有最大值,所以数列{a n }是一个递减数列,则a 10>0,a 11<0, 所以S 19=19(a 1+a 19)2=19a 10>0,S 20=20(a 1+a 20)2=10(a 10+a 11)<0.故使S n 取值最小正值的n 为19.3.已知函数f (n )=⎩⎪⎨⎪⎧n 2(当n 为奇数时),-n 2(当n 为偶数时),且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100等于( )A.0B.100C.-100D.10 200答案 B解析 由题意,得a 1+a 2+a 3+…+a 100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012 =-(1+2)+(3+2)+…-(99+100)+(101+100) =-(1+2+…+99+100)+(2+3+…+100+101) =-1+101=100.故选B.4.数列a 1+2,…,a k +2k ,…,a 10+20共有十项,且其和为240,则a 1+…+a k +…+a 10的值为( ) A.31 B.120C.130D.185答案 C解析 a 1+…+a k +…+a 10=240-(2+…+2k +…+20)=240-(2+20)×102=240-110=130.5.数列a n =1n (n +1),其前n 项之和为910,则在平面直角坐标系中,直线(n +1)x +y +n =0在y 轴上的截距为 ( ) A.-10 B.-9C.10D.9答案 B解析 数列的前n 项和为11×2+12×3+…+1n (n +1)=1-1n +1=n n +1=910,∴n =9,∴直线方程为10x +y +9=0. 令x =0,得y =-9,∴在y 轴上的截距为-9. 二、填空题6.数列32,94,258,6516,…的前n 项和S n 为________.答案n (n +1)2+1-12n 解析 ∵32=1+12,94=2+14,258=3+18, 6516=4+116,…∴S n =32+94+258+6516+…+(n +12n )=(1+2+3+…+n )+(12+122+123+…+12n )=n (n +1)2+12[1-(12)n ]1-12=n (n +1)2+1-12n .7.设f (x )=4x 4x +2,若S =f (12 015)+f (22 015)+…+f (2 0142 015),则S =________.答案 1 007解析 ∵f (x )=4x 4x +2,∴f (1-x )=41-x41-x +2=22+4x ,∴f (x )+f (1-x )=4x 4x +2+22+4x =1.S =f (12 015)+f (22 015)+…+f (2 0142 015),① S =f (2 0142 015)+f (2 0132 015)+…+f (12 015),②①+②得,2S =[f (12 015)+f (2 0142 015)]+[f (22 015)+f (2 0132 015)]+…+[f (2 0142 015)+f (12 015)]=2 014,∴S =2 0142=1 007.8.(2012·课标全国)数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为________. 答案 1 830解析 利用数列的递推式的意义结合等差数列求和公式求解. ∵a n +1+(-1)n a n =2n -1,∴a 2=1+a 1,a 3=2-a 1,a 4=7-a 1,a 5=a 1,a 6=9+a 1,a 7=2-a 1,a 8=15-a 1,a 9=a 1, a 10=17+a 1,a 11=2-a 1,a 12=23-a 1,…,a 57=a 1,a 58=113+a 1,a 59=2-a 1,a 60=119-a 1, ∴a 1+a 2+…+a 60=(a 1+a 2+a 3+a 4)+(a 5+a 6+a 7+a 8)+…+(a 57+a 58+a 59+a 60) =10+26+42+…+234=15×(10+234)2=1 830.三、解答题9.已知数列{a n }是首项为a 1=14,公比为q =14的等比数列,设b n +2=n a 41log (n ∈N *),数列{c n }满足c n=a n ·b n .(1)求数列{b n }的通项公式; (2)求数列{c n }的前n 项和S n .解 (1)由题意,知a n =(14)n (n ∈N *),又b n =3n a 41log -2,故b n =3n -2(n ∈N *).(2)由(1),知a n =(14)n ,b n =3n -2(n ∈N *),所以c n =(3n -2)×(14)n (n ∈N *).所以S n =1×14+4×(14)2+7×(14)3+…+(3n -5)×(14)n -1+(3n -2)×(14)n ,于是14S n =1×(14)2+4×(14)3+7×(14)4+…+(3n -5)×(14)n +(3n -2)×(14)n +1.两式相减,得34S n =14+3[(14)2+(14)3+…+(14)n ]-(3n -2)×(14)n +1=12-(3n +2)×(14)n +1.所以S n =23-3n +23×(14)n(n ∈N *).10.若S n 是公差不为0的等差数列{a n }的前n 项和,且S 1,S 2,S 4成等比数列. (1)求等比数列S 1,S 2,S 4的公比; (2)若S 2=4,求数列{a n }的通项公式;(3)在(2)的条件下,设b n =3a n a n +1,T n 是数列{b n }的前n 项和,求使得T n <m20对所有n ∈N *都成立的最小正整数m .解(1)因为{a n }为等差数列,设{a n }的公差为d (d ≠0),所以S 1=a 1,S 2=2a 1+d ,S 4=4a 1+6d .因为S 1,S 2,S 4成等比数列且设其公比为q , 所以S 1·S 4=S 22.所以a 1(4a 1+6d )=(2a 1+d )2.所以2a 1d =d 2.因为公差d ≠0.所以d =2a 1.所以q =S 2S 1=4a 1a 1=4.(2)因为S 2=4,所以2a 1+d =4.又d =2a 1,所以a 1=1,d =2.所以a n =2n -1.(3)因为b n =3(2n -1)(2n +1)=32(12n -1-12n +1),所以T n =32[(1-13)+(13-15)+…+(12n -1-12n +1)]=32(1-12n +1)<32.要使T n <m 20对所有n ∈N *都成立,则有m 20≥32,即m ≥30.因为m ∈N *,所以m 的最小值为30.B 组 专项能力提升 (时间:30分钟)1.已知数列2 008,2 009,1,-2 008,-2 009,…,这个数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前2 014项之和S 2 014等于( )A.2 008B.2 010C.1D.0答案 B解析 由已知得a n =a n -1+a n +1(n ≥2),∴a n +1=a n -a n -1.故数列的前8项依次为2 008,2 009,1,-2 008,-2 009,-1,2 008,2 009. 由此可知数列为周期数列,周期为6,且S 6=0.∵2 014=6×335+4, ∴S 2 014=S 4=2 008+2 009+1+(-2 008)=2 010.2.(2013·课标全国Ⅰ)设△A n B n C n 的三边长分别为a n 、b n 、c n ,△A n B n C n 的面积为S n ,n =1,2,3,…,若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1=c n +a n 2,c n +1=b n +a n2,则( )A.{S n }为递减数列B.{S n }为递增数列C.{S 2n -1}为递增数列,{S 2n }为递减数列D.{S 2n -1}为递减数列,{S 2n }为递增数列 答案 B解析 因为b 1>c 1,不妨设b 1=4a 13,c 1=2a 13;故S 1=3a 12·a 12·a 16·5a 16=1512a 21; a 2=a 1,b 2=23a 1+a 12=56a 1,c 2=43a 1+a 12=76a 1,S 2=3a 12·a 12·2a 13·a 13=66a 21. 显然S 2>S 1;a 3=a 1,b 3=76a 1+a 12=1312a 1,c 3=56a 1+a 12=1112a 1,S 3=3a 12·a 12·5a 112·7a 112=10524a 21,显然S 3>S 2. 3.(2013·湖南)设S n 为数列{a n }的前n 项和,S n =(-1)n a n -12n ,n ∈N *,则:(1)a 3=________; (2)S 1+S 2+…+S 100=________. 答案 (1)-116 (2)13⎝⎛⎭⎫12100-1解析 ∵a n =S n -S n -1=(-1)n a n -12n -(-1)n -1a n -1+12n -1,∴a n =(-1)n a n -(-1)n -1a n -1+12n .当n 为偶数时,a n -1=-12n ,当n 为奇数时,2a n +a n -1=12n ,∴当n =4时,a 3=-124=-116.根据以上{a n }的关系式及递推式可求. a 1=-122,a 3=-124,a 5=-126,a 7=-128,a 2=122,a 4=124,a 6=126,a 8=128.∴a 2-a 1=12,a 4-a 3=123,a 6-a 5=125,…,∴S 1+S 2+…+S 100=(a 2-a 1)+(a 4-a 3)+…+(a 100-a 99)-⎝⎛⎭⎫12+122+123+…+12100 =⎝⎛⎭⎫12+123+…+1299-⎝⎛⎭⎫12+122+…+12100=13⎝⎛⎭⎫12100-1. 4.已知数列{a n }的前n 项和S n ,满足:S n =2a n -2n (n ∈N *). (1)求数列{a n }的通项a n ;(2)若数列{b n }满足b n =log 2(a n +2),T n 为数列{b n a n +2}的前n 项和,求证:T n ≥12.(1)解 当n ∈N *时,S n =2a n -2n ,则当n ≥2时,S n -1=2a n -1-2(n -1), 两式相减得a n =2a n -2a n -1-2,即a n =2a n -1+2, ∴a n +2=2(a n -1+2),∴a n +2a n -1+2=2,当n =1时,S 1=2a 1-2,则a 1=2,∴{a n +2}是以a 1+2=4为首项,2为公比的等比数列, ∴a n +2=4·2n -1,∴a n =2n +1-2;(2)证明 b n =log 2(a n +2)=log 22n +1=n +1,∴b n a n +2=n +12n +1,则T n =222+323+…+n +12n +1,12T n =223+324+…+n2n +1+n +12n +2,两式相减得12T n =222+123+124+…+12n +1-n +12n +2=14+14(1-12n )1-12-n +12n +2=14+12-12n +1-n +12n +2=34-n +32n +2,∴T n =32-n +32n +1,当n ≥2时,T n -T n -1=-n +32n +1+n +22n =n +12n +1>0,11∴{T n }为递增数列,∴T n ≥T 1=12. 5.若正数项数列{a n }的前n 项和为S n ,首项a 1=1,点P (S n ,S n +1)在曲线y =(x +1)2上.(1)求a 2,a 3;(2)求数列{a n }的通项公式a n ;(3)设b n =1a n ·a n +1,T n 表示数列{b n }的前n 项和,若T n ≥a 恒成立,求T n 及实数a 的取值范围. 解 (1)因为点P (S n ,S n +1)在曲线y =(x +1)2上,所以S n +1=(S n +1)2.分别取n =1和n =2,得到⎩⎨⎧ a 1+a 2=(a 1+1)2a 1+a 2+a 3=(a 1+a 2+1)2,由a 1=1解得a 2=3,a 3=5. (2)由S n +1=(S n +1)2得S n +1-S n =1.所以数列{S n }是以S 1为首项,1为公差的等差数列,所以S n =S 1+(n -1)×1,即 S n =n 2.由公式a n =⎩⎪⎨⎪⎧ S 1, n =1S n -S n -1,n ≥2,得a n =⎩⎪⎨⎪⎧1, n =1,2n -1, n ≥2,所以a n =2n -1. (3)因为b n =1a n ·a n +1=1(2n -1)·(2n +1),所以b n >0, T n =11×3+13×5+…+1(2n -1)·(2n +1)=12(1-13+13-15+…+12n -3-12n -1+12n -1-12n +1) =12×2n 2n +1=n 2n +1=12+1n, 显然T n 是关于n 的增函数,所以T n 有最小值T 1=12+11=13, 由于T n ≥a 恒成立,所以a ≤13,于是a 的取值范围为{a |a ≤13}.。

2024版高考数学大一轮第六章数列6-4数列求和及应用

2024版高考数学大一轮第六章数列6-4数列求和及应用
(4)递推型:有 与 两类.
(5)数列与其他知识综合,主要有数列与不等式、数列与函数(含三角函数)、数列与解析几何等.
【常用结论】
3.常见的裂项公式
(1) .
(2) .
(3) .
(4) .
(5) .
(6) .

