新人教版八年级(下册)数学课堂练习题下
新课程课堂数学人教版八年级下册同步练习册参考答案

新课程课堂数学人教版八年级下册同步练习册参考答案二、1、,三、1、 2、(1)(2) 3、§16.1.2(一)一、1、C 2、D 3、A二、1、 2、1 3、,三、(1)(2)§16.1.2(二)一、1、C 2、C 3、C二、1、 2、 3、三、1、(1)(2)(3)2、(1),(2),§16.2.1(一)一、1、D 2、A 3、D二、1、 2、 3、三、1、 2、 3、§16.2.1(二)一、1、B 2、A 3、C二、1、 2、 3、三、1、原式=,当时原式=2 2、 3、§16.2.2(一)一、1、B 2、B 3、C二、1、 2、0 3、三、1、 2、 3、0§16.2.2(二)一、1、C 2、B 3、A二、1、 2、三、1、 2、 3、,§16.2.2(三)一、1、A 2、A二、1、 2、 3、三、1、, 2、, -5§16.2.3(一)一、1、D 2、B 3、A二、1、 2、1;;9 3、三、1、 2、-5 3、§16.2.3(二)一、1、B 2、B 3、A二、1、1.514× 2、4.3× 3、-8.1×三、1、 2、一、1、C 2、A 3、D二、1、9 2、3 3、x =-14三、1、 2、 3、§16.3(二)一、1、A 2、D 3、-12、二、1、x =5 2、 3、三、1、 2、无解 3、无解§16.3(三)一、1、A 2、B 3、B二、1、 2、三、1、无解 2、§16.4(一)一、1、D 2、B 3、C二、1、 2、; 3、3三、1、120千米/时2、先遣队6千米/时,大队5千米/时§16.4(二)一、1、B 2、B二、1、 2、三、1、15人 2、9天一、1.C 2. D 3.D二.1. 2 2. 如: 3.三、1.(1)略(2)略§17.1.2(二)一、1.B 2.C 3.B二、1.< 2.(2,4),(-2,-4) 3. -4三.1.-3, 2. (1)y=-,(2)-6§17.2(一)一、1.D 2.C 3.B二、1.二、四 2.略 3.(2,3)三、1.,100 2.解:(1)把A(m,2)代入y=得2=∴m=3∴y=,把(2,n)代入y=得n=3(2)由(1)知y=mx-n为y=3x-3与x轴交点的纵坐标为0,由0=3x-3得x=1∴C(1,0),C关于y轴的对称点Cˊ的坐标为(-1,0).§17.2(二)一、1.D2.B 3.B二、 1. 2 2. -2(提示:由双曲线经过A、B得,解得=2,由经过A、B得解得,-2)3. 0.5三、1、(1)设A、B两地之间的路程为千米,则=75×4=300(千米)∴与之间的函数关系式是.(2)当=3时,则有3=,∴返回时车速至少是100千米/时.2解:(1)∵点在反比例函数的图象上,∴∴反比例函数的表达式为.∵点也在反比例函数的图象上,∴,即.把点,点代入一次函数中,得解得一次函数的表达式为.(2)在中,当时,得.直线与轴的交点为.∵线段OC将分成和,一、1. B2.C 3.A二、1.勾股定理, 2.(1)5;(2) 3.76三、150§18.1(二)一、1.C 2.A3.C二、1. 2.25三、1. 米 2.953米§18.1(三)一、1.C 2.C二、1.2. 3.8三、§18.2(一)一、1.B2. A二、1.同位角相等,两条直线平行 2. 24三、1.(1)是;(2)是;(3)是;(4)不是2.(1)两条直线平行,内错角相等;成立;(2)如果两个有理数的绝对值相等,那么它们也相等;不成立;(3)如果两个角的补角相等,那么这两个角也相等;成立;(4)到线段两端点的距离相等的点在这条线段的垂直平分线上;成立.§18.2(二)一、1.B2.A二、1.3,4,5 2.①②③三、符合要求一、1.B 2.D 3.D二、1.分别平行,□ABCD 2、53、(1)∠A=60°,∠B=120°,∠D=120°;(2)∠A=110°,∠B=70°;(3)∠D=135°.三、1.解:∵四边形ABCD是平行四边形∴AD//BC,AB//CD∴∠A+∠B=180°,∠A+∠D=180°,∠C+∠D=180°∵∠A=120°∴∠B=60°,∠D=60°∴∠C=120°2、证:∵四边形ABCD是平行四边形∴ABCD∴∠ABD=∠CDB∵AE⊥BD,CF⊥BD ∴∠AEB =∠CFD=90°在△ABE和△CFD中∴△ABE≌△CDF(AAS) ∴AE=CF§19.1(二)一、1、A ;2、 A ;3、 A ;二、1.