九年级数学圆PPT课件
合集下载
人教版九年级数学上册第24章第1节《圆》课件

A
A
C
B
B C
O C
O
B A
O
D
D
A
A
C
B
B C
O
O
B A
O
C
D
D
【发现】直径是最长的弦
探究新知
24.1 圆的有关性质/
弧:
圆上任意两点间的部分叫做圆弧,简弧.以A、B为 端点的弧记作 AB,读作“圆弧AB”或“弧AB”.
➢半圆
B ·O
A
C
圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.
A ·O1 C
探究新知
24.1 圆的有关性质/
【想一想】长度相等的弧是等弧吗? 如图,如果A︵B和C︵D的拉直长度都是10cm,平移并调整
小圆的位置,是否能使这两条弧完全重合?
可见这两条弧不可能完全重合
D
B
A
C
实际上这两条弧弯曲程度不同
A
“等弧”要区别于“长度相等的弧”
D BC
【结论】等弧仅仅存在于同圆或者等圆中.
探究新知 素养考点 1 圆的定义的应用
24.1 圆的有关性质/
例1 矩形ABCD的对角线AC、BD相交于O. 求证:A、B、C、D在以O为圆心的同一圆上.
证明:∵四边形ABCD是矩形,
∴AO=OC,OB=OD.
A
D
O
又∵AC=BD,
B
C
∴OA=OB=OC=OD.
∴A、B、C、D在以O为圆心,以OA为半径的圆上.
B.木匠师傅在刨平的木板上任选两个点就能画出一条笔直的 墨线是运用了“直线外一点与直线上各点连接的所有线段中, 垂线段最短”的原理
C.将自行车的车架设计为三角形形状是运用了“三角形的稳 定性”的原理
第二十四章圆 复习课课件(共35张PPT)人教版九年级数学上册

学习目标
知识梳理
典型例题
当堂检测
课堂总结
4.会画三角形的外接圆和内切圆,知道三角形内心和外心的性质,知 道圆内接多边形并会相关计算. 5.知道弧长和扇形面积的计算公式,并能用这些公式进行相关计算.
学习目标
知识梳理
典型例题
当堂检测
课堂总结
1 圆的有关概念及性质 1.定义:平面上到定点的距离等于定长的所有点组成的图形叫做圆. 2.有关概念:
(1)弦、直径(圆中最长的弦)
O.
(2)弧、优弧、劣弧、等弧
(3)弦心距
3.不在同一条直线上的三个点确定一个圆.
学习目标
知识梳理
典型例题
当堂检测
课堂总结
2 圆的对称性 1.圆是轴对称图形,经过圆心的每一条直线都是它的对称轴.圆有无数 条对称轴. 2.圆是中心对称图形,并且绕圆心旋转任何一个角度都能与自身重合, 即圆具有旋转不变性.
解:设直径BC与弦AD交于点E
A
∵∠D=36°,∴∠ABC=36°
∵AD⊥BC,
B
∴在直角三角形ABE中,∠BAD=90°-36°=54°
C E D
学习目标
知识梳理
典型例题
当堂检测
课堂总结
例2.如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC. (1)若∠CBD=39°,求∠BAD的度数;(2)求证明:∠1=∠2.
典型例题
当堂检测
课堂总结
例3.工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直 径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这 个小圆孔的宽口AB的长度为 8 mm.
解析:设圆心为O,连接AO,作出过点O的 弓形高CD,垂足为D,可AO=5mm,OD=3mm 利用勾股定理进行计算,AD=4mm, 所以AB=8mm.