解:因为与 互素的数为1, , , , , , , , , ,共有 (个),所以 ,则 .所以 ,① ,②①-②,得 ,则 .于是 .
故选A.
考点五 数列的实际应用
例5 去年某地产生的生活垃圾为20万吨,其中14万吨垃圾以填埋方式处理,6万吨垃圾以环保方式处理.预计每年生活垃圾的总量递增 ,同时,通过环保方式处理的垃圾量每年增加1.5万吨.记从今年起每年生活垃圾的总量(单位:万吨)构成数列 ,每年以环保方式处理的垃圾量(单位:万吨)构成数列 .
故选B.

考点二 裂项相消法求和
例2 (1) 已知等差数列 的通项公式为 .若 ,数列 的前 项和为 ,则 ( )
A. B. C. D.
解: ,所以 .故选B.

(2) 已知等差数列 满足 ,前7项和 .设 , 则数列 的前 项和 _ _________.
×
(4) 如果数列 是周期为 的周期数列,那么 ( , 为大于1的正整数). ( )

(5) 已知各项不为0的等差数列 的公差为 ,则有 . ( )

2.已知 为数列 的前 项和,且满足 , , ,则 ( )
A. B. C. D.
解:因为 , , ,所以数列 的奇数项成等比数列,偶数项也成等比数列,且公比均为3,所以 .故选A.
[答案] 由(1)可知,最优策略为策略 ,即 ,所以数列 是以 为首项,1.08为公比的等比数列,所以 ,即 ,令 ,可得 ,所以虫害的危机最快在第9周解除.

数列求和(含答案)

数列求和(含答案)

数 列 求 和1.【常见的数列求和方法总述】(1)公式法求和:包括等差数列求和、等比数列求和公式,自然数求和. (2)错位相减法求和; (3)倒序相加法求和; (4)分组求和; (5)裂项求和. 2.【公式法求和】例 略【知识点击】常见求和公式: (1)等差数列求和公式:1()2n n n a a S +=; (2)等比数列的求和公式:11,1,(1), 1.1nn na q S a q q q =⎧⎪=-⎨≠⎪-⎩注意分1q =与1q ≠两种情况计算.(3)有关自然数求和公式:(1)122n n n ++++=,22462n n n +++=+ ,2135(21)n n +++-= , 222112(1)(21)6n n n n +++=++ , 3332(1)12[]2n n n ++++= .1.设数列1,(12)+,…,21(1222)n -++++ ,…的前n 项和为n S ,求n S .2.求数列1,2a a +,234a a a ++,3456a a a a +++,…(0)a ≠的前n 项和n S .3.设等差数列的前n 项和为n S .若972S =,则249a a a ++= .解:95972S a ==,58a =,2491595324a a a a a a a ++=++==.3.【错位相减法求和】适用类型:数列{}n n a b 求和,其中{}n a 、{}n b 分别为等差数列和等比数列.此法是等比数列求和方法的推广.例1 已知等差数列满足20a =,6810a a +=-.(1)求数列{}n a 的通项公式;(2)求数列1{}2nn a -的前n 项和n S . 解:(1)2n a n =-.(2)321222n n a a a S a =++++ ,312122222n n a a a a S =++++ . 两式相减得321211121231111111212()1(1)2222222222222n n n n n n nn n n n n a a a a a a a n n nS S a a ----------=++++-=-++++-=---= . ∴12n n nS -=.例2 已知数列{}n a 的首项,123a =,121n n n a a a +=+,1,2,3,n = .(1)证明:数列11n a ⎧⎫-⎨⎬⎩⎭是等比数列; (2)求数列n n a ⎧⎫⎨⎬⎩⎭的前n 项和n S . 结果:2n n n n n a =+,24222n n n n n S +++=-. 1.求和:23133353(21)3n n S n =⋅+⋅+⋅++-⋅ .2.求数列:1,3x ,25x , ,1(21)n n x --(0)x ≠的前n 项和n S . 4.【倒序相加法求和】求和思路:把数列按正序、倒序写出,再把两个和式相加,此法是等差数列求和方法的推广.例1 设4()42x x f x =+,求和:122007()()()200820082008S f f f =+++ .解:∵4()42x f x =+,∴1442(1)4242442x f x --===++⋅+,∴()(1)1f x f x +-=. ∴122007()()()200820082008S f f f =+++ ,200720061()()()200820082008S f f f =+++ . 两式相加,得1200722007[()()]200720082008S f f =+=,∴20072S =. 例2 设函数()f x 112n n S --=的定义域为R ,其图象关于点11,22⎛⎫ ⎪⎝⎭成中心对称,令k k a f n ⎛⎫= ⎪⎝⎭(n 是常数且2n ≥,n ∈*Ν),1,2,,1k n =- ,求数列{}k a 的前1n -项和. 解:∵()y f x =的图象关于点11,22⎛⎫⎪⎝⎭成中心对称,∴()(1)1f x f x +-=.令1121121n n n S a a a f f f n n n ---⎛⎫⎛⎫⎛⎫=+++=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ,又1121121n n n n n S a a a f f f n n n -----⎛⎫⎛⎫⎛⎫=+++=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 两式相加,得11122112[][][]1n n n n S f f f f f f n n n n n n n ----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++++=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ ,∴112n n S --=. 1.求和:22222sin 1sin 2sin 3sin 88sin 89++++ .2.设()f x =(2010)(2009)(0)(1)(2010)(2011)f f f f f f -+-++++++ .解:∵(1)x x f x -.∴()(1)x f x f x +-∴(2010)(2011)(2009)(2010)(0)(1)f f f f f f -+=-+==+ .∴(2010)(2009)(0)(1)(2010)(2011)f f f f f f -+-++++++ 5.【分组求和】求和思路:把数列的每一项分成几项,最终使和式转化成若干个等差、等比数列求和问题. 例1 已知数列{}n a 满足3n n a n =+,求数列{}n a 的前n 项和n S .解:1231233(31)(1)(31)(32)(33)(3)(3333)(123)22n n n n n n S n n -+=++++++++=+++++++++=+. 例2 已知251,2,.n n n n a n +⎧⎪=⎨⎪⎩为奇数,为偶数求数列{}n a 的前n 项和n S .解:∵2121[5(21)1][5(21)1]10k k a a k k +--=++--+=,13521,,,,,m a a a a -⋅⋅⋅ 是首项为6,公差为10的等差数列.∵2222222222k k k ka a ++==,∴2462,,,,,m a a a a 为首项为2,公比为2的等比数列.∴当n 为偶数时,2121351246(1)102(12)5122()()622221242n n n n n n n n S a a a a a a a a n n +--⨯⨯-=+++++++++=⨯++=++-- ;当n 为奇数时,11222135246111(1)1012(12)5122()()632221244n n n n n n n n S a a a a a a a a n n -+-++-⨯+⨯-=+++++++++=⨯++=++-- .1.求数列:11+,14a +,217a +,…,1132n n a-+-,…前n 项和n S .解:∵21111[147(32)](1)n n S n aa a -=++++-+++++ ,令1211111n S a a a-=++++ ,2147(32)S n =++++- . 当1a =时,1S n =,当1a ≠时,11n a S a a-=-,而2(31)2n n S -=. ∴当1a =时,12(31)(31)22n n n n n S S S n -+=+=+=;当1a ≠时,1211(31)2n n n n a n nS S S a a ---=+=+-. 2.23(1)(2)(3)()n a a a a n -+-+-++- 等于A .(1)(1)12n a a n n a -+--B .1(1)(1)12n a a n n a +-+-- C .1(1)(1)12n a a n n a --+-- D .(1)(1)(1)12n a a n n a a -+-≠-或2(1)2n n a -= 3.等差数列{}n a 的通项为21n a n =+,则由12nn a a a b n+++= 所确定的数列{}n b 的前n 项的和为A .(2)n n +B .1(4)2n n +C .1(5)2n n +D .1(7)2n n +4.求数列:32,94,258,6516,前n 项和n S .解:∵31122=+,91244=+,251388=+,65141616=+,… ∴2311[1()]39256511111(1)(1)122()(123)()11248162222222212n n n n n n n n n S n n -++=+++++=+++++++++=+=+-- . 5.数列{(1)}n n -⋅的前2010项的和2010S 为A .2010-B .1005-C . 2010D .1005解:20101234520092010(12)(34)(56)(20092010)1005S =-+-+-+-+=-++-++-++++-+= .6.若数列{}n a 的通项公式为221n n a n =+-,则数列{}n a 的前n 项和为 C A .221n n +- B .1221n n ++- C .1222n n ++- D .222n n +-解:23122(21)(121)(2222)[135(21)]22212n n n n n n S n n +-+-=+++++++++-=+=+-- . 6.【裂项求和】裂项法的实质:是将数列中的通项公式分裂为几部分代数差的形式,然后在求和时重新组合,使之能消去一些项,最终达到求和的目的. A . B . C . D .例 (1)求和:1111132435(2)n n ++++⨯⨯⨯+ .结果:(35)4(1)(2)n n n n +++.(2)求数列222+121-,223+131-,224+141-,…,22(1)+1(1)1n n ++-的前n 项的和n S .解:数列的通项22222(1)+1+2+221111()(1)1222n n n n a n n n n n n n +===+=+-+-+++,所以1111111111(1)(1)(1)(1)(1)132435112n S n n n n =+-++-++-+++-++--++ 1111131212122n n n n n n =++--=--+++++.【知识点击】常见裂项手段: (1)111(1)1n n n n =-++,1111()(0)()k n n k k n n k =-≠++; (2(3)若{}n a 为等差数列,公差为d ,则111111()n n n n a a d a a ++=-⋅; (4)111C C C r r rn n n ---=-(文科不要求);(5)11(1)!!(1)!n n n n =-++(文科不要求);(6)!(1)!!n n n n ⋅=+-(文科不要求).1.数列{}n a 中,12111n na n n n =++++++ ,又12n n n b a a +=,求数列{}n b 的前n 项的和. 2.设数列{}n a 、{}n b 满足1n n a b =,232n a n n =++,则{}n b 的前10项和为 A .13 B .512 C .12 D .712 3.对于每个抛物线22()(21)1y n n x n x =+-++与x 轴交于n A 、n B 两点,以||n n A B 表示该两点间的距离,则112220082008||||||A B A B A B +++=提示:1211||||1n n A B x x nn =-=-+. 4.求和:1111447(32)(31)n S n n =+++⋅⋅-+ . 5.求和:n S6.已知222111123S n =+++++ 那么S 的范围是 A .(1,32) B .(32,2) C .(2,5) D .(5,)+∞提示:1113112334(1)21S n n n >++++=-⋅⋅⋅++ ,1111121223(1)S n n n<++++=-⋅⋅⋅- .注:并非任何一个数列都是 “可以求和”的,如1111++++23n, 111123n ++++ 等,研究与这类“和”有关的问题常常是通过适当放缩转化为“可求和”的数列求和问题.7.数列1(1)n a n n =+,其前n 项的和为910,则在平面直角坐标系中,直线(1)0n x y n +++=在y 轴上的截距为A .10-B .9-C .10D .9解:数列{}n a 的前n 项和为111111111111911122334(1)2233411110n n n n n n n ++++=-+-+-++-=-==⨯⨯⨯++++ ,∴9n =,于是直线(1)0n x y n +++=即为1090x y ++=,∴在y 轴上的截距为9-.8.已知数列{}n a ,{}n b 满足:11=4a ,1n n ab +=,1(1)(1)n n n n b b a a +=-+.(1)求1234,,,b b b b ;(2)求数列{}n b 的通项公式;(3)设1223341n n n S a a a a a a a a +=++++ ,求n S .解:(1)11(1)(1)(2)2n n n n n n n n b b b a a b b b +===-+--,∵114a =,134b =,∴245b =,356b =,467b =.(2)∵11112n n b b +-=--,12111111n n n n b b b b +-==-+---,∴数列11n b ⎧⎫⎪⎪⎨⎬-⎪⎪⎩⎭是以4-为首项,1-为公差的等差数列, ∴14(1)31n n n b =---=---,12133n n b n n +=-=++. (3)113n n a b n =-=+,∴1223341111114556(3)(4)444(4)n n n nS a a a a a a a a n n n n +=++++=+++=-=⨯⨯++++ .。