互相平分、相等、互补;2.45 cm ;3.16;三、1.证:∵四边形ABCD是平行四边形∴AD//BC∴∠DAE+∠AEC=180°∵AE//CF ∴∠DAE+∠AFC = 180°∴∠AFC =∠AEC2、证:∵四边形ABCD是平行四边形∴AD//BC,OD=OB ∴∠E=∠F在△ODE和△OBF中∴△ODE≌△OBF ∴OE=OF§19.1.2(一)一、1、B 2、D 3、D 4 、B二、1. 8, 4 2. 4,5三、1.证:∵四边形ABCD是平行四边形∴AO=CO,BO=DO∵BE=DF∴OE=OF∴四边形AECF是平行四边形2、证:∵四边形ABCD是平行四边形∴ABCD ,ADBC ∴∠FAB=∠ADC=∠DCE在△ABF和△CDE中∴△ABF≌△CDE∴DE=BF,CE=AF ∴BE=DF又∵AD∥BC 即FD∥BE∴四边形FBED是平行四边形。
人教版八年级数学下册《求二次根式中的字母的值》练习题(附带答案)

人教版八年级数学下册《求二次根式中的字母的值》练习题(附带答案)类型一根式是整数求字母1则正整数n的最小值为()A.1B.2C.3D.42则正整数n的最小值是()A.2B.4C.6D.8【详解】解:242n=是整数即6n是完全平方数;的最小正整数值为6.本题主要考查了二次根式的定义3.已知n是一个正整数则n的最小值是()A.3B.5C.15D.45【答案】B【分析】由题意可知45n是一个完全平方数从而可求得答案.4则正整数n的最小值为()A.2B.3C.4D.55则a能取的最小整数为()A.0B.1C.2D.3【详解】解:41a+成立解得a≥-又41a+是整数a能取的最小整数为0故选:A.【点睛】本题考查了二次根式有意义的条件键.6.当x=_________时其最小值为_________.类型二根据根式的非负性求字母7.若|3﹣a|0 则a+b的立方根是_____.a+则ab的值为________.8.若a b为实数且满足40-【答案】89.若,x y 为实数 且满足26||0x y -- 则2021x y ⎛⎫ ⎪⎝⎭的值是________.1030b += 则(),P a b --在______象限.【答案】二【分析】根据非负数的性质得到a b 的值 得到点P 的坐标 即可知道点P 所在的象限.【详解】解:根据题意得20a -= 30b +=2a ∴= 3b =-()2,3P ∴-∴点P 在第二象限故答案为:二.【点睛】本题考查了非负数的性质点的坐标掌握两个非负数的和为0则这两个非负数分别等于0是解题的关键.11.若a、b、c是∵ABC的三边长且a、b、c|b-12|+(c-13)2=0.(1)求出a、b、c的值.(2)∵ABC是直角三角形吗?请说明理由.)5a-+13;是直角三角形理由如下:22512+=22a b∴+=∴∵ABC是直角三角形.【点睛】本题考查二次根式的非负性、绝对值的非负性、平方的非负性、勾股定理的逆定理等知识是重要考点12.已知a b0b=(1)a=_______ b=______(2)把a b的值代下以下方程并求解关于x的方程()221a xb a++=-类型三两根式中的式子互为相反数题型130=则x的取值范围是______.【答案】4x=【分析】根据二次根式有意义的条件列出不等式组求解即可.【详解】根据题意得40 40 xx-≥⎧⎨-≥⎩①②解①得4x≥;解②得4x≤;∵4x=所以x的取值范围是4x=故答案为:4x=【点睛】本题考查的是二次根式有意义的条件掌握二次根式中的被开方数是非负数是解题的关键.146y=求x y的算术平方根________.【答案】6【分析】根据被开方数是非负数可得不等式组根据解不等式组可得答案.【详解】解:∵2020xx-≥⎧⎨-≥⎩∵22xx≤⎧⎨≥⎩即=2x;当=2x时y=-6xy=(-6)2=36.所以x y的算术平方根为6.【点睛】本题考查了二次根式有意义的条件利用被开方数是非负数得出不等式组是解题关键.15.已知a b都是实数2b=则b a的值为___________.【详解】解:16 m=220,160n n-20=4时40n+=不符合题意317.