人教版初三数学九年级上册 第24章 《圆》教材分析 课件(共38张PPT)

能利用垂径定理解决有关简单问题; 能利用圆周角定理及其推论解决有关 简单问题
运用圆的性质的有关 内容解决有关问题
点和圆 的
位置关系
了解点与圆的位置关系
尺规作图(利用基本作图完成):过 不在同一直线上的三点作圆;能利用 点与圆的位置关系解决有关简单问题
图图 形形 与的 几性 何质
直线和圆 的
位置关系
了解直线和圆的位置关系;会判断直 线和圆的位置关系;理解切线与过切 点的半径的关系;会用三角尺过圆上 一点画圆的切线
三角形的内切圆;了解三角形的内心; 有关简单问题;尺规作图(利用基本
了解正多边形的概念及正多边形与圆 作图完成):作三角形的外接圆、内
的关系
切圆,作圆的内接正方形和正六边形
弧长、扇形面 会计算圆的弧长和扇形的面积;会计
积 算圆锥的侧面积和全面积
和圆锥
能利用圆的弧长和扇形的面积解决一 些简单的实际问题
O
O
适当补充“知二推三”,灵活运用所学 知识,特别是体会如何证明圆心在弦上 (某弦是直径)。
O
C
A
B
例. 根据条件求解:
D
(1)已知⊙O半径为5,弦长为6,求弦心距和弓形高.
(2)已知⊙O半径为4,弦心距为3,求弦长和弓形高.
(3)已知⊙O半径为5,劣弧所对的弓形高为2,求弦长和 弦心距.
(4)已知⊙O弦长为2,弦心距为,求⊙O半径及弓形高.
A
B
半径为5dm。则水深______dm.
5.注重数学核心素养的培养
本章的教学内容能进一步发展学生的几何 直观、推理能力等数学核心素养。
在教学过程中引导学生多画图、敢画图, 借助对几何图形直观的感知、分析问题, 并在此基础之上,在解决问题的过程中, 运用合情推理探索思路,发现结论,运用 演绎推理用于证明结论。
圆九年级数学《与圆的位置关系》课件

4、如图,圆O1、圆O2相交于点A、B,过点A的 作CD⊥AB交两圆于点C、D,求证:CD=2O1O2
C
A
D
O2
O1
B
圆与圆的位置关系
新课引入
O1
O2
圆O1沿直线O1O2向右运动,它与 圆O2的交点数有何变化情况?
学习目标
了解圆与圆的五种位置关系,会根据圆 心距判断圆与圆的位置关系
自学探究
自学课本45~46页,回答下列问题 1、圆与圆有几种位置关系?如何判断? 2、当两圆相交、外切、内切时连心线有何性 质?
疑探交流
当圆心O1和圆心O2重合时,即d=0时,两圆 是同心圆
A
O1 C
O2
B
定理:两圆相交时, 连心线垂直平分两 圆的公共弦
O1
C
O2
定理:两圆 相切时,连 心线过切点
当堂检测 1、圆O1、圆O2的半径分别为3cm、4cm.若设: (1)O1O2=8cm,(2)O1O2=7cm,(3)O1O2=5cm, (4)O1O2=1cm,(5)O1O2=0cm,(6)O1O2=0.5cm 2、已知:两圆的圆心距为6cm,其中一个圆的半 径为1cm,在下列条件下,求另一个圆的半径r或 取值范围 (1)两圆外切 (2)两圆内切 (3)两圆内含 3、三角形三边分别为2、3、4,以各顶点作圆, 三个圆两两外切,求这三个圆的半径.
针对上述问题,组内交流合作,先对议, 再组议
学教新课
O1
O2
外离
Hale Waihona Puke O1O2外切
O1
O2
O1
O2
O1 O2
相交
内切
内含
连接O1O2,上述五种位置关系中,圆心距d与 两圆半径R、r有何关系?
人教版数学九年级上册第24课时 圆的基本性质(ppt版)-课件

【温馨提示】1.应用定理时一定注意“在同圆或等圆中” 同时要注意一条弦对着两条弧. 2.弦心距、半径、弦的一半构成的直角三角形,常用 于求未知线段或角,为构造这个直角三角形,常连接半 径或作弦心距,利用勾股定理求未知线段长.
提分必练
2.如图,在⊙O中,若点C是的中点,∠A=50°,则
∠BOC=( A )
提分必练
4.如图,⊙O是△ABC的外接圆,若∠ABC=40°, 则∠AOC的度数为( D ) A.20° B.40° C.60° D.80°
提分必练
5.如图,⊙O中,弦AB、CD相交于点P,若∠A=
30°,∠APD=70°,则∠B等于( C ) A.30° B. 35° C. 40° D. 50°
第一部分 夯实基础 提分多
第六单元 圆
第24课时 圆的基本性质
基础点巧练妙记 基础点 1 圆的相关的概念及性质
1.圆的基本概念(参考图(1)) (1)定义:平面内到定点距离等于定长的所 有点组成的图形叫做圆,这个定点叫做圆 心,定长叫做半径,即O为圆心,OA为半 径.