数列求和Word版含答案

数列求和Word版含答案

数列求和【课前回顾】1.公式法(1)等差数列{a n }的前n 项和S n =n (a 1+a n )2=na 1+n (n -1)d2. 推导方法:倒序相加法.(2)等比数列{a n }的前n 项和S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q ,q ≠1.推导方法:乘公比,错位相减法. (3)一些常见的数列的前n 项和: ①1+2+3+…+n =n (n +1)2; ②2+4+6+…+2n =n (n +1); ③1+3+5+…+2n -1=n 2. 2.几种数列求和的常用方法(1)分组转化求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和而后相加减.(2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和.(3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n 项和即可用错位相减法求解.(4)倒序相加法:如果一个数列{a n }与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.【课前快练】1.在数列{a n }中,a n =1n (n +1),若{a n }的前n 项和为2 0172 018,则项数n 为( )A .2 014B .2 015C .2 016D .2 017解析:选D 因为a n =1n (n +1)=1n -1n +1,所以S n =1-12+12-13+…+1n -1n +1=1-1n +1=n n +1=2 0172 018,所以n =2 017.2.数列{1+2n -1}的前n 项和为( ) A .1+2nB .2+2nC .n +2n -1D .n +2+2n解析:选C 由题意得a n =1+2n -1, 所以S n =n +1-2n1-2=n +2n -1.3.数列{a n }的前n 项和为S n ,已知S n =1-2+3-4+…+(-1)n -1·n ,则S 17=________. 解析:S 17=1-2+3-4+5-6+…+15-16+17=1+(-2+3)+(-4+5)+(-6+7)+…+(-14+15)+(-16+17)=1+1+1+…+1=9.答案:9考点一 公式法、分组转化法求和方法(一) 公式法求和几类可以使用公式法求和的数列(1)等差数列、等比数列以及由等差数列、等比数列通过加、减构成的数列,它们可以使用等差数列、等比数列的求和公式求解.(2)奇数项和偶数项分别构成等差数列或等比数列的,可以分项数为奇数和偶数时,分别使用等差数列或等比数列的求和公式.(3)等差数列各项加上绝对值,等差数列乘(-1)n 等.1.(2017·北京高考)已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5.(1)求{a n }的通项公式;(2)求和:b 1+b 3+b 5+…+b 2n -1. 解:(1)设等差数列{a n }的公差为d .因为⎩⎪⎨⎪⎧a 1=1,a 2+a 4=10,所以2a 1+4d =10, 解得d =2,所以a n =2n -1. (2)设等比数列{b n }的公比为q .因为b 1=1,b 2b 4=a 5,所以b 1q ·b 1q 3=9. 解得q 2=3.所以b 2n -1=b 1q 2n -2=3n -1. 从而b 1+b 3+b 5+…+b 2n -1=1+3+32+…+3n -1=3n -12.方法(二) 分组转化法求和 1.分组转化求和的通法数列求和应从通项入手,若无通项,则先求通项,然后通过对通项变形,转化为等差数列或等比数列或可求数列的前n 项和的数列求和.2.分组转化法求和的常见类型2.在数列{a n }中,a 1=1,a 2=2,a n +2-a n =1+(-1)n ,那么S 100的值为( ) A .2 500 B .2 600 C .2 700D .2 800解析:选B 当n 为奇数时,a n +2-a n =0,所以a n =1, 当n 为偶数时,a n +2-a n =2,所以a n =n ,故a n =⎩⎪⎨⎪⎧1,n 为奇数,n ,n 为偶数,于是S 100=50+(2+100)×502=2 600.3.已知数列{a n }的前n 项和S n =n 2+n2,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =2a n +(-1)n a n ,求数列{b n }的前2n 项和. 解:(1)当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=n 2+n 2-(n -1)2+(n -1)2=n .a 1=1也满足a n =n ,故数列{a n }的通项公式为a n =n . (2)由(1)知a n =n ,故b n =2n +(-1)n n . 记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+…+22n )+(-1+2-3+4-…+2n ). 记A =21+22+…+22n ,B =-1+2-3+4-…+2n , 则A =2(1-22n )1-2=22n +1-2,B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n . 故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2.考点二 错位相减法求和1.掌握解题“3步骤”2.注意解题“3关键”(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n -qS n ”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比q =1和q ≠1两种情况求解.3.谨防解题“2失误”(1)两式相减时最后一项因为没有对应项而忘记变号.(2)对相减后的和式的结构认识模糊,错把中间的n -1项和当作n 项和.【典型例题】(2017·山东高考)已知{a n }是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3. (1)求数列{a n }的通项公式;(2){b n }为各项非零的等差数列,其前n 项和为S n .已知S 2n +1=b n b n +1,求数列⎩⎨⎧⎭⎬⎫b n a n 的前n项和T n .[思维路径](1)可利用已知条件a 1+a 2=6,a 1a 2=a 3列出关于首项a 1和公比q 的两个方程,解方程可得a 1,q ,从而求得通项公式.(2)由S 2n +1=b n b n +1,利用求和公式及性质,推出数列{b n }的通项公式,结合(1)进而求出⎩⎨⎧⎭⎬⎫b n a n 的通项公式,观察其特点用错位相减法求和即可. 解:(1)设{a n }的公比为q ,由题意知a 1(1+q )=6,a 21q =a 1q 2.又a n >0,解得a 1=2,q =2, 所以a n =2n . (2)由题意知,S 2n +1=(2n +1)(b 1+b 2n +1)2=(2n +1)b n +1,又S 2n +1=b n b n +1,b n +1≠0, 所以b n =2n +1.令c n =b na n,则c n =2n +12n ,因此T n =c 1+c 2+…+c n =32+522+723+…+2n -12n -1+2n +12n ,又12T n =322+523+724+…+2n -12n +2n +12n +1, 两式相减得12T n =32+⎝⎛⎭⎫12+122+…+12n -1-2n +12n +1 =32+1-⎝⎛⎭⎫12n -1-2n +12n +1 =52-2n +52n +1, 所以T n =5-2n +52n. 【针对训练】已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1. (1)求数列{b n }的通项公式;(2)令c n =(a n +1)n +1(b n +2)n,求数列{c n }的前n 项和T n .解:(1)由题意知,当n ≥2时,a n =S n -S n -1=6n +5, 当n =1时,a 1=S 1=11,满足上式, 所以a n =6n +5. 设数列{b n }的公差为d .由⎩⎪⎨⎪⎧ a 1=b 1+b 2,a 2=b 2+b 3,即⎩⎪⎨⎪⎧11=2b 1+d ,17=2b 1+3d , 可解得⎩⎪⎨⎪⎧b 1=4,d =3.所以b n =3n +1.(2)由(1)知c n =(6n +6)n +1(3n +3)n =3(n +1)·2n +1, 又T n =c 1+c 2+…+c n ,得T n =3×[2×22+3×23+…+(n +1)×2n +1], 2T n =3×[2×23+3×24+…+(n +1)×2n +2],两式作差,得-T n =3×[2×22+23+24+…+2n +1-(n +1)×2n +2] =3×⎣⎢⎡⎦⎥⎤4+4(1-2n )1-2-(n +1)×2n +2 =-3n ·2n +2, 所以T n =3n ·2n +2.考点三 裂项相消法求和1.裂项相消法求和的实质和解题关键裂项相消法求和的实质是将数列中的通项分解,然后重新组合,使之能消去一些项,最终达到求和的目的,其解题的关键就是准确裂项和消项.(1)裂项原则:一般是前边裂几项,后边就裂几项,直到发现被消去项的规律为止. (2)消项规律:消项后前边剩几项,后边就剩几项,前边剩第几项,后边就剩倒数第几项.2.常见数列的裂项方法角度(一) 形如a n =1n (n +k )型1.(2017·全国卷Ⅱ)等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10,则∑k =1n1S k=________.解析:设等差数列{a n }的首项为a 1,公差为d ,依题意有⎩⎪⎨⎪⎧ a 1+2d =3,4a 1+6d =10,解得⎩⎪⎨⎪⎧a 1=1,d =1,所以S n =n (n +1)2,1S n =2n (n +1)=2⎝⎛⎭⎫1n -1n +1, 因此∑k =1n1S k =2⎝⎛⎭⎫1-12+12-13+…+1n -1n +1=2n n +1.答案:2nn +1角度(二) 形如a n =1n +k +n型2.(2018·江南十校联考)已知函数f (x )=x α的图象过点(4,2),令a n =1f (n +1)+f (n ),n ∈N *.记数列{a n }的前n 项和为S n ,则S 2 018=( )A. 2 017-1B. 2 018-1C. 2 019-1D. 2 019+1解析:选C 由f (4)=2可得4α=2,解得α=12,则f (x )=x 12.∴a n =1f (n +1)+f (n )=1n +1+n=n +1-n ,S 2 018=a 1+a 2+a 3+…+a 2 018=(2-1)+(3-2)+(4-3)+…+( 2 018-2 017)+( 2 019- 2 018)= 2 019-1. 角度(三) 形如a n =n +1n 2(n +2)2型3.正项数列{a n }的前n 项和S n 满足:S 2n -(n 2+n -1)S n -(n 2+n )=0.(1)求数列{a n }的通项公式a n ; (2)令b n =n +1(n +2)2a 2n,数列{b n }的前n 项和为T n .证明:对于任意的n ∈N *,都有T n<564. 解:(1)由S 2n -(n 2+n -1)S n -(n 2+n )=0,得[S n -(n 2+n )](S n +1)=0.由于{a n }是正项数列,所以S n >0,S n =n 2+n . 于是a 1=S 1=2,当n ≥2时,a n =S n -S n -1=n 2+n -(n -1)2-(n -1)=2n . 综上,数列{a n }的通项公式为a n =2n . (2)证明:由于a n =2n , 故b n =n +1(n +2)2a 2n=n +14n 2(n +2)2=116⎣⎡⎦⎤1n 2-1(n +2)2. T n =116⎣⎡1-132+122-142+132-152+…+1(n -1)2-1(n +1)2+⎦⎤1n 2-1(n +2)2=116⎣⎡⎦⎤1+122-1(n +1)2-1(n +2)2<116⎝⎛⎭⎫1+122=564.【针对训练】(2018·天一大联考)设等差数列{a n }的前n 项和为S n ,首项a 1=1,且S 2 0182 018-S 2 0172 017=1. (1)求S n ; (2)求数列⎩⎨⎧⎭⎬⎫1S n S n +1的前n 项和T n .解:(1)设数列{a n }的公差为d , 因为S n n =na 1+n (n -1)2dn =a 1+(n -1)d2,所以⎩⎨⎧⎭⎬⎫S n n 为一个等差数列,所以S 2 0182 018-S 2 0172 017=d2=1,所以d =2, 故S nn =n ,所以S n =n 2. (2)因为1S n S n +1=1n (n +1)=1n -1n +1,所以T n =⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1n +1=1-1n +1=n n +1. 【课后演练】1.已知等差数列{a n }的前n 项和为S n ,若S 3=9,S 5=25,则S 7=( ) A .41 B .48 C .49D .56解析:选C 设S n =An 2+Bn ,由题知⎩⎪⎨⎪⎧S 3=9A +3B =9,S 5=25A +5B =25,解得A =1,B =0,∴S 7=49.2.已知数列{a n }的通项公式是a n =2n -3⎝⎛⎭⎫15n,则其前20项和为( ) A .380-35⎝⎛⎭⎫1-1519 B .400-25⎝⎛⎭⎫1-1520 C .420-34⎝⎛⎭⎫1-1520 D .440-45⎝⎛⎭⎫1-1520 解析:选C 令数列{a n }的前n 项和为S n ,则S 20=a 1+a 2+…+a 20=2(1+2+…+20)-3⎝⎛⎭⎫15+152+…+1520=2×20×(20+1)2-3×15⎝⎛⎭⎫1-15201-15=420-34⎝⎛⎭⎫1-1520.3.已知数列{a n }满足a 1=1,a n +1=⎩⎪⎨⎪⎧2a n ,n 为正奇数,a n +1,n 为正偶数,则其前6项之和是( )A .16B .20C .33D .120解析:选C 由已知得a 2=2a 1=2,a 3=a 2+1=3,a 4=2a 3=6,a 5=a 4+1=7,a 6=2a 5=14,所以S 6=1+2+3+6+7+14=33.4. 5个数依次组成等比数列,且公比为-2,则其中奇数项和与偶数项和的比值为( ) A .-2120 B .-2 C .-2110D .-215解析:选C 由题意可设这5个数分别为a ,-2a,4a ,-8a,16a ,故奇数项和与偶数项和的比值为a +4a +16a -2a -8a=-2110,故选C.5.已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列⎩⎨⎧⎭⎬⎫1a n 的前5项和为( )A.158或5B.3116或5C.3116D.158解析:选C 设{a n }的公比为q ,显然q ≠1,由题意得9(1-q 3)1-q =1-q 61-q,所以1+q 3=9,得q =2,所以⎩⎨⎧⎭⎬⎫1a n 是首项为1,公比为12的等比数列,前5项和为1-⎝⎛⎭⎫1251-12=3116.6.化简S n =n +(n -1)×2+(n -2)×22+…+2×2n -2+2n -1的结果是( )A .2n +1+n -2 B .2n +1-n +2 C .2n -n -2D .2n +1-n -2解析:选D 因为S n =n +(n -1)×2+(n -2)×22+…+2×2n -2+2n -1,① 2S n =n ×2+(n -1)×22+(n -2)×23+…+2×2n -1+2n ,②所以①-②得,-S n =n -(2+22+23+…+2n )=n +2-2n +1,所以S n =2n +1-n -2. 7.已知数列:112,214,318,…,⎝⎛⎭⎫n +12n ,…,则其前n 项和关于n 的表达式为________. 解析:设所求的前n 项和为S n ,则S n =(1+2+3+…+n )+⎝⎛⎭⎫12+14+…+12n =n (n +1)2+12⎝⎛⎭⎫1-12n 1-12=n (n +1)2-12n +1. 答案:n (n +1)2-12n +1 8.在数列{a n }中,若a 1=2,且对任意正整数m ,k ,总有a m +k =a m +a k ,则{a n }的前n 项和S n =________.解析:依题意得a n +1=a n +a 1,即有a n +1-a n =a 1=2,所以数列{a n }是以2为首项、2为公差的等差数列,a n =2+2(n -1)=2n ,S n =n (2+2n )2=n (n +1). 答案:n (n +1)9.已知正项数列{a n }满足a 2n +1-6a 2n =a n +1a n .若a 1=2,则数列{a n }的前n 项和S n =________.解析:∵a 2n +1-6a 2n =a n +1a n ,∴(a n +1-3a n )(a n +1+2a n )=0, ∵a n >0,∴a n +1=3a n ,又a 1=2,∴数列{a n }是首项为2,公比为3的等比数列, ∴S n =2(1-3n )1-3=3n -1.答案:3n -110.已知数列{a n }满足a 1=1,a n +1·a n =2n (n ∈N *),则S 2 018=________. 解析:∵数列{a n }满足a 1=1,a n +1·a n =2n ,① ∴n =1时,a 2=2,n ≥2时,a n ·a n -1=2n -1,② 由①÷②得a n +1a n -1=2,∴数列{a n }的奇数项、偶数项分别成等比数列, ∴S 2 018=1-21 0091-2+2(1-21 009)1-2=3·21 009-3.答案:3·21 009-311.已知数列{a n }中,a n =-4n +5,等比数列{b n }的公比q 满足q =a n -a n -1(n ≥2)且b 1=a 2,则|b 1|+|b 2|+|b 3|+…+|b n |=( )A .1-4nB .4n -1 C.1-4n3D.4n -13解析:选B 由已知得b 1=a 2=-3,q =-4, ∴b n =(-3)×(-4)n -1,。