若y 3 则52x y +的平方根为 _____.【答案】4±【详解】由二次根式有意义可得2x = 代入得3y = 再求出52x y +即可得出52x y +的平方根.【解答】解:由二次根式有意义可得 20x -≥ 420x -≥解得2x =∵3y =把23x y ==,代入52x y +得 5216x y +=所以52x y +的平方根为4±.故答案为:4±.【点睛】本题主要考查了二次根式有意义的条件及平方根 解题的关键是利用二次根式有意义求出x 的值.18b+6 则a ﹣b 的立方根是_____.19.已知 那么x y =______.类型四 有理数无理数综合求字母20.阅读材料并解决下列问题:已知a 、b 是有理数 并且满足等式52b =a 求a 、b 的值.解:∵52b =a即5(2)b a =-∵2b ﹣a =5 ﹣a =23解得:a =﹣213,36b =(1)已知a 、b 是有理数 (1b -= 1 则a = b = .(2)已知x 、y 是有理数 并且满足等式x 2y +-x +18 求xy 的平方根.21.先阅读第(1)题的解法 再解答第(2)题.(1)已知ab 是有理数并且满足等式52b a=求a b 的值. 解:因为52b a = 所以5(2)b a =-+所以2523b aa -=⎧⎪⎨-=⎪⎩解得 a b =⎧⎨=⎩____ (2)已知x y 是有理数 并且满足等式2217x y -=- 求x y +的值.∵54x y =⎧⎨=⎩或54x y =-⎧⎨=⎩所以9x y +=或1x y +=-【点睛】此题考查了二元一次方程组和平方根的求解 理解题意列出方程组是解题的关键.22.先阅读下面材料 再解答问题:材料:已知a b 是有理数并且满足等式52b a =求a b的值. 解:∵52b a = ∵5(2)b a =- ∵a b 是有理数∵2523b a a -=⎧⎪⎨-=⎪⎩解得23136a b ⎧=-⎪⎪⎨⎪=⎪⎩ 问题:(1)已知a b 是有理数5a += 则=a ________ b =________.(2)已知x y 是有理数 并且满足等式795x y -=-+ 求x y 的值.23.先阅读第(1)题的解法 再解答第(2)题.(1)已知a 、b 是有理数 并且满足等式2b =求a 、b 的值.解:因为2b =. 即 ()2b-a =所以22b-a 5-a 3,== 解得:216a -b 33==,(2)设x 、y 是有理数 并且满足2x 2y 17+=,求x+y 的值.24.先阅读第(1)题的解法 再解答第(2)题.(1)已知a 、b 是有理数 并且满足等式5-a=2b +-a 求a 、b 的值. 解:因为5-a =2b +. 即5-a =(2b -a )+. 所以2b -a =5 -a =. 解得:a =- b =.(2)设x 、y 是有理数 并且满足x 2+y +2y =-4+17 求x +y 的值.【答案】1或-9 【详解】根据规律:等式左右两边的有理数部分和二次根式分别相同 建立方程 然后解方程即可. 解:因为x 2+y +2y =-4+17 所以(x 2+2y )+y =17-4所以x 2+2y =17 y =-4解得x =5 y =-4或x =-5 y =-4.所以x +y =1或x +y =-9.25.先阅读(1)的解法 再解答第(2)题:(1)已知a b 是有理数 并且满足等式2b=a +5- 求a b 的值;解:∵2b=a +5- ∵2b -a =5-即(2b-a=5-又∵a b为有理数∵2b-a也为有理数∵252b aa-=⎧⎨=-⎩解得232ab=-⎧⎪⎨=⎪⎩(2)已知m n是有理数且m n满足等式m+2n2-n+6)+15求)100n的立方根.。
人教版八年级数学下《平行四边形的性质(第1课时)》课堂练习

《平行四边形的性质(第1课时)》课堂练习班级:___________姓名:___________得分:___________一、选择题(每小题6分,共30分)1.平行四边形ABCD中,有两个内角的比为1:2,则这个平行四边形中较小的内角是().A. 45︒ B. 60︒ C. 90︒ D. 120︒2.如图,四边形ABCD为平行四边形,蚂蚁甲沿A-B-C从A到C,蚂蚁乙沿B-C-D从B到D,两只蚂蚁速度相同且同时出发,则下列结论中,错误的是()A. 甲到达B点时,乙也正好到达C点B. 甲、乙同时到达终点C. 甲、乙所经过的路程相同D. 甲、乙所用的时间相同第2题图第3题图3.如图,平行四边形错误!未找到引用源。
