电机及拖动基础第三章
李发海电机与拖动基础第四版第三章.

2. 自励直流电机 (1)并励直流电机 励磁绕组与电枢绕组并联连接,如图3.12(b)。 (2)串励直流电机 励磁绕组与电枢绕组串联,流过相同电流,如图3.1(c)。 (3)复励直流电机 励磁绕组分两部分,一部分与电枢回路串联,另一部分与电
枢回路并联。如图3.12 (d)。连接时,可先串后并,也可先并 后串。 不同励磁方式的直流电机有不同的特性。
示意图。若N为一个磁极上的励磁绕组匝数,励磁电流为I 时, 每极的励磁磁通势为:F = I N 。
图 3.8 四极直流电机 空载时的磁场示意图
图中主磁通的路径是: 从N极、经气隙、经电枢齿、经电枢轭、到另一部分电齿、再 到气隙、经S极、经定子轭、回到N极。称为 主磁路。
图中只与励磁绕组相链的磁通为漏磁通,其所经过的路径称 为漏磁路。
(3-12)
式中 ia = Ia/2a 为导体里流过的电流,Ia为总电流, a为支路
对数。
一根导所产生的转矩为
(3-13)
式中 D = 2 p τ/π 为电枢直径。
总电磁转矩为
(3-14)
将 Bav
li
代入式(3-14)得
(3-15)
式中
为转矩常数。若 Φ 的单位为Wb, 电流的单位
为A, 则转矩 T 的单位为 N·m
Z e 代表电机总虚槽数,用 u 每个实槽中的虚槽数,见图3.13 (c)。则总虚槽数为: 此时绕组的总导体数为: 直流电机最基本的形式有两种,即单叠绕组和单波绕组。
3.4.1 单叠绕组 1.节距 (见图3.14) (1)第一节距 y 1 : 指同一元件两元件边的间距,用虚槽数
或换向片数表示。
式中 ε是使Y1凑成整数的一个分数。
第三章 直流电机原理
电机与电力拖动基础教程第3章(3)

(0,-n0),斜率为b,与电动状态时 电枢串入电阻RW时的人为机械特性 相平行的直线。
b
Ra RW CeCT Φ 2
第3章
返 回
上 页
下 页
(3)电压反接制动过程 电压反接时,n不能突变,工 作点由第一象限A点平移至第 二象限B点。T=-TB<0,T与 TL共同作用使电机减速,直至 n=0。反接制动过程结束。 如果电机拖动反抗性负载,n=0时, T=-TC>-TL,电动机反向电动(第三 象限)直至T=-TL(D点),电动机稳定 运行。
第3章
返 回
上 页
下 页
2.电动势反接的反接制动 电动势反接的反接制动仅 适用于位能性恒转矩负载, 又称倒拉反接制动或转速 反向反接制动。 (1)电动势反接制动的实现
当开关K闭合,电动机运行
于电动状态。 当开关K断开,电枢回路串 入较大电阻RW,使n=0时, 电磁转矩小于负载转矩,电动 机反向加速,T与n反向,进 入电动势反接的反接制动运行。
Ra RW n T nC 2 CeCT ΦN
T=TL
CeCT Φ n RW Ra TL
2 N C
第3章
返 回
上 页
下 页
5.能耗制动பைடு நூலகம்点
(1)制动时 U=0,n0=0 ,直流电动机脱离电网变成直流发电 机单独运行,把系统存储的动能或位能性负载的位能转变 成 电能( EaIa)消耗在电枢电路的总电阻上I2(Ra+RW)。 (2)制动时, n与T成正比 ,所以转速n 下降时,T也下降,故 低速时制动效果差,为加强制动效果,可减少RW,以增大 制动转矩T ,此即多级能耗制动 C Φ n T CT ΦN I a CT ΦN e N , T n Ra RW
电机与拖动基础第三章 直流电机原理(第二部分)

表示。每个元件首、末端所连两个换向片之间的跨 距是换向器节距yk,用换向片数来表示。
y=yk=1 (3)第二节距y2:连至同一个换向片的两个元件边 之间的距离,用虚槽数表示。
y2=y1-y
τ
•3
2. 单叠绕组的展开图
实例: 已知一台电机的极数2P=4, Ze=S=K=16,画出它的右行单叠 绕组的展开图。
额定电流
额定电磁转矩
•18
3.5 电枢电动势与电磁转矩
直流发电机和电动机电枢电动势与电磁转矩:
电枢电动势—输出电动势(与电枢 电流同方向) 电磁转矩—制动性转矩(与转速方 向相反)
电枢电动势—反电动势(与电枢电 流反方向)