(2)弧、劣弧、优弧:圆上任意两点间的部分叫做圆弧, 简称弧.其中,小于半圆的部分叫做劣弧,A F 为劣弧; 大于半圆的部分叫做①__优__弧__,A E F 为优弧. (3)圆心角:顶点在圆心,角的两边都与圆相交的角叫做 圆心角,∠AOF叫做A F 所对的圆心角. (4)圆周角:顶点在圆上,角的两边都与圆相交的角叫做 圆周角,∠AEF为A F 所对的圆周角.
2.在遇到与直径有关的问题时,一般要构造直径所对 的圆周角,这样可以由直径转化出直角,从而解决问 题.
4.圆内接四边形的性质
(1)圆内接四边形的对角⑪_互__补_,如图(2),∠A+∠BCD =⑫1_8_0_°_,∠B+∠D=⑬1_8_0_°___;
第二十四章 圆——九年级上册人教版(2012)数学课后习题精讲课件(共120张PPT).ppt

答案:(1)相离 (2)相切 (3)相交
3.一根钢管放在 V 形架内,其横截面如图所示,钢管的半径 是 25 cm . (1)如果UV 28 cm ,VT 是多少? (2)如果 UVW 60 ,VT 是多少?
解析:(1)VT UV 2 UT 2 282 252 1409(cm) ; (2)VT 2UT 50 cm .
3
9.如图,两个圆都以点 O 为圆心,大圆的弦 AB 交小圆于 C,D 两点.求证:AC BD .
证明:过点 O 作OE AB ,垂足为 E,则 AE BE ,CE DE , AE CE BE DE ,即 AC BD .
10. O 的半径为13 cm , AB ,CD 是 O 的两条弦, AB//CD , AB 24 cm , CD 10 cm .求 AB 和 CD 之间的距离.
(1)8 cm ; (2)10 cm ; (3)12 cm .
答案:(1)点在圆内 (2)点在圆上 (3)点在圆外
2. Rt△ABC 中, C 90 , AC 3 cm , BC 4 cm ,判断以点 C 为圆心,下列
r 为半径的 C 与 AB 的位置关系:
(1) r 2 cm (2) r 2.4 cm (3) r 3 cm .
第二十四章 圆
课后习题精讲
九年级上册人教版(2012)
第二十四章
24.1 圆的有关性质
1.求证:直径是圆中最长的弦. 解析:已知:如图所示, O 中 AB 是直径,CD 是弦.
求证: AB CD . 证明:(1)当弦 CD 也是直径时,显然 AB CD . (2)当弦 CD 不是直径时,连接 OC,OD,则OC OD AB . 在△OCD 中, OC OD CD (三角形两边之和大于第三边),即 AB CD . 综上可知 AB CD .
沪科版九年级数学(下)圆的基本性质课件(共24张PPT)

1.在同圆或等圆中,大弦的弦心距较小; 2.在同圆或等圆中,大弧所对的圆心角也较大。
弦、弦心距之间的不等量关系
A M
O
B
C N
D
已知⊙O中,弦AB>CD,OM⊥AB,ON⊥CD,
垂足分别为M,N,求证:OM<ON。
重要结论: 若AB和CD是⊙O的两条弦,OM和ON分别是AB和CD
的弦心距,如果AB>CD,那么OM<ON。
推论: 在同圆或等圆中,如果两个圆心角、两条弧、两条
弦或两条弦的弦心距中有一组量相等,那么其余各组量 都分别相等。
基础知识练习
5.下列说法中,正确的是( B )
A.等弦所对的弧相等 B.等弧所对的弦相等 C.圆心角相等,所对的弦相等 D.等弦所对的圆心角相等
6.如图,已知AB是⊙O的直径,C,D是
归纳总结
顶点在圆心的圆心角等分成360份时,每一份的 圆心角是1°的角,整个圆周被等分成360份,我们把 每一份这样的弧叫做1°的弧。(同圆中,相等的圆 心角所对的弧相等)
圆心角的度数和它所对 的弧的度数相等。
基础知识练习
1.一条弦把圆分成3:6两部分,则优弧所对