中,错误!未找到引用源。
,错误!未找到引用源。
,错误!未找到引用源。
于错误!未找到引用源。
,则错误!未找到引用源。
等于().A. 错误!未找到引用源。
B. 错误!未找到引用源。
C. 错误!未找到引用源。
D. 错误!未找到引用源。
4.如果四边形ABCD是平行四边形,AB=6,且AB的长是四边形ABCD周长的316,那么BC的长是()A. 6B. 8C. 10D. 165.在□ABCD中,错误!未找到引用源。
,错误!未找到引用源。
平分错误!未找到引用源。
交错误!未找到引用源。
于点错误!未找到引用源。
,错误!未找到引用源。
平分错误!未找到引用源。
交错误!未找到引用源。
于点错误!未找到引用源。
,且错误!未找到引用源。
,则错误!未找到引用源。
的长为()A. 错误!未找到引用源。
B. 错误!未找到引用源。
C. 错误!未找到引用源。
或错误!未找到引用源。
D. 错误!未找到引用源。
或错误!未找到引用源。
二、填空题(每小题6分,共30分)6.在□ABCD中,∠B +∠D=200°,则∠A=__________°.7.平行四边形两邻边长分别为20和16,若两条较长边之间的距离为6,则两条较短边之间的距离为_______.8.在□ABCD中,若∠A∶∠B=1∶2,那么∠D-∠C=__________.9.已知:在平行四边形错误!未找到引用源。
人教版八年级数学下册《利用勾股定理解决折叠问题的技巧》练习题(附带答案)

人教版八年级数学下册《利用勾股定理解决折叠问题的技巧》练习题(附带答案)类型一 利用勾股定理解决三角形的折叠问题1.如图 △ABC 中 ∠ACB =90° AC =8 BC =6 将△ADE 沿DE 翻折使点A 与点B 重合 则CE 的长为 .思路引领:设CE =x 则AE =BE =8﹣x 在Rt △BCE 中 由勾股定理可得62+x 2=(8﹣x )2 即可解得答案.解:设CE =x 则AE =BE =8﹣x在Rt △BCE 中 BC 2+CE 2=BE 2∴62+x 2=(8﹣x )2解得x =74故答案为:74. 总结提升:本题考查直角三角形中的折叠问题 解题的关键是掌握折叠的性质 熟练应用勾股定理列方程解决问题.2.(2021秋•介休市期中)如图所示 有一块直角三角形纸片 ∠C =90° AC =8cm BC =6cm 将斜边AB 翻折 使点B 落在直角边AC 的延长线上的点E 处 折痕为AD 则CE 的长为 cm .思路引领:根据勾股定理可将斜边AB 的长求出 根据折叠的性质知 AE =AB 已知AC 的长 可将CE 的长求出.解:在Rt △ABC 中∵∠C=90°AC=8cm BC=6cm∴AB=√AC2+BC2=10cm根据折叠的性质可知:AE=AB=10cm∵AC=8cm∴CE=AE﹣AC=2cm即CE的长为2cm故答案为:2.总结提升:此题考查翻折问题将图形进行折叠后两个图形全等是解决折叠问题的突破口.3.(2020秋•金台区校级期末)如图在△ABC中∠ACB=90°点E F在边AB上将边AC沿CE翻折使点A落在AB上的点D处再将边BC沿CF翻折使点B落在CD的延长线上的点B′处(1)求∠ECF的度数;(2)若CE=4 B′F=1 求线段BC的长和△ABC的面积.思路引领:(1)由折叠可得∠ACE=∠DCE=12∠ACD∠BCF=∠B'CF=12∠BCB' 再根据∠ACB=90°即可得出∠ECF=45°;(2)在Rt△BCE中根据勾股定理可得BC=√41设AE=x则AB=x+5 根据勾股定理可得AE2+CE2=AB2﹣BC2即x2+42=(x+5)2﹣41 求得x=165得出AE的长和AB的长再由三角形面积公式即可得出S△ABC.