电磁转矩—拖动性转矩(与转速方 向相同)。
电枢电动势的方向由电机的转向和主磁场的方向决定 电磁转矩的方向由电枢电流和主磁场的方向决定
•19
3.5.3 直流电机的电枢反应
Bδ τ
如磁路不饱和,总磁通量不变。但磁路饱和时,总磁通要降低, 称为去磁效应。
• 电枢磁通势改变气隙磁密分布及 每极磁通量大小的现象称为电枢 反应。
•06:50 •20
3.5.1 电枢电动势
电枢电动势是指直流电机正、负电刷之间的 感应电动势,也就是电枢绕组每个支路里的感 应电动势
一个极距范围内的平均磁密:Bav
li
一根导体的平均电动势: eav Bavliv
v 2 p n 60
eav
(
li
)li (2 p
n) 60
2 p
n 60
电枢电动势:Ea
根据感应电动势公式,气隙每极磁通Φ为
电机与拖动基础第三章资料

第三章 变压器
二、额定值
额定容量 SN ( kVA )
额定电流 I1N / I2N ( A )
指铭牌规定的额定使用条件指在额定容量下,允许长期通过的额定 下所能输出的视在功率。 电流。在三相变压器中指的是线电流
额定电压U1N / U2N ( kV ) 指长期运行时所能承受的工作电压
U1N 是指一次侧所加的额定电压,U2是N 指一次侧加额定电压时二 NhomakorabeaΦ
i1
U1
i2
u1
只要(1)磁通有
u1
e1
e2 u2
Z
L
变化量;(2)一、二 次绕组的匝数不同,
u2 就能达到改变压的
U2
目的。
第三章 变压器
二、分类 按用途分:电力变压器和特种变压器。 按绕组数目分:单绕组(自耦)变压器、双绕组变压
器、三绕组变压器和多绕组变压器。
按相数分:单相变压器、三相变压器和多相变压器。 按铁心结构分:心式变压器和壳式变压器。 按调压方式分:无励磁调压变压器和有载调压变压器。
PFe Bm2 f 1.3
空载损耗约占额定容量的0.2%~1%,而且随变压器容量的 增大而下降。为减少空载损耗,改进设计结构的方向是采用优 质铁磁材料:优质硅钢片、激光化硅钢片或应用非晶态合金。
第三章 变压器
3.2.3 空载时的电动势方程、等效电路和相量图
一、电动势平衡方程和变比 1、电动势平衡平衡方程 (1)一次侧电动势平衡方程
第三章 变压器
变压器是一种静止电器,它通过线圈间的电磁感应,将 一种电压等级的交流电能转换成同频率的另一种电压等 级的交流电能.
3.1 变压器的基本工作原理和结构 3.2 单相变压器的空载运行 3.3 单相变压器的负载运行
《电机及拖动基础》课件第3章

图3-1 变压器的工作原理示意图
当一次绕组外加电压为u1的交流电源,二次绕组接负载时, 一次绕组将流过交变电流i1,并在铁芯中产生交变磁通Φ,该 磁通同时交链一、二次绕组,并在两绕组中分别产生 感应电动势e1、e2,从而在二次绕组两端产生电压u2和电流i2。 通常按电工惯例规定各物理量的正方向如图3-1所示。若不计 变压器一、二次绕组的电阻和漏磁通,不计铁芯损耗,即认 为是理想变压器,根据电磁感应定律可得
图3-13 变压器的负载运行原理图
3.3.1 负载运行时的物理情况
1. 电磁关系
故变压器负载运行时,铁芯中的主磁通是由一、二次绕组
的磁动势
共同建立的,负载运行时的电磁关系可用
图3-14 表示。
图3-14 变压器负载运行时的电磁关系
2. 感应电动势 由主磁通产生的感应电动势为式(3-8),由漏磁通产生的感 应电动势为
2. 变压器的额定值
1) 额定容量SN 额定容量SN是指变压器在额定工作条件下输出能力的保证 值,即视在功率,单位为 V·A 或 kV·A。对三相变压器而言, 额定容量指三相容量之和。
2) 额定电压U1N和U2N 额定电压U1N是根据变压器的绝缘强度和允许发热条件规 定的一次绕组允许施加的电压;U2N是指变压器一次绕组加额 定电压,二次绕组开路时的端电压, 单位为V或kV。对三相 变压器而言,额定电压是指线电压。
(3-10)
3) 空载电流
变压器的空载电流 包含两个分量,一个是无功分量
,与主磁通 同相,其作用是建立变压器的主磁通,因
11级电机与拖动复习题