第4节:数列求和

第4节:数列求和
Step2:故 ,
Step3:由 - 得:
Step4:化简: .
例4.(2020年新课标全国卷 17)设 是公比不为1的等比数列, 为 , 的等差中项.
(1)求 的公比;
(2)若 ,求数列 的前 项和.
解析:(1)设公比为 ,得 即 , 得 (舍去), .
(2)设 为 的前n项和,由(1)及题设可得, ,所以
三类应用: 裂相求和; 证明不等式; 求范围.
例3.(2015年全国2卷) 为数列 的前 项和,已知 , .
(1)求 的通项公式;
(2)设 ,求数列 的前 项和.
解析:(1) 与已知作差得: , ,当 时, , .
(2) , .
类型3:错位相减
型如 的数列求和,其基本解题步骤如下:
Step1:由题可得:
例2.(2020新高考2卷)已知公比大于 的等比数列 满足 .
(1)求 的通项公式;
(2)求 .
解析:(1)设等比数列 的公比为q(q>1),则 ,
整理可得: , ,数列的通项公式为: .
(2)由于: ,故:
.
类型2.裂项求和
1.分母是等差数列相邻两项乘积,则: ,则:
.
2.有理化后求和: .
3.指数式裂相求和: .
数列求和的四种常见类型
类型1.公式法求和:用等差(等比)数列求和公式.
例1.(2018年全国2卷)记 为等差数列 的前n项和,已知 , .
(1)求 的通项公式;
(2)求 ,并求 的最小值.
解析:(1)设 的公差为 ,由题意得 ,由 ,得 ,所以 的通项公式为 .
(2)代入等差数列求和公式,得 ,所以当 时, 取到最小值,且最小值为 .

高考数学专题复习-6.4数列求和、数列的综合应用-高考真题练习(附答案)

高考数学专题复习-6.4数列求和、数列的综合应用-高考真题练习(附答案)