解:(1)由折叠可得∠ACE=∠DCE=12∠ACD∠BCF=∠B'CF=12∠BCB'又∵∠ACB=90°∴∠ACD+∠BCB'=90°∴∠ECD+∠FCD=12×90°=45°即∠ECF=45°;(2)由折叠可得:∠DEC=∠AEC=90°BF=B'F=1 ∴∠EFC=45°=∠ECF∴CE=EF=4∴BE=4+1=5在Rt△BCE中由勾股定理得:BC=√BE2+CE2=√52+42=√41设AE=x则AB=x+5∵Rt△ACE中AC2=AE2+CE2Rt△ABC中AC2=AB2﹣BC2∴AE2+CE2=AB2﹣BC2即x2+42=(x+5)2﹣41解得:x=16 5∴AE=165AB=AE+BE=165+5=415∴S△ABC=12AB×CE=12×415×4=825.总结提升:本题主要考查了折叠变换的性质、勾股定理、三角形面积等知识;熟练掌握折叠变换的性质由勾股定理得出方程是解题的关键.4.(2022秋•安岳县期末)如图在△ABC中∠C=90°把△ABC沿直线DE折叠使△ADE与△BDE 重合.(1)若∠A=34°则∠CBD的度数为;(2)当AB=m(m>0)△ABC的面积为2m+4时△BCD的周长为(用含m的代数式表示);(3)若AC=8 BC=6 求AD的长.思路引领:(1)根据折叠可得∠1=∠A=34°根据三角形内角和定理可以计算出∠ABC=56°进而得到∠CBD=22°;(2)根据三角形ACB的面积可得12AC•BC=2m+4 进而得到AC•BC=4m+8 再在Rt△CAB中CA2+CB2=BA2再把左边配成完全平方可得CA+CB的长进而得到△BCD的周长;(3)根据折叠可得AD=DB设CD=x则AD=BD=8﹣x再在Rt△CDB中利用勾股定理可得x2+62=(8﹣x)2再解方程可得x的值进而得到AD的长.解:(1)∵把△ABC 沿直线DE 折叠 使△ADE 与△BDE 重合∴∠ABD =∠A =34°∵∠C =90°∴∠ABC =180°﹣90°﹣34°=56°∴∠CBD =56°﹣34°=22°故答案为:22°;(2)∵△ABC 的面积为2m +4∴12AC •BC =2m +4 ∴AC •BC =4m +8∵在Rt △CAB 中 CA 2+CB 2=BA 2 AB =m∴CA 2+CB 2+2AC •BC =BA 2+2AC •BC∴(CA +BC )2=m 2+8m +16=(m +4)2∴CA +CB =m +4∵AD =DB∴CD +DB +BC =m +4.即△BCD 的周长为m +4故答案为:m +4;(3)∵把△ABC 沿直线DE 折叠 使△ADE 与△BDE 重合∴AD =DB设CD =x 则AD =BD =8﹣x在Rt △CDB 中 CD 2+CB 2=BD 2x 2+62=(8﹣x )2解得:x =74AD =8−74=254.总结提升:此题主要考查了图形的翻折变换 以及勾股定理 完全平方公式 关键是掌握勾股定理 以及折叠后哪些是对应角和对应线段.5.(2021秋•章丘区期中)(1)如图① Rt △ABC 的斜边AC 比直角边AB 长2cm 另一直角边BC 长为6cm 求AC 的长.(2)拓展:如图②在图①的△ABC的边AB上取一点D连接CD将△ABC沿CD翻折使点B的对称点E落在边AC上.①AE的长.②求DE的长.思路引领:(1)在Rt△ABC中由勾股定理可求AB的长即可求解;(2)①由折叠的性质可得∠DEC=∠DBC=90°DE=DB EC=BC=6cm于是得到答案;②在Rt△ADE中由勾股定理可求DE的长.解:(1)设AB=xcm则AC=(x+2)cm∵AC2=AB2+BC2∴(x+2)2=x2+62解得x=8∴AB=8cm∴AC=8+2=10(cm);(2)①由折叠的性质可得∠DEC=∠DBC=90°DE=DB EC=BC=6cm∴∠AED=90°AE=AC﹣EC=4(cm);②设DE=DB=ycm则AD=AB﹣BD=(8﹣y)cm在Rt△ADE中AD2=AE2+DE2∴(8﹣y)2=42+y2解得:y=3∴DE=3(cm).总结提升:本题考查了翻折变换折叠的性质勾股定理利用勾股定理列出方程是本题的关键.类型二利用勾股定理解决长方形的折叠问题6.(2022•纳溪区模拟)如图在矩形ABCD中AB=5 AD=3 点E为BC上一点把△CDE沿DE翻折 点C 恰好落在AB 边上的F 处 则CE 的长为 .思路引领:利用勾股定理得出AF 的长度 再利用折叠的性质 在△BEF 中求解BE 的长 即可得出CE 的长度.