的圆心角为 240 ° 2.A、B、C为⊙O上三点,若
A⌒B、B⌒C
、C⌒D
ห้องสมุดไป่ตู้
的度数之比为1:2:3,则∠AOB= 60°,
∠BOC= 120 °, ∠COA= 180°
3.在⊙O中,AB弧的度数为60°,AB弧的长
是圆周长的 1/6 。
4.一条弦长恰好等于半径,则此弦所对的圆
心角是 60 度。
判断:
在两个圆中,分别有弧AB和弧CD,若弧AB和弧 CD的度数相等,则有:
弦、弦心距之间的不等量关系
A M
O
B
C N
D
已知⊙O中,弦AB>CD,OM⊥AB,ON⊥CD,
垂足分别为M,N,求证:OM<ON。
重要结论: 若AB和CD是⊙O的两条弦,OM和ON分别是AB和CD
的弦心距,如果AB>CD,那么OM<ON。
推论: 在同圆或等圆中,如果两个圆心角、两条弧、两条
弦或两条弦的弦心距中有一组量相等,那么其余各组量 都分别相等。
基础知识练习
5.下列说法中,正确的是( B )
A.等弦所对的弧相等 B.等弧所对的弦相等 C.圆心角相等,所对的弦相等 D.等弦所对的圆心角相等
6.如图,已知AB是⊙O的直径,C,D是
归纳总结
顶点在圆心的圆心角等分成360份时,每一份的 圆心角是1°的角,整个圆周被等分成360份,我们把 每一份这样的弧叫做1°的弧。(同圆中,相等的圆 心角所对的弧相等)
圆心角的度数和它所对 的弧的度数相等。
基础知识练习
1.一条弦把圆分成3:6两部分,则优弧所对
的圆心角为 240 ° 2.A、B、C为⊙O上三点,若
A⌒B、B⌒C
、C⌒D
ห้องสมุดไป่ตู้
的度数之比为1:2:3,则∠AOB= 60°,
∠BOC= 120 °, ∠COA= 180°
3.在⊙O中,AB弧的度数为60°,AB弧的长
是圆周长的 1/6 。
4.一条弦长恰好等于半径,则此弦所对的圆
心角是 60 度。
判断:
在两个圆中,分别有弧AB和弧CD,若弧AB和弧 CD的度数相等,则有:
苏科版数学九年级上册2.1圆(共18张PPT)

苏科版九年级上册
2.1 圆
LOREM IPSUM DOLOR
套圈游戏
奖品
全班同学沿着红线站成一 横排,请问游戏对所有同 学公平吗?谈谈你的想法.
思考·操作
• 我为大家提供了两个工具:
•(1)一端有吸盘另一端绑着粉笔的棉线. •(2)一端有吸盘另一端绑着粉笔的皮筋.
• 借助以上工具,你能为全班同学画出一个圆吗?
解:连接MD、ME.
∵BD、CE是△ABC的高,
∴∠BEC=∠BDC=90°.
在Rt△BEC中,M为BC的中点,
ME 1 BC,
同理,MD2 1 BC,
又∵
MB
2 MC
1
BC,
2
∴MB=ME=MD=MC,
∴点B、C、D、E在以点M为圆心,
1 2
BC
为半径的圆上.
(1)画出下列图形:
A
B
到点A的距离等于2cm的点的集合;
到点B的距离等于3cm的点的集合.
Q
(2)在所画图中,到点A的距离等于2cm,
且到点B的距离等于3cm的点有__2___个
请在图中将它们表示出来.
(3)在所画图中,到点A的距离小于或等于2cm,
且到点B的距离大于或等于3cm的点的集合是怎样的图形?
纯语文翻译: 圆这种图形,有一个中心,从这个中心到圆上各点都一样长. 数学意义: 圆有一个圆心,圆心到圆上各点的距离(即半径)都相等.
思考:为什么围成圆形之后,套圈游戏就公平了?
P
圆上的点到圆心的距离都等于半径
O
设⊙O的半径为r,点P到圆心的距离为d, 那么:
___________________________.
点A在 圆内 ;点B在 圆上 ;点C在 圆外 。
2.1 圆
LOREM IPSUM DOLOR
套圈游戏
奖品
全班同学沿着红线站成一 横排,请问游戏对所有同 学公平吗?谈谈你的想法.