6.4数列求和、数列的综合应用考点数列求和及数列的综合应用1.(2014课标Ⅱ文,5,5分)等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项和S n =()A.n(n+1)B.n(n-1)C.or1)2D.ot1)2答案A ∵a 2,a 4,a 8成等比数列,∴42=a 2·a 8,即(a 1+3d)2=(a 1+d)(a 1+7d),将d=2代入上式,解得a 1=2,∴S n =2n+ot1)·22=n(n+1),故选A.2.(2012课标文,12,5分)数列{a n }满足a n+1+(-1)na n =2n-1,则{a n }的前60项和为()A.3690B.3660C.1845D.1830答案D 当n=2k 时,a 2k+1+a 2k =4k-1,当n=2k-1时,a 2k -a 2k-1=4k-3,∴a 2k+1+a 2k-1=2,∴a 2k+1+a 2k+3=2,∴a 2k-1=a 2k+3,∴a 1=a 5=…=a 61.∴a 1+a 2+a 3+…+a 60=(a 2+a 3)+(a 4+a 5)+…+(a 60+a 61)=3+7+11+…+(2×60-1)=30×(3+119)2=30×61=1830.3.(2019浙江,10,4分)设a,b∈R,数列{a n }满足a 1=a,a n+1=2+b,n∈N *,则()A.当b=12时,a 10>10 B.当b=14时,a 10>10C.当b=-2时,a 10>10D.当b=-4时,a 10>10答案A 本题以已知递推关系式判断指定项范围为载体,考查学生挖掘事物本质以及推理运算能力;考查的核心素养为逻辑推理,数学运算;体现了函数与方程的思想,创新思维的应用.令a n+1=a n ,即2+b=a n ,即2-a n +b=0,若有解,则Δ=1-4b≥0,即b≤14,∴当b≤14时,a n *,即存在b≤14,且使数列{a n }为常数列,B 、C 、D 选项中,b≤14成立,故存在使a n*),排除B 、C 、D.对于A,∵b=12,∴a 2=12+12≥12,a 3=22+12≥+12=34,a4+12=1716,∴a5,a 6,…,a 10,=1=1+C 641×116+C 642+…=1+4+638+…>10.故a 10>10.4.(多选)(2020新高考Ⅰ,12,5分)信息熵是信息论中的一个重要概念.设随机变量X 所有可能的取值为1,2,…,n ,且P (X =i )=p i >0(i =1,2,…,n ),∑=ni 1p i =1,定义X 的信息熵H (X )=-∑=ni 1p i log 2p i .()A.若n =1,则H (X )=0B.若n =2,则H (X )随着p 1的增大而增大C.若p i =1(i =1,2,…,n ),则H (X )随着n 的增大而增大D.若n =2m ,随机变量Y 所有可能的取值为1,2,…,m ,且P (Y =j )=p j +p 2m +1-j (j =1,2,…,m ),则H (X )≤H (Y )答案AC 对于A ,若n =1,则p 1=1,∴H (X )=-1×log 21=0,A 正确.对于B ,若n =2,则p 1+p 2=1,∴H (X )=-∑=21i p i log 2p i =-(p 1log 2p 1+p 2log 2p 2),∵p 1+p 2=1,∴p 2=1-p 1,p 1∈(0,1),∴H (X )=-[p 1log 2p 1+(1-p 1)log 2(1-p 1)],令f (p 1)=-[p 1log 2p 1+(1-p 1)log 2(1-p 1)],∴f '(p 1)=-p 1·11·ln2+log 2p 1+(1-p 1)·−1(1−1)·ln2-log 2(1-p 1)=-[log 2p 1-log 2(1-p 1)]=log 21−11,令f '(p 1)>0,得0<p 1<12;令f '(p 1)<0,得12<p 1<1.∴y =f (p 1)在0,1上为减函数,∴H (X )随着p 1的增大先增大后减小,B 不正确.对于C ,由p i =1(i =1,2,…,n )可知,H (X )=-∑=ni 1pEog2B =−∑=ni 11log21=log 2n ,∴H (X )随着n 的增大而增大,C 正确对于D ,解法一(特例法):不妨设m =1,n =2,则H (X )=-∑=21i p i log 2p i =-(p 1log 2p 1+p 2log 2p 2),由于p 1+p 2=1,不妨设p 1=p2=12,则H (X )212+12log 22=1,H (Y )=-1×log 21=0,故H (X )>H (Y ),D 不正确.解法二:由P (Y =j )=p j +p 2m +1-j (j =1,2,…,m ),得P (Y =1)=p 1+p 2m ,P (Y =2)=p 2+p 2m -1,……,P (Y =m )=p m +p m +1,∴H (Y )=-∑=mj 1[(p 1+p 2m )log 2(p 1+p 2m )+(p 2+p 2m -1)log 2(p 2+p 2m -1)+…+(p m +p m +1)log 2(p m +p m +1)],由n =2m ,得H (X )=-∑=mi 21p i log 2p i =-(p 1log 2p 1+p 2log 2p 2+…+p 2m log 2p 2m ),不妨设0<a <1,0<b <1,且0<a +b ≤1,则log 2a <log 2(a +b ),a log 2a <a log 2(a +b ),同理b log 2b <b log 2(a +b ),∴a log 2a +b log 2b <(a +b )log 2(a +b ),∴p 1log 2p 1+p 2m log 2p 2m <(p 1+p 2m )log 2(p 1+p 2m ),p 2log 2p 2+p 2m -1log 2p 2m -1<(p 2+p 2m -1)log 2(p 2+p 2m -1),……p m log 2p m +p m +1log 2p m +1<(p m +p m +1)log 2(p m +p m +1),∴∑=mi 21pEog2B <∑=mj 1(p j +p 2m +1-j )log 2(p j +p 2m +1-j ),∴H (X )>H (Y ),D 不正确.5.(2021新高考Ⅰ,16,5分)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折.规格为20dm×12dm 的长方形纸,对折1次共可以得到10dm×12dm ,20dm×6dm 两种规格的图形,它们的面积之和S 1=240dm 2,对折2次共可以得到5dm×12dm ,10dm×6dm ,20dm×3dm 三种规格的图形,它们的面积之和S 2=180dm 2,以此类推.则对折4次共可以得到不同规格图形的种数为;如果对折n 次,那么∑=nk 1S k =dm 2.答案5;240×3解析解法一:列举法+归纳法.由上图可知,对折n 次后,共可以得到(n +1)种不同规格的图形,故对折4次可以得到5种不同规格的图形.归纳上述结论可知,对折n次后得到不同规格的图形的面积之和为120(+K1dm 2(n ∈N *),故S k =120(+dm 2(k ∈N *),记T n =∑=nk 1(k +1,∴T n =220+321+422+…+2K2+r12K1,①12B =221+322+423+…+2K1+r12,②①-②得,122+12+122+…+12K1−r1221−12r12=3−r32,∴T n =6-r32K1,∴∑=nk 1S =120×6=240×32.解法二:对折3次可以得到208dm×12dm ,204dm ×122dm ,202dm ×124dm ,20dm×128dm ,共四种不同规格的图形,对折4次可以得到2016dm×12dm ,208dm ×122dm ,204dm ×124dm ,202dm ×128dm ,20dm×1216dm ,共五种不同规格的图形,由此可以归纳出对折n 次可得到(n +1)种不同规格的图形,每种规格的图形的面积均为20×122dm 2,∴∑=nk 1S k =20×12×12×2+14×3+18×4+…+12×(n +1)dm 2,记T n =22+34+…+r12,则12B =24+38+…+r12r1,∴T n -12B =12B =1+18+…−r12r1=32−12−r12r1=32−r32r1,∴T n =3-r32,∴∑=nk 1S =240×32.6.(2018江苏,14,5分)已知集合A={x|x=2n-1,n∈N *},B={x|x=2n ,n∈N *}.将A∪B 的所有元素从小到大依次排列构成一个数列{a n }.记S n 为数列{a n }的前n 项和,则使得S n >12a n+1成立的n 的最小值为.答案27解析本题考查数列的插项问题.设A n =2n-1,B n =2n,n∈N *,当A k <B l <A k+1(k,l∈N *)时,2k-1<2l<2k+1,有k-12<2l-1<k+12,则k=2l-1,设T l =A 1+A 2+…+2t1+B 1+B 2+…+B l ,则共有k+l=2l-1+l 个数,即T l =2t1+l ,而A 1+A 2+…+2t1=2×1−1+2-12×2l-1=22l-2,B 1+B 2+…+B l =2(1−2)1−2=2l+1-2.则T l =22l-2+2l+1-2,则l,T l ,n,a n+1的对应关系为l T l n a n+112a n+1132336210456033079108494121720453182133396611503865780观察到l=5时,T l =S 21<12a 22,l=6,T l =S 38>12a 39,则n∈[22,38),n∈N *时,存在n,使S n ≥12a n+1,此时T 5=A 1+A 2+…+A 16+B 1+B 2+B 3+B 4+B 5,则当n∈[22,38),n∈N *时,S n =T 5+(t22+1)(22−5+t5)2=n 2-10n+87.a n+1=A n+1-5=A n-4,12a n+1=12[2(n-4)-1]=24n-108,S n -12a n+1=n 2-34n+195=(n-17)2-94,则n≥27时,S n -12a n+1>0,即n min =27.7.(2014安徽理,12,5分)数列{a n }是等差数列,若a 1+1,a 3+3,a 5+5构成公比为q 的等比数列,则q=.答案1解析设{a n }的公差为d,则a 3+3=a 1+1+2d+2,a 5+5=a 1+1+4d+4,由题意可得(a 3+3)2=(a 1+1)(a 5+5).∴[(a 1+1)+2(d+1)]2=(a 1+1)[(a 1+1)+4(d+1)],∴(a 1+1)2+4(d+1)(a 1+1)+[2(d+1)]2=(a 1+1)2+4(a 1+1)(d+1),∴d=-1,∴a 3+3=a 1+1,∴公比q=3+31+1=1.8.(2020江苏,11,5分)设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和S n =n 2-n+2n-1(n∈N *),则d+q 的值是.答案4解析设数列{a n }的首项为a 1,数列{b n }的首项为b 1,易知q≠1,则{a n +b n }的前n 项和S n =na 1+ot1)2d+1(1-)1−=2n 2+1n-11−q n +11−=n 2-n+2n -1,∴2=1,q=2,则d=2,q=2,∴d+q=4.9.(2020课标Ⅰ文,16,5分)数列{a n }满足a n+2+(-1)na n =3n-1,前16项和为540,则a 1=.答案7解析令n=2k(k∈N *),则有a 2k+2+a 2k =6k-1(k∈N *),∴a 2+a 4=5,a 6+a 8=17,a 10+a 12=29,a 14+a 16=41,∴前16项的所有偶数项和S 偶=5+17+29+41=92,∴前16项的所有奇数项和S 奇=540-92=448,令n=2k-1(k∈N *),则有a 2k+1-a 2k-1=6k-4(k∈N *).∴a 2k+1-a 1=(a 3-a 1)+(a 5-a 3)+(a 7-a 5)+…+(a 2k+1-a 2k-1)=2+8+14+…+6k-4=o2+6t4)2=k(3k-1)(k∈N *),∴a 2k+1=k(3k-1)+a 1(k∈N *),∴a 3=2+a 1,a 5=10+a 1,a 7=24+a 1,a 9=44+a 1,a 11=70+a 1,a 13=102+a 1,a 15=140+a 1,∴前16项的所有奇数项和S 奇=a 1+a 3+…+a 15=8a 1+2+10+24+44+70+102+140=8a 1+392=448.∴a 1=7.10.(2015江苏理,11,5分)设数列{a n }满足a 1=1,且a n+1-a n =n+1(n∈N *),10项的和为.答案2011解析由已知得,a 2-a 1=1+1,a 3-a 2=2+1,a 4-a 3=3+1,……,a n -a n-1=n-1+1(n≥2),则有a n -a 1=1+2+3+…+n-1+(n-1)(n≥2),因为a 1=1,所以a n =1+2+3+…+n(n≥2),即a n =2+n2(n≥2),又当n=1时,a 1=1也适合上式,故a n =2+n 2(n∈N *),所以1=22+n=2从而11+12+13+…+110=2×11=2011.11.