解:在矩形ABCD 中 AB =5 AD =3 由折叠的性质可得:DF =DC =AB =5∴AF =√DF 2−AD 2=√52−32=4∴BF =AB ﹣AF =5﹣4=1设CE =x 则:EF =CE =x BE =BC ﹣CE =3﹣x在Rt △BEF 中 由勾股定理可得:12+(3﹣x )2=x 2解得:x =53∴CE =53故答案为:53. 总结提升:本题考查了折叠的性质、矩形的性质和勾股定理等知识点 解题的关键是利用AF 求出BF 的长度.7.(2021•郯城县校级模拟)如图 在长方形ABCD 中 AB =3cm AD =9cm 将此长方形折叠 使点D 与点B 重合 折痕为EF 则△ABE 的面积为( )cm 2.A .12B .10C .6D .15思路引领:由长方形的性质得BAE =90° 再由折叠的性质得BE =ED 然后在Rt △ABE 中 由勾股定理得32+AE2=(9﹣AE)2解得AE=4(cm)即可求解.解:∵四边形ABCD是长方形∴∠BAE=90°∵将此长方形折叠使点B与点D重合∴BE=ED∵AD=9=AE+DE=AE+BE∴BE=9﹣AE在Rt△ABE中由勾股定理得:AB2+AE2=BE2∴32+AE2=(9﹣AE)2解得:AE=4(cm)∴S△ABE=12AB•AE=12×3×4=6(cm2)故选:C.总结提升:本题考查了翻折变换的性质、矩形的性质以及勾股定理等知识;熟练掌握翻折变换的性质和矩形的性质由勾股定理得出方程是解题的关键.8.(2020春•余干县校级期末)如图把长方形纸片ABCD沿EF折叠使点B落在边AD上的点B'处点A落在点A'处.(1)试说明B'E=BF;(2)设AE=a AB=b BF=c试猜想a b c之间的关系并说明理由.思路引领:(1)根据折叠的性质、平行的性质及等角对等边即可说明;(2)根据折叠的性质将AE、AB、BF都转化到直角三角形△A'B'E中由勾股定理可得a b c之间的关系.(1)证明:由折叠的性质得:B'F=BF∠B'FE=∠BFE在长方形纸片ABCD中AD∥BC∴∠B'EF=∠BFE∴∠B'FE=∠B'EF∴B'F=B'E∴B'E=BF.(2)解:a b c之间的关系是a2+b2=c2.理由如下:由(1)知B'E=BF=c由折叠的性质得:∠A'=∠A=90°A'E=AE=a A'B'=AB=b.在△A'B'E中∵∠A'=90°∴A'E2+A'B'2=B'E2∴a2+b2=c2.总结提升:本题考查了翻折变换的性质、矩形的性质、等腰三角形的判定、勾股定理等知识;灵活利用折叠的性质进行线段间的转化是解题的关键.9.(2020秋•罗湖区校级期末)如图把一张长方形纸片ABCD折叠起来使其对角顶点A与C重合D 与G重合若长方形的长BC为8 宽AB为4 求:(1)DE的长;(2)求阴影部分△GED的面积.思路引领:(1)设DE=EG=x则AE=8﹣x在Rt△AEG中根据AG2+EG2=AE2构建方程即可解决问题;(2)过G点作GM⊥AD于M根据三角形面积不变性AG×GE=AE×GM求出GM的长根据三角形面积公式计算即可.解:(1)设DE=EG=x则AE=8﹣x在Rt△AEG中AG2+EG2=AE2∴16+x2=(8﹣x)2解得x=3∴DE=3.(2)过G 点作GM ⊥AD 于M则12•AG ×GE =12•AE ×GM AG =AB =4 AE =CF =5 GE =DE =3 ∴GM =125∴S △GED =12GM ×DE =185.总结提升:本题主要考查了折叠的性质、勾股定理以及三角形面积不变性 灵活运用折叠的性质、勾股定理等几何知识点来分析、判断、推理是解题的关键.类型三 利用勾股定理解决正方形的折叠问题10.(2019•黔东南州一模)如图 将边长为6cm 的正方形纸片ABCD 折叠 使点D 落在AB 边中点E 处 点C 落在点Q 处 折痕为FH 则线段AF 的长为( )A .32B .3C .94D .154思路引领:由正方形的性质和折叠的性质可得EF =DE AB =AD =6cm ∠A =90° 由勾股定理可求AF 的长.解:∵将边长为6cm 的正方形纸片ABCD 折叠 使点D 落在AB 边中点E 处∴EF =DE AB =AD =6cm ∠A =90°∵点E 是AB 的中点∴AE =BE =3cm在Rt △AEF 中 EF 2=AF 2+AE 2∴(6﹣AF )2=AF 2+9∴AF=9 4故选:C.