11级电机与拖动复习题电机与拖动基础复习题第三章直流电机一、单项选择题1.直流电动机的电刷的功用是( )。
a.清除污垢b.引入直流电压、电流c.引出直流电压、电流d.引出交流电压2.发电机的用途是将( )转换为( ),电动机的用途是将( )转换为( )。
a.机械能b.电能3.直流电动机的机械特性是指电动机( )与( )的关系。
a.转差率Sb.主磁通φc.电机转速nd.电枢电流Iae.电磁转矩Tem4.直流电动机的铁损是指电枢铁心的( )损耗和( )损耗。
a.电枢绕组b.摩擦损耗c.涡流d.磁滞e.电压损耗f.杂散损耗5.直流发电机的理论基础是( )定律。
a.基尔霍夫b.全电流c.电磁感应d.欧姆6.直流电机作发电机运行时a. E a<="" p="">b. E a<="" p="">c. E a>U,T em与n方向相反d. E a>U,T em与n方向相同7. 直流电机由主磁通感应的电动势存在于( )a. 励磁绕组b. 电枢绕组c. 换向极绕组d. 励磁绕组和换向极绕组8.要改变并励直流电动机的转向,可以()a.增大励磁b.改变电源极性c.改接励磁绕组与电枢的联接d.减小励磁9.直流并励电动机起动时,起动电阻应置于a.零位置b.中间位置c.最大位置d.任意位置10.直流电动机的额定功率是指直流电动机在额定运行时,其轴上( )a.输入的机械功率b.输出的机械功率c.输入的电磁功率d.输出的电磁功率11.直流发电机电枢导体中的电流是( )a.直流b.脉动直流c.交流d.无法确定12.并励直流发电机是指:()a. 励磁绕组和电枢绕组并联b.励磁绕组和换向极绕组并联c.换向极绕组和电枢绕组并联d.励磁绕组和起动电阻并联13. 和交流电机相比,直流电机的优点是:():a.直流电机的结构比交流电机简单b.直流电机便于调速c.直流电机维护比交流电机简单d.直流电机的输出功率比交流电机大14.直流发电机的电刷装置的作用是()a. 将励磁电源引出励磁绕组b.将励磁电源送入电枢绕组c. 整流并将电枢绕组的感应电势引出d.以上均不对 16.直流发电机的工作原理基于()a.基尔霍夫定律b.电磁感应定律c.电磁力定律d.欧姆定律 17.左手定则用于判定()a.正在做切割磁力线运动的导体产生感应电势的方向b. 通电线圈的磁力线方向c. 处在磁场中的载流导体受力方向d.以上三点都不是二、判断题1.直流电动机的换向极的作用是为了改变电动机的旋转方向.( )2.直流发电机和交流发电机都是将机械能转换为电能的装置.( )3.直流电动机机械特性的斜率与电枢电阻成正比,电枢电阻大,其机械特性的斜率也大,机械特性就软。
电机拖动第三章

由图可见,位能性恒转矩负载的转矩不随转速 方向的改变而改变。无论电机正、反转,负载转 矩始终为单一方向。
B、通风机负载特性 特点:
负载转矩基本上和转速的平方成正比,
即
TL Kn
2
例:通风机、水泵及油泵等,负载转动时, 其中空气、水、油等介质对机器叶片的 阻力基本上和 2 成正比。
n
C、恒功率负载的转矩特性 恒功率负载:如 车床、恒张力卷 取机,随着卷取 直径增大,力矩 增大。但为了保 持张力不变,线 速度应不变,相 应地转速就要降 低,结果是功率 不变。
2
当电机工作在A点时,
TemA TLA
则有:
GD2 dn Tem TL 375 dt
考虑到微小增量为在A点的偏 导数乘上 n ,上式为
Tem n
nA
TL n n
nA
GD2 dn n 375 dt
整理为线性微分方程
Tem n TL n
为了简化计算,把多轴复杂系统等效成
一个单轴简单系统,方法是把电机轴后面 的传动机构和工作机构部分(如下图中虚
线框部分所示)都折算到电机轴上,用一
个等效负载来代替它,这样就可以用单轴
系统的运动方程式来研究多轴系统,这时
运动方程式为
折算
折算方向:一般是从生产机械轴向电动 机轴折算。原因是研究对象是电动机。 且电动机轴一般是高速。根据传送功率 不变的原则,高速轴上的负载转矩数值 小。 折算的原则是:确保折算前后系统所传 递的功率或系统储存的动能不变。
例3-2: 用稳定运行的概念判断图中 的A点是否为稳定运行点?