(2020新高考Ⅰ,14,5分)将数列{2n -1}与{3n -2}的公共项从小到大排列得到数列{a n },则{a n }的前n 项和为答案3n 2-2n审题指导:数列{2n -1}表示首项为1,公差为2的等差数列,各项均为正奇数,而数列{3n -2}表示首项为1,公差为3的等差数列,数列的项为交替出现的正奇数与正偶数,它们的公共项为数列{3n -2}中的奇数项,所以{a n }是首项为1,公差为6的等差数列.解题思路:∵数列{2n -1}的项为1,3,5,7,9,11,13,…,数列{3n -2}的项为1,4,7,10,13,…,∴数列{a n}是首项为1,公差为6的等差数列,∴a n=1+(n-1)×6=6n-5,∴数列{a n}的前n项和S n=(1+6K5)×2=3n2-2n.12.(2022新高考Ⅰ,17,10分)记S n为数列{a n}的前n项和,已知a1=113的等差数列.(1)求{a n}的通项公式;(2)证明:11+12+…+1<2.解析(1)解法一:依题意得,S1=a1=1.∴=11+(n-1)×13=r23.∴3S n=(n+2)a n,则3S n+1=(n+1+2)a n+1=(n+3)a n+1,∴3S n+1-3S n=(n+3)a n+1-(n+2)a n,即3a n+1=(n+3)a n+1-(n+2)a n,∴na n+1=(n+2)a n,即r1=r2,由累乘法得r11=(r1)(r2)1×2,又a1=1,∴a n+1=(r1)(r2)2,∴a n=or1)2(n≥2),又a1=1满足上式,∴a n=or1)2(n∈N*).解法二:同解法一求得na n+1=(n+2)a n,∴r1r2,即r1(r1)(r2)=or1),or1)是常数列,首项为12,∴or1)=12,∴a n=or1)2.(2)证明:由(1)知1=2or1)2∴11+12+…+1=2++…+=21=2−2r1<2. 13.(2021新高考Ⅰ,17,10分)已知数列{a n}满足a1=1,a n+1=+1,为奇数,+2,为偶数.(1)记b n=a2n,写出b1,b2,并求数列{b n}的通项公式;(2)求{a n}的前20项和.解题指导:(1)由已知条件求出{a n}的递推式,从而得出{b n}的递推式,再由已知条件求出b1,从而求出数列{b n}的通项公式.(2)根据题目条件把{a n}的前20项分成两组,并用其中偶数项的和表示前20项的和,再用数列{b n}的前10项的和表示,根据等差数列前n项和公式求出结果.解析(1)由题意得a2n+1=a2n+2,a2n+2=a2n+1+1,所以a2n+2=a2n+3,即b n+1=b n+3,且b1=a2=a1+1=2,所以数列{b n}是以2为首项,3为公差的等差数列,所以b1=2,b2=5,b n=2+(n-1)×3=3n-1.(2)当n为奇数时,a n=a n+1-1.设数列{a n}的前n项和为S n,则S20=a1+a2+…+a20=(a1+a3+…+a19)+(a2+a4+…+a20)=[(a2-1)+(a4-1)+…+(a20-1)]+(a2+a4+…+a20)=2(a2+a4+…+a20)-10,由(1)可知a2+a4+…+a20=b1+b2+…+b10=10×2+10×92×3=155,故S20=2×155-10=300,即{a n}的前20项和为300.解题关键:一是对已知关系式进行转化,进而利用等差数列定义求得数列{b n}的通项公式;二是利用分组求和的方式对S20进行重组变形,结合a n与b n的关系求得结果.14.(2020课标Ⅲ理,17,12分)设数列{a n}满足a1=3,a n+1=3a n-4n.(1)计算a2,a3,猜想{a n}的通项公式并加以证明;(2)求数列{2n a n}的前n项和S n.解析(1)a2=5,a3=7.猜想a n=2n+1.由已知可得a n+1-(2n+3)=3[a n-(2n+1)],a n-(2n+1)=3[a n-1-(2n-1)],……a2-5=3(a1-3).因为a1=3,所以a n=2n+1.(2)由(1)得2n a n=(2n+1)2n,所以S n=3×2+5×22+7×23+…+(2n+1)×2n.①从而2S n=3×22+5×23+7×24+…+(2n+1)×2n+1.②①-②得-S n =3×2+2×22+2×23+…+2×2n -(2n +1)×2n +1.所以S n =(2n -1)2n +1+2.方法总结数列求和的5种方法解决数列的求和问题,首先要得到数列的通项公式,有了通项公式,再根据其特点选择相应的求和方法.数列求和的方法有以下几类:(1)公式法:等差或等比数列的求和用公式法;(2)裂项相消法:形如a n =1orp ,可裂项为a n =13)错位相减法:形如c n =a n ·b n ,其中{a n }是等差数列,{b n }是等比数列;(4)分组求和法:形如c n =a n +b n ,其中{a n }是等差数列,{b n }是等比数列;(5)并项求和法.15.(2017课标Ⅲ文,17,12分)设数列{a n }满足a 1+3a 2+…+(2n-1)a n =2n.(1)求{a n }的通项公式;(2)n 项和.解析(1)因为a 1+3a 2+…+(2n-1)a n =2n,故当n≥2时,a 1+3a 2+…+(2n-3)a n-1=2(n-1).两式相减得(2n-1)a n =2.所以a n =22t1(n≥2).又由题设可得a 1=2,从而{a n }的通项公式为a n =22t1(n∈N *).(2)n 项和为S n .由(1)知2r1=2(2r1)(2t1)=12t1-12r1.则S n =11-13+13-15+…+12t1-12r1=22r1.思路分析(1)条件a 1+3a 2+…+(2n-1)a n =2n 的实质就是数列{(2n-1)a n }的前n 项和,故可利用a n 与S n 的关系求解.(2)利用(1)求得的{a n }的通项公式,然后用裂项相消法求和.易错警示(1)要注意n=1时,是否符合所求得的通项公式;(2)裂项相消后,注意留下了哪些项,避免遗漏.16.(2016课标Ⅱ文,17,12分)等差数列{a n }中,a 3+a 4=4,a 5+a 7=6.(1)求{a n }的通项公式;(2)设b n =[a n ],求数列{b n }的前10项和,其中[x]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2.解析(1)设数列{a n }的公差为d,由题意有2a 1+5d=4,a 1+5d=3.解得a 1=1,d=25.(3分)所以{a n }的通项公式为a n =2r35.(5分)(2)由(1)知,b n 分)当n=1,2,3时,1≤2r35<2,b n =1;当n=4,5时,2≤2r35<3,b n =2;当n=6,7,8时,3≤2r35<4,b n =3;当n=9,10时,4≤2r35<5,b n =4.(10分)所以数列{b n }的前10项和为1×3+2×2+3×3+4×2=24.(12分)评析本题考查了等差数列,同时对考生的创新能力进行了考查,充分理解[x]的意义是解题的关键.17.(2016浙江文,17,15分)设数列{a n }的前n 项和为S n .已知S 2=4,a n+1=2S n +1,n∈N *.(1)求通项公式a n ;(2)求数列{|a n -n-2|}的前n 项和.解析(1)由题意得1+2=4,2=21+1,则1=1,2=3.又当n≥2时,由a n+1-a n =(2S n +1)-(2S n-1+1)=2a n ,得a n+1=3a n .所以,数列{a n }的通项公式为a n =3n-1,n∈N *.(2)设b n =|3n-1-n-2|,n∈N *,则b 1=2,b 2=1.当n≥3时,由于3n-1>n+2,故b n =3n-1-n-2,n≥3.设数列{b n }的前n 项和为T n ,则T 1=2,T 2=3.当n≥3时,T n =3+9(1−3t2)1−3-(r7)(t2)2=3-2-5n+112,所以T n =1,≥2,n ∈N *.易错警示(1)当n≥2时,得出a n+1=3a n ,要注意a 1与a 2是否满足此关系式.(2)在去掉绝对值时,要考虑n=1,2时的情形.在求和过程中,要注意项数,最后T n 要写成分段函数的形式.18.(2016北京文,15,13分)已知{a n }是等差数列,{b n }是等比数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4.(1)求{a n }的通项公式;(2)设c n =a n +b n ,求数列{c n }的前n 项和.解析(1)等比数列{b n }的公比q=32=93=3,(1分)所以b 1=2=1,b 4=b 3q=27.(3分)设等差数列{a n }的公差为d.因为a 1=b 1=1,a 14=b 4=27,所以1+13d=27,即d=2.(5分)所以a n =2n-1(n=1,2,3,…).(6分)(2)由(1)知,a n =2n-1,b n =3n-1.因此c n =a n +b n =2n-1+3n-1.(8分)从而数列{c n }的前n 项和S n =1+3+…+(2n-1)+1+3+…+3n-1=o1+2t1)2+1−31−3=n 2+3-12.(13分)规范解答要规范解答过程,分步书写,这样可按步得分.19.(2016山东,理18,文19,12分)已知数列{a n }的前n 项和S n =3n 2+8n,{b n }是等差数列,且a n =b n +b n+1.(1)求数列{b n }的通项公式;(2)令c n =(+1)r1(+2),求数列{c n }的前n 项和T n .解析(1)由题意知,当n≥2时,a n =S n -S n-1=6n+5.当n=1时,a 1=S 1=11,所以a n =6n+5.设数列{b n }的公差为d.由1=1+2,2=2+3,即11=21+d,17=21+3d,可解得b 1=4,d=3.所以b n =3n+1.(2)由(1)知c n =(6r6)r1(3r3)=3(n+1)·2n+1.又T n =c 1+c 2+…+c n ,得T n =3×[2×22+3×23+…+(n+1)×2n+1],2T n =3×[2×23+3×24+…+(n+1)×2n+2],两式作差,得-T n =3×[2×22+23+24+…+2n+1-(n+1)×2n+2]=3×4+4(1−2)1−2-(n +1)×2r2=-3n·2n+2.所以T n =3n·2n+2.方法总结若某数列的通项是等差数列与等比数列的通项的积或商,则该数列的前n项和可以采用错位相减法求解,注意相减后的项数容易出错.评析本题主要考查了等差数列及前n项和,属中档题.20.(2016天津,18,13分)已知{an }是等比数列,前n项和为Sn(n∈N*),且11-12=23,S6=63.(1)求{an}的通项公式;(2)若对任意的n∈N*,bn是log2a n和log2a n+1的等差中项,求数列{(-1)n2}的前2n项和.解析(1)设数列{a n}的公比为q.由已知,有11-11q=212,解得q=2,或q=-1.又由S6=a1·1−61−=63,知q≠-1,所以a1·1−261−2=63,得a1=1.所以a n=2n-1.(2)由题意,得bn=12(log2a n+log2a n+1)=12(log22n-1+log22n)=n-12,即{b n}是首项为12,公差为1的等差数列.设数列{(-1)n2}的前n项和为T n,则T2n=(-12+22)+(-32+42)+…+(-2t12+22)=b1+b2+b3+b4+…+b2n-1+b2n=2o1+2)2=2n2.评析本题主要考查等差数列、等比数列及其前n项和公式等基础知识,考查数列求和的基本方法和运算求解能力.21.(2015福建文,17,12分)等差数列{an }中,a2=4,a4+a7=15.(1)求数列{an}的通项公式;(2)设bn=2-2+n,求b1+b2+b3+…+b10的值.解析(1)设等差数列{a n}的公差为d.由已知得1+d=4,(1+3d)+(1+6d)=15,解得1=3,=1.所以a n=a1+(n-1)d=n+2.(2)由(1)可得bn=2n+n.所以b1+b2+b3+…+b10=(2+1)+(22+2)+(23+3)+…+(210+10)=(2+22+23+...+210)+(1+2+3+ (10)=2(1−210)1−2+(1+10)×102=(211-2)+55=211+53=2101.评析本小题主要考查等差数列、等比数列、数列求和等基础知识,考查运算求解能力.22.(2015课标Ⅰ理,17,12分)S n 为数列{a n }的前n 项和.已知a n >0,2+2a n =4S n +3.(1)求{a n }的通项公式;(2)设b n =1r1,求数列{b n }的前n 项和.解析(1)由2+2a n =4S n +3,可知r12+2a n+1=4S n+1+3.可得r12-2+2(a n+1-a n )=4a n+1,即2(a n+1+a n )=r12-2=(a n+1+a n )(a n+1-a n ).由于a n >0,可得a n+1-a n =2.又12+2a 1=4a 1+3,解得a 1=-1(舍去)或a 1=3.所以{a n }是首项为3,公差为2的等差数列,通项公式为a n =2n+1.(6分)(2)由a n =2n+1可知b n =1r1=1(2r1)(2r3)=设数列{b n }的前n 项和为T n ,则T n =b 1+b 2+…+b n++…+=3(2r3).(12分)23.(2015安徽文,18,12分)已知数列{a n }是递增的等比数列,且a 1+a 4=9,a 2a 3=8.