思考·操作
• 我为大家提供了两个工具:
•(1)一端有吸盘另一端绑着粉笔的棉线. •(2)一端有吸盘另一端绑着粉笔的皮筋.
• 借助以上工具,你能为全班同学画出一个圆吗?
解:连接MD、ME.
∵BD、CE是△ABC的高,
∴∠BEC=∠BDC=90°.
在Rt△BEC中,M为BC的中点,
ME 1 BC,
同理,MD2 1 BC,
又∵
MB
2 MC
1
BC,
2
∴MB=ME=MD=MC,
∴点B、C、D、E在以点M为圆心,
1 2
BC
为半径的圆上.
(1)画出下列图形:
A
B
到点A的距离等于2cm的点的集合;
到点B的距离等于3cm的点的集合.
Q
(2)在所画图中,到点A的距离等于2cm,
且到点B的距离等于3cm的点有__2___个
请在图中将它们表示出来.
(3)在所画图中,到点A的距离小于或等于2cm,
且到点B的距离大于或等于3cm的点的集合是怎样的图形?
纯语文翻译: 圆这种图形,有一个中心,从这个中心到圆上各点都一样长. 数学意义: 圆有一个圆心,圆心到圆上各点的距离(即半径)都相等.
思考:为什么围成圆形之后,套圈游戏就公平了?
P
圆上的点到圆心的距离都等于半径
O
设⊙O的半径为r,点P到圆心的距离为d, 那么:
___________________________.
点A在 圆内 ;点B在 圆上 ;点C在 圆外 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.它的对称轴是直径所在的直线,有无数条; 2.它的对称中心是圆心
19
想一想 判断下列说法的正误:
(1)弦是直径;
()
(2)半圆是弧;
()
(3)过圆心的线段是直径; (
)
(4)过圆心的直线是直径; (
)
(5)半圆是最长的弧;
()
(6)直径是最长的弦;
()
(7)半径相等的两个圆是等圆. (
)
20
1.如何在操场上画一个半径是5m的圆?说出你的理由.
23
3、思考:要证明几个点 在同一个圆上,应该怎样证 明?
★要证明几个点同圆,只要证明这几个点到同一个点的距离相等。
到定点的距离等于定长的点都在同一个圆上.
24
与同伴交流,来谈一下这节课 你在知识和方法上的收获,你 有何感想!
25
课堂小结:
1、从运动和集合的观点理解圆的定义:
定义一: 在同一平面内,线段OA绕它固定的
把车轮做成圆形,车轮上各点到车轮中心(圆心) 的距离都等于车轮的半径,当车轮在平面上滚动时, 车轮中心与平面的距离保持不变,因此,当车辆在 平坦的路上行驶时,坐车的人会感觉到非常平稳, 这也是车轮都做成圆形的数学道理.
11
与圆有关的概念
弦
连接圆上任意两点的线段(如图
AC)叫做弦,
经过圆心的弦(如图中的AB)叫 做直径.
B
O·
A
C
12
议一议
小明和小强为了探究 ⊙ O中有没有最长的弦, 经过了大量的测量,最后得出一致结论,直径 是圆中最长的弦,你认为他们的结论对吗? 试说说你的理由.
A C
O
B
D
A
O
B
C
D
13
弧
圆上任意两点间的部分叫做圆弧,简称弧.以
A、B为端点的弧记作 “弧AB”.
AB
,读作“圆弧AB”或
圆的任意一条直径的两个端点把圆分成两条
A
固定的端点O叫做圆心
r
O·
线段OA叫做半径
在画圆的过 程中你发现 了什么?
以点O为圆心的圆,记作“⊙O”,读作“圆O”.
6
由画圆的过程可以看出:
(1)圆上各点到定点(圆心O)的距离都等于 定长(半径r);
(2)到定点的距离等于定长的点都在同一个圆 上.
因此,圆心为O、半径为r的圆可以看成是所有 到定点O的距离等于定长r 的集合.
1
毛公桥中学
龙舟 2012.10
2
圆是生活中常见的图形,许多物体都给我们以圆的形象
3
什么是圆?