系统原在A点平衡运转
TL1 TL 2
n nA
Tem TL1
电机与电力拖动基础教程第3章(1)

反抗性负载转矩特性 n
n=f(TL)
0
TL
T
位能性负载转矩特性
第3章 章
返 回
上 页
下 页
⑵恒功率负载转矩特性
当转速n变化时,负载功率基本不变, 当转速 变化时,负载功率基本不变, 变化时 TL的大小基本上与转速 成反比 的大小基本上与转速n成反比
P2 1 TL = 9.55 ∝ n n
dT ∆n α= , = β dn ∆T
α越大( β越小),特性越硬,称为硬特性,即T 硬特性, 硬特性 变化时, 的变化不大。 变化时,∆n 的变化不大。 额定转速变化率:额定转速降对 额定转速的比值用百分数表示, 即:
△n
∆nN n0 − nN ∆nN % = ×100% = ×100% nN nN
第3章 章
返 回
上 页
下 页
3.改变磁通时的人为特性 改变磁通时的人为特性
条件:当U=UN, Φ< ΦN,电枢外串电阻R =0时,有
UN Ra n= − T 2 CeΦ CeCTΦ
n
一族直线,但既不平行, 一族直线,但既不平行,又非放射形
ΦN>Φ1>Φ2 Φ Φ Φ2 Φ1 ΦN
UN Ia
n Ea
第3章 章
下 页
概述
直流电动机的运行情况:起动、调速、制动 直流电动机的运行情况:起动、调速、 分析直流电动机的运行情况的基础 直流电动机的机械特性 电力拖动:电动机作为原动机, 电力拖动:电动机作为原动机,生产机械是 负载,电动机带动生产机械运转的拖动方式称 负载, 电力拖动。 电力拖动。 分析直流电动机的电力拖动的基础 直流电动机的机械特性、 直流电动机的机械特性、系统旋转运动 的三种状态、 的三种状态、负载的机械特性
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二节 生产机械的负载转矩特性
生产机械运行时常用负载转矩标志其负载的大小。不同的生产机 械转矩随转速变化规律不同,用负载转矩特性来表征,即生产机械的 转速n与负载转矩TL之间的关系n=f(TL)。各种生产机械特性大致可分 为以下三种类型。 一、恒转矩负载特性
恒转矩负载是指负载转矩TL的大小不随转速变化,TL=常数,这 种特性称为恒转矩负载特性。它有反抗性和位能性两种: 1.反抗性恒转矩负载
为恒定值,即
就是说,负载转矩与转速成反比。例如,一些机床切削加工, 车床粗加工时,切削量大(TL大),用低速档;精加工时,切削量小 (TL小),用高速档。恒功率负载特性曲线如图3-7所示。
三、通风机型负载特性 通风机型负载的特点是负载转矩的大小与转速n的二次方成正比,
即
式中K——比例常数。 常见的这类负载如鼓风机、水泵、液压泵等,通风机型负载特性
本章中首先介绍电力拖动系统的运动方程式,然后介绍生产机械 的转矩特性和三相异步电动机的机械特性,最后主要研究三相异步电 动机拖动应用的三大问题——起动、制动、调速。
第一节 电力拖动系统的运动方程式
电力拖动系统中所用的电动机种类很多,生产机械的性质也各不 相同。因此,需要找出它们普遍的运动规律,予以分析。从动力学的 角度看,它们都服从动力学的统一规律。所以,我们首先研究电力拖 动系统的动力学,建立电力拖动系统的运动方程式。 一、单轴电力拖动系统的运动方程式
曲线如图3-8所示。 必须指出,以上三类是典型的负载特性,实际生产机械的负载特
性常为几种类型负载的综合。例如起重机提升重物时,电动机所受到 的除位能性负载转矩外,还要克服系统机械摩擦所造成的反抗性负载 转矩,所以电动机轴上的负载转矩TL应是上述两个转矩之和。
第三节 三相异步电动机的机械特性
三相异步电动机的机械特性是描述电力拖动系统各种运行状态 的工具,是指转速和电磁转矩之间的关系,因此先研究三相异步电 动机的电磁转矩。 一、三相异步电动机的电磁转矩表达式