(1)求数列{a n }的通项公式;(2)设S n 为数列{a n }的前n 项和,b n =r1r1,求数列{b n }的前n 项和T n .解析(1)由题设知a 1·a 4=a 2·a 3=8,又a 1+a 4=9,可解得1=1,4=8或1=8,4=1(舍去).由a 4=a 1q 3得公比为q=2,故a n =a 1q n-1=2n-1.(2)S n =1(1-)1−=2n -1,又b n =r1=r1-r1=1-1,所以T n =b 1+b 2+…+b n =11-1r1=1-12r1-1.评析本题考查等比数列通项公式及等比数列性质,等比数列求和.24.(2015天津理,18,13分)已知数列{a n }满足a n+2=qa n (q 为实数,且q≠1),n∈N *,a 1=1,a 2=2,且a 2+a 3,a 3+a 4,a 4+a 5成等差数列.(1)求q 的值和{a n }的通项公式;(2)设b n =log 222t1,n∈N *,求数列{b n }的前n 项和.解析(1)由已知,有(a 3+a 4)-(a 2+a 3)=(a 4+a 5)-(a 3+a 4),即a 4-a 2=a 5-a 3,所以a 2(q-1)=a 3(q-1).又因为q≠1,故a 3=a 2=2,由a 3=a 1·q,得q=2.当n=2k-1(k∈N *)时,a n =a 2k-1=2k-1=2t12;当n=2k(k∈N *)时,a n =a 2k =2k=22.所以,{a n }的通项公式为a n =2t12,n 为奇数,22为偶数.(2)由(1)得b n =log 222t1=2t1.设{b n }的前n 项和为S n ,则S n =1×120+2×121+3×122+…+(n-1)×12t2+n×12t1,12S n =1×121+2×122+3×123+…+(n-1)×12t1+n×12,上述两式相减,得12S n =1+12+122+…+12t1-2=1−121−12-2=2-22-2,整理得,S n =4-r22t1.所以,数列{b n }的前n 项和为4-r22t1,n∈N *.评析本题主要考查等比数列及其前n 项和公式、等差中项等基础知识.考查数列求和的基本方法、分类讨论思想和运算求解能力.25.(2015山东文,19,12分)已知数列{a n }是首项为正数的等差数列,n 项和为2r1.(1)求数列{a n }的通项公式;(2)设b n =(a n +1)·2,求数列{b n }的前n 项和T n .解析(1)设数列{a n }的公差为d.令n=1,得112=13,所以a 1a 2=3.令n=2,得112+123=25,所以a 2a 3=15.解得a 1=1,d=2,所以a n =2n-1.(2)由(1)知b n =2n·22n-1=n·4n,所以T n =1·41+2·42+…+n·4n,所以4T n =1·42+2·43+…+n·4n+1,两式相减,得-3T n =41+42+ (4)-n·4n+1=4(1−4)1−4-n·4n+1=1−33×4n+1-43.所以T n =3t19×4n+1+49=4+(3t1)4r19.26.(2015浙江文,17,15分)已知数列{a n }和{b n }满足a 1=2,b 1=1,a n+1=2a n (n∈N *),b 1+12b 2+13b 3+…+1b n =b n+1-1(n∈N *).(1)求a n 与b n ;(2)记数列{a n b n }的前n 项和为T n ,求T n .解析(1)由a 1=2,a n+1=2a n ,得a n =2n(n∈N *).由题意知:当n=1时,b 1=b 2-1,故b 2=2.当n≥2时,1b n =b n+1-b n ,整理得r1r1=,所以b n =n(n∈N *).(2)由(1)知a n b n =n·2n,因此T n =2+2·22+3·23+…+n·2n,2T n =22+2·23+3·24+…+n·2n+1,所以T n -2T n =2+22+23+ (2)-n·2n+1.故T n =(n-1)2n+1+2(n∈N *).评析本题主要考查数列的通项公式,等差和等比数列等基础知识,同时考查数列求和等基本思想方法,以及推理论证能力.27.(2015湖北文,19,12分)设等差数列{a n }的公差为d,前n 项和为S n ,等比数列{b n }的公比为q.已知b 1=a 1,b 2=2,q=d,S 10=100.(1)求数列{a n },{b n }的通项公式;(2)当d>1时,记c n =,求数列{c n }的前n 项和T n .解析(1)由题意有,101+45d =100,1d =2,即21+9d =20,1d =2,解得1=1,=2,或1=9,=29.故=2n-1,=2t1,或=1979),=.(2)由d>1,知a n =2n-1,b n =2n-1,故c n =2t12t1,于是T n =1+32+522+723+924+…+2t12t1,①12T n =12+322+523+724+925+…+2t12.②①-②可得12T n =2+12+122+…+12t2-2t12=3-2r32,故T n =6-2r32t1.28.(2014湖南文,16,12分)已知数列{a n }的前n 项和S n =2+n2,n∈N *.(1)求数列{a n }的通项公式;(2)设b n =2+(-1)na n ,求数列{b n }的前2n 项和.解析(1)当n=1时,a 1=S 1=1;当n≥2时,a n =S n -S n-1=2+n 2-(t1)2+(n-1)2=n.故数列{a n }的通项公式为a n =n.(3)由(1)知,b n =2n+(-1)nn,记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+ (22))+(-1+2-3+4-…+2n).记A=21+22+ (22),B=-1+2-3+4-…+2n,则A=2(1−22)1−2=22n+1-2,B=(-1+2)+(-3+4)+…+[-(2n-1)+2n]=n.故数列{b n }的前2n 项和T 2n =A+B=22n+1+n-2.评析本题考查数列的前n 项和与通项的关系,数列求和等知识,含有(-1)n的数列求和要注意运用分组求和的方法.29.(2014课标Ⅰ文,17,12分)已知{a n }是递增的等差数列,a 2,a 4是方程x 2-5x+6=0的根.(1)求{a n }的通项公式;(2)n 项和.解析(1)方程x 2-5x+6=0的两根为2,3,由题意得a 2=2,a 4=3.设数列{a n }的公差为d,则a 4-a 2=2d,故d=12,从而a 1=32.所以{a n }的通项公式为a n =12n+1.(2)n 项和为S n ,由(1)知2=r22r1,则S n =322+423+…+r12+r22r1,12S n =323+424+…+r12r1+r22r2.两式相减得12S n =34+…-r22r2=34+-r22r2.所以S n =2-r42r1.评析本题考查等差数列及用错位相减法求数列的前n 项和,第(1)中由条件求首项、公差,进而求出结论是基本题型,第(2)问中,运算准确是关键.30.(2014安徽文,18,12分)数列{a n }满足a 1=1,na n+1=(n+1)a n +n(n+1),n∈N *.(1)证明:;(2)设b n =3n·,求数列{b n }的前n 项和S n .解析(1)证明:由已知可得r1r1=+1,即r1r1-=1.是以11=1为首项,1为公差的等差数列.(2)由(1)得=1+(n-1)·1=n,所以a n =n 2.从而b n =n·3n.S n =1·31+2·32+3·33+…+n·3n,①3S n =1·32+2·33+…+(n-1)·3n+n·3n+1.②①-②得-2S n =31+32+ (3)-n·3n+1=3·(1−3)1−3-n·3n+1=(1-2p ·3r1-32.所以S n =(2t1)·3r1+34.评析本题考查等差数列定义的应用,错位相减法求数列的前n项和,解题时利用题(1)提示对递推关系进行变形是关键.31.(2014山东文,19,12分)在等差数列{an }中,已知公差d=2,a2是a1与a4的等比中项.(1)求数列{an}的通项公式;(2)设bn=or1)2,记T n=-b1+b2-b3+b4-…+(-1)n b n,求T n.解析(1)由题意知(a1+d)2=a1(a1+3d),即(a1+2)2=a1(a1+6),解得a1=2,所以数列{a n}的通项公式为a n=2n.(2)由题意知bn=or1)2=n(n+1).所以T n=-1×2+2×3-3×4+…+(-1)n n×(n+1).因为b n+1-b n=2(n+1),所以当n为偶数时,T n =(-b1+b2)+(-b3+b4)+…+(-bn-1+bn)=4+8+12+ (2)=2(4+2n)2=or2)2,当n为奇数时,T n =Tn-1+(-bn)=(t1)(r1)2-n(n+1)=-(r1)22.所以T n为奇数,为偶数.评析本题考查等比数列和等差数列的综合应用、等差数列的通项公式及数列的求和,分类讨论思想和逻辑推理能力.32.(2013课标Ⅰ文,17,12分)已知等差数列{an }的前n项和Sn满足S3=0,S5=-5.(1)求{an}的通项公式;(2)n 项和.解析(1)设{a n }的公差为d,则S n =na 1+ot1)2d.由已知可得31+3d =0,51+10d =−5.解得a 1=1,d=-1.故{a n }的通项公式为a n =2-n.(2)由(1)知1=1(3-2p(1-2p =n 项和为121-1-11+11-13+…+12t3-12t1=1−2.评析本题考查等差数列的通项公式及前n 项和公式,考查了裂项求和的方法,考查了运算求解能力与方程思想.33.(2011课标理,17,12分)等比数列{a n }的各项均为正数,且2a 1+3a 2=1,32=9a 2a 6.(1)求数列{a n }的通项公式;(2)设b n =log 3a 1+log 3a 2+…+log 3a n ,n 项和.解析(1)设数列{a n }的公比为q.由32=9a 2a 6得32=942,所以q 2=19.由条件可知q>0,故q=13.由2a 1+3a 2=1得2a 1+3a 1q=1,所以a 1=13.故数列{a n }的通项公式为a n =13.(2)b n =log 3a 1+log 3a 2+…+log 3a n =-(1+2+…+n)=-or1)2.故1=-2or1)=-211+12+…+1=-2123=-2r1.n 项和为-2r1.评析本题主要考查等比数列的通项公式以及裂项求和的基本方法,属容易题.34.(2020课标Ⅲ文,17,12分)设等比数列{a n }满足a 1+a 2=4,a 3-a 1=8.(1)求{a n }的通项公式;(2)记S n 为数列{log 3a n }的前n 项和.若S m +S m+1=S m+3,求m.解析(1)设{a n }的公比为q,则a n =a 1q n-1.由已知得1+1q =4,12-1=8.解得a 1=1,q=3.所以{a n }的通项公式为a n =3n-1.(2)由(1)知log 3a n =n-1.故S n =ot1)2.由S m +S m+1=S m+3得m(m-1)+(m+1)m=(m+3)(m+2),即m 2-5m-6=0.解得m=-1(舍去)或m=6.35.(2020浙江,20,15分)已知数列{a n },{b n },{c n }满足a 1=b 1=c 1=1,c n =a n+1-a n ,c n+1=r2c n ,n∈N *.(1)若{b n }为等比数列,公比q>0,且b 1+b 2=6b 3,求q 的值及数列{a n }的通项公式;(2)若{b n }为等差数列,公差d>0,证明:c 1+c 2+c 3+…+c n <1+1,n∈N *.解析本题主要考查等差数列、等比数列等基础知识,同时考查数学运算和逻辑推理等素养.(1)由b 1+b 2=6b 3得1+q=6q 2,解得q=12.由c n+1=4c n 得c n =4n-1.由a n+1-a n =4n-1得a n =a 1+1+4+…+4n-2=4t1+23.(2)证明:由c n+1=c n 得c n =121=所以c 1+c 2+c 3+…+c n 由b 1=1,d>0得b n+1>0,因此c 1+c 2+c 3+…+c n <1+1,n∈N *.36.(2020江苏,20,16分)已知数列{a n }(n∈N *)的首项a 1=1,前n 项和为S n .设λ与k 是常数,若对一切正整数n,均有r11-1=λr11成立,则称此数列为“λ~k”数列.(1)若等差数列{a n }是“λ~1”数列,求λ的值;(2)若数列{a n }是数列,且a n >0,求数列{a n }的通项公式;(3)对于给定的λ,是否存在三个不同的数列{a n }为“λ~3”数列,且a n ≥0?若存在,求λ的取值范围;若不存在,说明理由.解析本题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.(1)因为等差数列{a n }是“λ~1”数列,则S n+1-S n =λa n+1,即a n+1=λa n+1,也即(λ-1)a n+1=0,此式对一切正整数n 均成立.若λ≠1,则a n+1=0恒成立,故a 3-a 2=0,而a 2-a 1=-1,这与{a n }是等差数列矛盾.所以λ=1.(此时,任意首项为1的等差数列都是“1~1”数列)(2)因为数列{a n }(n∈N *)是3数列,所以r1-=即r1-=因为a n >0,所以S n+1>S n >0,n ,则b n 即(b n -1)2=13(2-1)(b n >1).