圆可以看成是所有到定点O的距离等于定长 的点组成的图形.
4
你能讲出几种形成圆的方法? 你是如何操作的?
5
引入新知
如图,在一个平面内,线段OA绕它固定的一个 端点O旋转一周,另一个端点A所形成的图形叫做 圆.
解: 23÷20÷2=0.575cm
答: 这棵红衫树的半径每年增加0.575cm
22
2、正方形的四个顶点在同一个圆上吗?如果 在,请说明这个圆的圆心和半径。矩形呢?菱 形呢?平行四边形呢?
A
r
O·
★ 正方形和矩形的顶点在 同一个圆上,圆心是对角线的交点, 半径是对角线的一半。 菱形和平行四边形的四个顶点不在同一圆上。
首先确定圆心, 然后用5米长的绳子一端 固定为圆心端,另一端系在一端尖木棒, 木棒以5米长尖端划动一周,所形成的图 形就是所画的圆. 根据圆的形成定义
21
2 你见过树木的年轮吗?从树木的年轮,可以很清楚 的看出树木生长的年龄,如果一棵20年树龄的红杉 树的树干直径是23cm,这棵红杉树的半径每年增加 多少?.
一个端点O旋转一周,另一个端点A随
之旋转所形成的图形叫圆。
固
定的端点O叫做圆心,线段OA叫做半
径。
定义二:圆是到定点的距离等于定长的
点的集合。
26
2.弦(直径) 3.弧
27
作业
.
A组:见小黑板 B组:求证菱形四边中点 在同一个圆上。
28
29
弧,每一条弧都叫做半圆.
B
O·
A
C
14
劣弧与优弧
小于半圆的弧(如图中的 AC )叫做劣弧;
大于半圆的弧(用三点表示,如图中的 ABC )
叫做优弧.
B
O·
A
C
15
如图,请正确的方式表示出以点A为端点的优弧及劣弧.
D O
F
B
I
E
A
⌒ ⌒ ACD ACF
A⌒C A⌒E
C
⌒ ⌒ ADE ADC
A⌒F A⌒D
16
等圆和等弧
能够重合的圆叫做等圆(如图中⊙O1和⊙O2) 能够互相重合的弧叫做等弧(如下图)
o1
o2
B1
O·
A1
C1
B2O·A2ຫໍສະໝຸດ C217O
O′
同圆:圆心相同,半径相等的两个圆
O
等圆:半径相等的两个圆
O
同心圆:圆心相同,半径不相等的两个圆
18
圆的对称性
圆既是轴对称图形,又是中心对称图形;
圆心
半径
圆心确定圆的位置,半径确定圆的大小 7
动态:在一个平面内,线段OA绕它固定的一 个端点O旋转一周,另一个端点A所形成的图 形叫做圆.
静态:圆心为O、半径为r的圆可以看成是所有 到定点O的距离等于定长r 的点组成的图形.
8
探求新知
车轮为什么做成圆形?
车轮做成三角形、正方形可以吗?
9
10
议一议
19
想一想 判断下列说法的正误:
(1)弦是直径;
()
(2)半圆是弧;
()
(3)过圆心的线段是直径; (
)
(4)过圆心的直线是直径; (
)
(5)半圆是最长的弧;
()
(6)直径是最长的弦;
()
(7)半径相等的两个圆是等圆. (
)
20
1.如何在操场上画一个半径是5m的圆?说出你的理由.
23
3、思考:要证明几个点 在同一个圆上,应该怎样证 明?
★要证明几个点同圆,只要证明这几个点到同一个点的距离相等。
到定点的距离等于定长的点都在同一个圆上.
24
与同伴交流,来谈一下这节课 你在知识和方法上的收获,你 有何感想!
25
课堂小结:
1、从运动和集合的观点理解圆的定义:
定义一: 在同一平面内,线段OA绕它固定的
把车轮做成圆形,车轮上各点到车轮中心(圆心) 的距离都等于车轮的半径,当车轮在平面上滚动时, 车轮中心与平面的距离保持不变,因此,当车辆在 平坦的路上行驶时,坐车的人会感觉到非常平稳, 这也是车轮都做成圆形的数学道理.