无论正向还是反向运动,T与n同向时,为拖动转矩;T与n反向时, 为制动转矩。TL也同理。 对正向运动而言,电力拖动系统的运动状态分析如下: 1)当T=TL时,dn/dt=0,则n=0或n=常数,即电力拖动系统处于静止不 动或匀速运行的稳定状态。 2)当T>TL时,dn/dt>0,电力拖动系统处于加速状态,即处于过渡 过程中。 3)当T<TL时,dn/dt<0,电力拖动系统处于减速状态,也是过渡过 程。
与直线运动时相似,做旋转运动的电力拖动系统运动平衡关系, 即运动方程式为(忽略T0)
式中T——电动机的拖动转矩(电磁转矩)(N·m); TL——生产机械的阻力矩(负载转矩)(N·m); G——转动体所受的重力(N),G=mg; D——转动体的惯性直径(m); GD2——物体的飞轮力矩(N·m2),它是电动机飞轮力矩和生产机械 飞轮力矩之和,为一个整体的物理量,反映了转动体的惯性大小。 电动机和生产机械各旋转部分的飞轮力矩可在相应的产品目录中查 到。
所谓单轴电力拖动系统,就是电动机输出轴直接拖动生产机械运 转的系统,如图3-2所示。
根据牛顿第二定律,物体作直线运动时,作用在物体上的拖动力 F总是与阻力FL以及速度变化时产生的惯性力ma所平衡。平衡方程式 写为
式中F——拖动力(N); FL——阻力(N); m——物体的质量(kg); a——物体获得的加速度(m/s2),a=dv/dt; v——物体运动的线速度(m/s)。
由此可知,系统在T=TL稳定运行时,一旦受到外界的干扰,平 衡被打破,转速将会变化。对于一个稳定系统来说,要求具有恢复 平衡状态的能力。
当T-TL=常数时,系统处于匀加速或匀减速运动状态,其加速度 或减速度dn/dt与飞轮力矩GD2成反比。飞轮力矩GD2越大,系统惯性 越大,转速变化就越小,系统稳定性好,灵敏度低;惯性越小,转 速变化越大,系统稳定性差,灵敏度高。 注意:对反向运动,dn/dt<0时,电力拖动系统的运动状态是反向 加速;dn/dt>0时,是反向减速。
产机械运动的方向变化与否,负载转矩的大小和方向始终不变。例如 起重设备提升重物时,负载转矩为阻力矩,其作用方向与电动机旋转 方向相反;当下放重物时,负载转矩变为驱动转矩,其作用方向与电 动机旋转方向相同,促使电动机旋转。位能性恒转矩负载特性曲线如 图3-6所示。
二、恒功率负载特性 恒功率负载的特点是,当转速变化时,负载从电动机吸收的功率
二、电力拖动系统运动状态的分析 电力拖动系统的运动状态,即是处于静态(静止不动或匀速)还是
处于动态(加速或减速),是用运动方程式来判断的。 先任意规定某一旋转方向为正向运动,即n>0,则反向运动n<0。
运动方程式中电磁转矩T和负载转矩TL的正、负有如下规定: T帮助正向运动为正,反对正向运动为负;T帮助反向运动为负,反对 反向运动为正。TL反对正向运动为正,帮助正向运动为负;TL反对反 向运动为负,帮助反向运动为正。若转矩为负,把负号提到转矩符号 前面,如-T。
反抗性恒转矩负载的特点是,负载转矩的大小不变,但负载转矩 的方向始终与生产机械运动的方向相反,总是阻碍电动机的运转。当 电动机的旋转方向改变时,负载转矩的作用方向也随之改变,永远是 阻力矩。属于这类特性的生产机械有轧钢机和机床的平移机构等。反 抗性恒转矩负载特性曲线如图3-5所示。
2.位能性恒转矩负载 位能性恒转矩负载的特点是,负载转矩由重力作用产生,不论生
第三章 三相异步电动机的电力拖动
凡是由电动机拖动生产机械,完成一定工艺要求的系统,都称为 电力拖动系统。生产机械称为电动机的负载。电力拖动系统一般由控 制设备、电动机、传动机构、生产机械和电源五部分组成,如图3-1 所示。
电动机作为原动机,通过传动机构带动生产机械执行某一生产任 务;控制设备由各种控制电机、电器、自动化元件及工业控制计算机、 可编程序控制器等组成,用以控制电动机的运动,从而对生产机械的 运动实现自动控制;电源的作用是向电动机和其他电气设备供电。最 简单的电力拖动系统如日常生活中的电风扇、洗衣机、工业生产中的 水泵等;复杂的电力拖动系统如轧钢机、电梯等。