解得b n =2,也即r1=4,所以数列{S n }是公比为4的等比数列.因为S 1=a 1=1,所以S n =4n-1.则a n =1(=1),3×4t2(n ≥2).(3)设各项非负的数列{a n }(n∈N *)为“λ~3”数列,则r113-13=λr113,即3r1-3=λ3r1-.因为a n ≥0,而a 1=1,所以S n+1≥S n >0,n ,则c n -1=λ33-1(c n ≥1),即(c n -1)3=λ3(3-1)(c n ≥1).(*)①若λ≤0或λ=1,则(*)只有一解为c n =1,即符合条件的数列{a n }只有一个.(此数列为1,0,0,0,…)②若λ>1,则(*)化为(c n -1)2+3+23-1+1=0,因为c n ≥1,所以2+3+23-1c n+1>0,则(*)只有一解为c n =1,即符合条件的数列{a n }只有一个.(此数列为1,0,0,0,…)③若0<λ<1,则2+3+23-1c n+1=0的两根分别在(0,1)与(1,+∞)内,则方程(*)有两个大于或等于1的解:其中一个为1,另一个大于1(记此解为t).所以S n+1=S n 或S n+1=t 3S n .由于数列{S n }从任何一项求其后一项均有两种不同结果,所以这样的数列{S n }有无数多个,则对应的{a n }有无数多个.综上所述,能存在三个各项非负的数列{a n }为“λ~3”数列,λ的取值范围是0<λ<1.37.(2019课标Ⅱ文,18,12分)已知{a n }是各项均为正数的等比数列,a 1=2,a 3=2a 2+16.(1)求{a n }的通项公式;(2)设b n =log 2a n ,求数列{b n }的前n 项和.解析本题主要考查等比数列的概念及运算、等差数列的求和;考查学生的运算求解能力;体现了数学运算的核心素养.(1)设{a n }的公比为q,由题设得2q 2=4q+16,即q 2-2q-8=0.解得q=-2(舍去)或q=4.因此{a n }的通项公式为a n =2×4n-1=22n-1.(2)由(1)得b n =(2n-1)log 22=2n-1,因此数列{b n }的前n 项和为1+3+…+2n-1=n 2.38.(2019天津文,18,13分)设{a n }是等差数列,{b n }是等比数列,公比大于0.已知a 1=b 1=3,b 2=a 3,b 3=4a 2+3.(1)求{a n }和{b n }的通项公式;(2)设数列{c n }满足c n =1,为奇数,2为偶数.求a 1c 1+a 2c 2+…+a 2n c 2n (n∈N *).解析本小题主要考查等差数列、等比数列的通项公式及其前n 项和公式等基础知识.考查数列求和的基本方法和运算求解能力,体现了数学运算素养.满分13分.(1)设等差数列{a n }的公差为d,等比数列{b n }的公比为q.依题意,得3=3+2s 32=15+4d,解得=3,=3,故a n =3+3(n-1)=3n,b n =3×3n-1=3n.所以,{a n }的通项公式为a n =3n,{b n }的通项公式为b n =3n.(2)a 1c 1+a 2c 2+…+a 2n c 2n=(a 1+a 3+a 5+…+a 2n-1)+(a 2b 1+a 4b 2+a 6b 3+…+a 2n b n )=×3+ot1)2×6+(6×31+12×32+18×33+…+6n×3n )=3n 2+6(1×31+2×32+…+n×3n).记T n =1×31+2×32+…+n×3n,①则3T n =1×32+2×33+…+n×3n+1,②②-①得,2T n =-3-32-33-…-3n +n×3n+1=-3(1−3)1−3+n×3n+1=(2t1)3r1+32.所以,a 1c 1+a 2c 2+…+a 2n c 2n =3n 2+6T n =3n 2+3×(2t1)3r1+32=(2t1)3r2+62+92(n∈N *).思路分析(1)利用等差、等比数列的通项公式求出公差d,公比q 即可.(2)利用{c n }的通项公式,进行分组求和,在计算差比数列时采用错位相减法求和.解题关键根据n 的奇偶性得数列{c n }的通项公式,从而选择合适的求和方法是求解的关键.39.(2019江苏,20,16分)定义首项为1且公比为正数的等比数列为“M-数列”.(1)已知等比数列{an }(n∈N*)满足:a2a4=a5,a3-4a2+4a1=0,求证:数列{an}为“M-数列”;(2)已知数列{bn }(n∈N*)满足:b1=1,1=2-2r1,其中S n为数列{b n}的前n项和.①求数列{bn}的通项公式;②设m为正整数,若存在“M-数列”{cn }(n∈N*),对任意正整数k,当k≤m时,都有ck≤bk≤ck+1成立,求m的最大值.解析本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.满分16分.(1)设等比数列{an }的公比为q,所以a1≠0,q≠0.由24=5,3-42+41=0,得124=14,12-41q+41=0,解得1=1,=2.因此数列{a n}为“M-数列”.(2)①因为1=2-2r1,所以b n≠0.由b1=1,S1=b1,得11=21-22,则b2=2.由1=2-2r1,得S n=r12(r1-),当n≥2时,由b n=S n-S n-1,得b n=r12(r1-)-t12(-t1),整理得b n+1+b n-1=2b n.所以数列{b n}是首项和公差均为1的等差数列.因此,数列{b n}的通项公式为b n=n(n∈N*).②由①知,bk=k,k∈N*.因为数列{c n}为“M-数列”,设公比为q,所以c1=1,q>0.因为c k≤b k≤c k+1,所以q k-1≤k≤q k,其中k=1,2,3,…,m.当k=1时,有q≥1;当k=2,3,…,m时,有ln≤lnq≤ln t1.设f(x)=ln(x>1),则f'(x)=1−ln2.令f'(x)=0,得x=e.列表如下:x(1,e)e(e,+∞) f'(x)+0-f(x)↗极大值↘因为ln22=ln86<ln96=ln33,所以f(k)max =f(3)=ln33.取q=33,当k=1,2,3,4,5时,ln≤lnq,即k≤q k ,经检验知q k-1≤k 也成立.因此所求m 的最大值不小于5.若m≥6,分别取k=3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216,所以q 不存在.因此所求m 的最大值小于6.综上,所求m 的最大值为5.40.(2018北京文,15,13分)设{a n }是等差数列,且a 1=ln2,a 2+a 3=5ln2.(1)求{a n }的通项公式;(2)求e 1+e 2+…+e .解析(1)设{a n }的公差为d.因为a 2+a 3=5ln2,所以2a 1+3d=5ln2.又a 1=ln2,所以d=ln2.所以a n =a 1+(n-1)d=nln2.(2)因为e 1=e ln2=2,e e t1=e -t1=e ln2=2,所以{e }是首项为2,公比为2的等比数列.所以e 1+e 2+…+e =2×1−21−2=2(2n-1).41.(2018江苏,20,16分)设{a n }是首项为a 1,公差为d 的等差数列,{b n }是首项为b 1,公比为q 的等比数列.(1)设a 1=0,b 1=1,q=2,若|a n -b n |≤b 1对n=1,2,3,4均成立,求d 的取值范围;(2)若a 1=b 1>0,m∈N *,q∈(1,2],证明:存在d∈R,使得|a n -b n |≤b 1对n=2,3,…,m+1均成立,并求d 的取值范围(用b 1,m,q 表示).解析本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.(1)由条件知a n =(n-1)d,b n =2n-1.因为|a n -b n |≤b 1对n=1,2,3,4均成立,即|(n-1)d-2n-1|≤1对n=1,2,3,4均成立.即1≤1,1≤d≤3,3≤2d≤5,7≤3d≤9,得73≤d≤52.因此,d (2)由条件知:a n =b 1+(n-1)d,b n =b 1q n-1.若存在d∈R,使得|a n -b n |≤b 1(n=2,3,…,m+1)均成立,即|b 1+(n-1)d-b 1q n-1|≤b 1(n=2,3,…,m+1).即当n=2,3,…,m+1时,d 满足t1-2t1b 1≤d≤t1t1b 1.因为q∈(1,2],所以1<q n-1≤q m≤2,从而t1-2t1b 1≤0,t1t1b 1>0,对n=2,3,…,m+1均成立.因此,取d=0时,|a n -b n |≤b 1对n=2,3,…,m+1均成立.(n=2,3,…,m+1).①当2≤n≤m 时,-2-t1-2t1=B --n t1+2ot1)=o -t1)-+2ot1),当1<q≤21时,有q n≤q m≤2,从而n(q n-q n-1)-q n+2>0.因此,当2≤n≤m+1时,,的最大值为-2.②设f(x)=2x(1-x),当x>0时,f'(x)=(ln2-1-xln2)2x<0.所以f(x)单调递减,从而f(x)<f(0)=1.当2≤n≤m 时,t1t1=ot1)≤因此,当2≤n≤m+1时,,的最小值为.因此,d 疑难突破本题是数列的综合题,考查等差数列、等比数列的概念和相关性质,第(1)问主要考查绝对值不等式.第(2)问要求d 的范围,使得|a n -b n |≤b 1对n=2,3,…,m+1都成立,首先把d 分离出来,变成t1-2t1b 1≤d≤t1t1b 1,难点在于讨论t1-2t1b 1的最大值和t1t1b 1的最小值.可以通过作差讨论其单调性,要作商讨论单调性,∵t1t1=ot1)=q 1当2≤n≤m 时,1<q n ≤2,∴q 1−可以构造函数f(x)=2x (1-x),通过讨论f(x)在(0,+∞)上的单调性去证明得到数列,解出最小值.两个数列,一个作差得到单调性,一个作商得到单调性,都是根据数列本身结构而得,方法自然合理,最后构造函数判断1的大小是难点,平时多积累,多思考,也是可以得到的.42.(2017课标Ⅱ文,17,12分)已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2+b 2=2.(1)若a 3+b 3=5,求{b n }的通项公式;(2)若T 3=21,求S 3.解析本题考查了等差、等比数列.设{a n }的公差为d,{b n }的公比为q,则a n =-1+(n-1)d,b n =q n-1.由a 2+b 2=2得d+q=3.①(1)由a 3+b 3=5得2d+q 2=6.②联立①和②解得=3,=0(舍去),或=1,=2.因此{b n }的通项公式为b n =2n-1.(2)由b 1=1,T 3=21得q 2+q-20=0.解得q=-5或q=4.当q=-5时,由①得d=8,则S 3=21.当q=4时,由①得d=-1,则S 3=-6.43.(2017课标Ⅰ文,17,12分)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6.(1)求{a n }的通项公式;(2)求S n ,并判断S n+1,S n ,S n+2是否成等差数列.解析本题考查等差、等比数列.(1)设{a n }的公比为q,由题设可得1(1+q)=2,1(1+q +2)=-6.解得q=-2,a 1=-2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
第4节 数列求和
最新考纲 1.熟练掌握等差、等比数列的前n 项和公式;2.掌握非等差数列、非等比数列求和的几种常见方法
.
知 识 梳 理
1.特殊数列的求和公式
(1)等差数列的前n 项和公式:
S n =n (a 1+a n )2=na 1+n (n -1)2
d . (2)等比数列的前n 项和公式:
S n =⎩
⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q =a 1(1-q n )1-q ,q ≠1W. 2.数列求和的几种常用方法
(1)分组转化法
把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.
(2)裂项相消法
把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.
(3)错位相减法
如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这
2
个数列的前n 项和可用错位相减法求解.
(4)倒序相加法
如果一个数列{a n }的前n 项中与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.
[微点提醒]
1.1+2+3+4+…+n =n (n +1)
2. 2.1
2+22+…+n 2=n (n +1)(2n +1)
6.
3.裂项求和常用的三种变形
(1)1n (n +1)=1n -1n +1
. (2)1(2n -1)(2n +1)=12⎝ ⎛⎭
⎪⎪⎫12n -1-12n +1. (3)1n +n +1=n +1-n .
基 础 自 测
1.判断下列结论正误(在括号内打“√”或“×”)
(1)若数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =
a 1-a n +11-q .( ) (2)当n ≥2时,1n 2-1=12(1n -1-1n +1).( )
(3)求S n =a +2a 2+3a 3+…+na n 时只要把上式等号两边同时乘以a 即可根据错。

相关文档
最新文档