11
与圆有关的概念
弦
连接圆上任意两点的线段(如图
AC)叫做弦,
经过圆心的弦(如图中的AB)叫 做直径.
B
O·
A
C
12
议一议
小明和小强为了探究 ⊙ O中有没有最长的弦, 经过了大量的测量,最后得出一致结论,直径 是圆中最长的弦,你认为他们的结论对吗? 试说说你的理由.
A C
O
B
D
A
O
B
C
D
13
弧
圆上任意两点间的部分叫做圆弧,简称弧.以
A、B为端点的弧记作 “弧AB”.
AB
,读作“圆弧AB”或
圆的任意一条直径的两个端点把圆分成两条
A
固定的端点O叫做圆心
r
O·
线段OA叫做半径
在画圆的过 程中你发现 了什么?
以点O为圆心的圆,记作“⊙O”,读作“圆O”.
6
由画圆的过程可以看出:
(1)圆上各点到定点(圆心O)的距离都等于 定长(半径r);
(2)到定点的距离等于定长的点都在同一个圆 上.
因此,圆心为O、半径为r的圆可以看成是所有 到定点O的距离等于定长r 的集合.
1
毛公桥中学
龙舟 2012.10
2
圆是生活中常见的图形,许多物体都给我们以圆的形象
3
什么是圆?
圆可以看成是所有到定点O的距离等于定长 的点组成的图形.
4
你能讲出几种形成圆的方法? 你是如何操作的?
5
引入新知
如图,在一个平面内,线段OA绕它固定的一个 端点O旋转一周,另一个端点A所形成的图形叫做 圆.
解: 23÷20÷2=0.575cm
答: 这棵红衫树的半径每年增加0.575cm
22
2、正方形的四个顶点在同一个圆上吗?如果 在,请说明这个圆的圆心和半径。矩形呢?菱 形呢?平行四边形呢?
A
r
O·
★ 正方形和矩形的顶点在 同一个圆上,圆心是对角线的交点, 半径是对角线的一半。 菱形和平行四边形的四个顶点不在同一圆上。
首先确定圆心, 然后用5米长的绳子一端 固定为圆心端,另一端系在一端尖木棒, 木棒以5米长尖端划动一周,所形成的图 形就是所画的圆. 根据圆的形成定义
21
2 你见过树木的年轮吗?从树木的年轮,可以很清楚 的看出树木生长的年龄,如果一棵20年树龄的红杉 树的树干直径是23cm,这棵红杉树的半径每年增加 多少?.
一个端点O旋转一周,另一个端点A随
之旋转所形成的图形叫圆。
固
定的端点O叫做圆心,线段OA叫做半
径。
定义二:圆是到定点的距离等于定长的
点的集合。
26
2.弦(直径) 3.弧
27
作业
.
A组:见小黑板 B组:求证菱形四边中点 在同一个圆上。
28
29
弧,每一条弧都叫做半圆.
B
O·
A
C
14
劣弧与优弧
小于半圆的弧(如图中的 AC )叫做劣弧;
大于半圆的弧(用三点表示,如图中的 ABC )
叫做优弧.
B
O·
A
C
15
如图,请正确的方式表示出以点A为端点的优弧及劣弧.
D O
F
B
I
E
A
⌒ ⌒ ACD ACF
A⌒C A⌒E
C
⌒ ⌒ ADE ADC
A⌒F A⌒D
16
等圆和等弧
能够重合的圆叫做等圆(如图中⊙O1和⊙O2) 能够互相重合的弧叫做等弧(如下图)
o1
o2
B1
O·
A1
C1
B2O·A2ຫໍສະໝຸດ C217O
O′
同圆:圆心相同,半径相等的两个圆
O
等圆:半径相等的两个圆
O
同心圆:圆心相同,半径不相等的两个圆
18
圆的对称性
圆既是轴对称图形,又是中心对称图形;
圆心
半径
圆心确定圆的位置,半径确定圆的大小 7
动态:在一个平面内,线段OA绕它固定的一 个端点O旋转一周,另一个端点A所形成的图 形叫做圆.
静态:圆心为O、半径为r的圆可以看成是所有 到定点O的距离等于定长r 的点组成的图形.
8
探求新知
车轮为什么做成圆形?
车轮做成三角形、正方形可以吗?
9
10
议一议