总结提升:本题考查了翻折变换正方形的性质勾股定理利用勾股定理求线段的长度是本题的关键.11.如图将边长为8cm的正方形纸片ABCD折叠使点D落在BC边的中点E处点A落在点F处折痕为MN则线段CN的长是()A.3cm B.4cm C.5cm D.6cm思路引领:由折叠的性质可得DN=NE由中点的性质可得EC=4cm结合正方形的性质可得∠BCD=90°;设CN的长度为xcm则EN=DN=(8﹣x)cm接下来在直角△CEN中运用勾股定理就可以求出CN的长度.解:∵四边形MNEF是由四边形ADMN折叠而成的∴DN=NE.∵E是BC的中点且BC=8cm∴EC=4cm.∵四边形ABCD是正方形∴∠BCD=90°.设CN的长度为xcm则EN=DN=(8﹣x)cm由勾股定理NC2+EC2=NE2得x2+42=(8﹣x)2解得x=3.故选:A.总结提升:本题考查翻折变换的问题折叠问题其实质是轴对称对应线段相等对应角相等找到相应的直角三角形利用勾股定理求解是解决本题的关键.第二部分专题提优训练1.(2022秋•慈溪市校级期中)在Rt△ABC中∠B=90°AB=4 BC=8 D、E分别是边AC、BC上的点将△ABC沿着DE进行翻折点A和点C重合则EC=.思路引领:设EC =x 在Rt △ABE 中 由勾股定理得42+(8﹣x )2=x 2 即可解得答案.解:设EC =x 则BE =8﹣x∵将△ABC 沿着DE 进行翻折 点A 和点C 重合∴AE =EC =x在Rt △ABE 中 AB 2+BE 2=AE 242+(8﹣x )2=x 2解得x =5∴EC =5故答案为:5.总结提升:本题考查直角三角形中的翻折问题 解题的关键是掌握翻折的性质 能应用勾股定理列方程解决问题.2.(2021秋•靖江市期中)如图 在Rt △ABC 中 ∠C =90° D 是AB 的中点 AD =5 BC =8 E 是直线BC 上一动点 把△BDE 沿直线ED 翻折后 点B 落在点F 处 当FD ⊥BC 时 线段BE 的长为 .思路引领:分点F 在BC 下方 点F 在BC 上方两种情况讨论 由勾股定理可BC =4 由平行线分线段成比例可得BD AD =BP BC =DP AC =12 求出FP 由勾股定理可求BE 的长. 解:若点F 在BC 下方时 DF 与BC 交于点P 如图1所示:∵D 是AB 的中点∴BD =AD =5∴AB =2AD =10∵∠C =90° BC =8∴AC =√AB 2−BC 2=√102−82=6∵点D 是AB 的中点∵FD ⊥BC ∠C =90°∴FD ∥AC∴BD AD =BP BC =DP AC =12 ∴BP =PC =12BC =4 DP =12AC =3∵△BDE 沿直线ED 翻折∴FD =BD =5 FE =BE∴FP =FD ﹣DP =5﹣3=2在Rt △FPE 中 EF 2=FP 2+PE 2∴BE 2=22+(4﹣BE )2解得:BE =52;若点F 在BC 上方时 FD 的延长线交BC 于点P 如图2所示:FP =DP +FD =3+5=8在Rt △EFP 中 EF 2=FP 2+EP 2∴BE 2=64+(BE ﹣4)2解得:BE =10故答案为:52或10.总结提升:此题考查了折叠的性质、平行线的性质、直角三角形的性质以及勾股定理等知识 熟练掌握翻折变换的性质是解题的关键.3.如图 在Rt △ABC 中 AC =6 BC =8 D 为BC 上一点 将Rt △ABC 沿AD 折磨 点C 恰好落在AB 边上的E 点 求BD 的长.思路引领:由勾股定理求出AB=10 由折叠的性质得出CD=DE∠C=∠AED=90°AE=AC=6 得出BE=AB﹣AE=4 ∠BED=90°设CD=ED=x则BD=8﹣x在Rt△BDE中由勾股定理得出方程解方程即可.解:∵Rt△ABC中AC=6 BC=8∴AB=√62+82=10由折叠的性质得:CD=DE∠C=∠AED=90°AE=AC=6∴BE=AB﹣AE=4 ∠BED=90°设CD=ED=x则BD=8﹣x在Rt△BDE中由勾股定理得:x2+42=(8﹣x)2解得:x=3∴BD=8﹣3=5.总结提升:本题考查了翻折变换的性质、勾股定理等知识;熟练掌握翻折变换的性质由勾股定理得出方程是解题的关键.4.(2018秋•襄汾县校级月考)如图在Rt△ABC中∠C=90°AC=8 BC=6 按图中所示方法将△BCD沿BD折叠使点C落在边AB上的点C'处求AD的长及四边形BCDC′的面积.思路引领:利用勾股定理列式求出AB根据翻折变换的性质可得BC′=BC C′D=CD然后求出AC′设AD=x表示出C′D、AC′然后利用勾股定理列方程求解即可求出AD;然后根据三角形的面积公式计算即可求出四边形BCDC′的面积.解:∵∠C=90°AC=8 BC=6∴AB=√AC2+BC2=10由翻折变换的性质得BC′=BC=6 C′D=CD∴AC′=AB﹣BC′=10﹣6=4设CD=x则C′D=x AD=8﹣x在Rt△AC′D中由勾股定理得AC′2+C′D2=AD2即42+x2=(8﹣x)2解得x=3即CD=3∴AD=8﹣x=5;由折叠可知:S△BCD=S△BC′D∴四边形BCDC′的面积=2S△BCD=2×12×CD•BC=3×6=18.总结提升:本题考查了翻折变换的性质勾股定理此类题目熟记性质并利用勾股定理列出方程是解题的关键.5.(2021春•厦门期中)在矩形ABCD中AB=3 BC=4 E是AB上一个定点点F是BC上一个动点把矩形ABCD沿直线EF折叠点B的对应点B′落在矩形内部.若DB′的最小值为3 则AE=53.思路引领:连接DE则DB′+EB′≥DE由EB′=EB为定值故当D E B′三点共线时DB′最小利用勾股定理建立方程即可求解.解:如图1 连接DE由折叠性质可得:EB′=EB∵DB′+EB′≥DE∴DB′≥DE﹣EB′=DE﹣EB∵点E为定点∴EB为定值∴当D E B′三点共线时DB′最小且最小值为3∴DB′=3如图2∵四边形ABCD 为矩形∴∠A =90° AD =BC =4设AE =x 则:EB ′=EB =AB ﹣AE =3﹣x∴ED =EB ′+DB ′=3﹣x +3=6﹣x在Rt △AED 中 由勾股定理可得:x 2+42=(6﹣x )2解得:x =53∴AE =53故答案为:53. 总结提升:本题考查折叠的性质、矩形的性质、勾股定理等知识点 解题的关键是运用方程思想.6.(2021秋•城阳区校级月考)把一张矩形纸片(矩形ABCD )按如图方式折叠 使顶点B 和点D 重合 折痕为EF .若AB =3cm BC =5cm 则重叠部分△DEF 的面积是( )cm 2.A .2B .3.4C .4D .5.1思路引领:由矩形的性质得AD =BC =5cm CD =AB =3cm ∠A =90° 再由折叠的性质得A 'D =AB =3cm ∠A '=∠A =90° AE '=AE 设AE =xcm 则A ′E =xcm DE =(5﹣x )cm 然后在Rt △A 'DE 中 由勾股定理得出方程 解方程 进而得出DE 的长 即可解决问题.解:∵四边形ABCD 是矩形 AB =3cm BC =5cm∴AD=BC=5cm CD=AB=3cm∠A=90°由折叠的性质得:A'D=AB=3cm∠A'=∠A=90°AE'=AE 设AE=xcm则A′E=xcm DE=(5﹣x)cm在Rt△A'DE中由勾股定理得:A′E2+A′D2=ED2即x2+32=(5﹣x)2解得:x=1.6∴DE=5﹣1.6=3.4(cm)∴△DEF的面积=12DE•CD=12×3.4×3=5.1(cm2)故选:D.总结提升:此题考查了翻折变换的性质、矩形的性质、勾股定理以及三角形面积等知识熟练掌握翻折变换的性质和矩形的性质由勾股定理得出方程是解题的关键.7.(2017秋•金牛区校级月考)如图在矩形ABCD中E是AD的中点将△ABE沿BE折叠后得到△GBE 延长BG交CD于点F结果发现F点恰好是DC的中点若BC=2√6则AB的长为?思路引领:连接EF由折叠性质得AE=EG∠A=∠EGB=90°BG=AB则∠EGF=90°易证EG=DE由矩形的性质得AB=CD∠C=∠D=90°推出∠EGF=∠D=90°由HL证得Rt△EGF≌Rt△EDF得出FG=FD求得CF=DF=FG=12CD=12AB BF=BG+FG=32AB由勾股定理得出BC2+CF2=BF2即可得出结果.解:连接EF如图所示:由折叠性质得:AE=EG∠A=∠EGB=90°BG=AB ∴∠EGF=90°∵点E是AD的中点∴AE=DE∴EG=DE∵四边形ABCD是矩形∴AB=CD∠C=∠D=90°∴∠EGF =∠D =90°在Rt △EGF 与Rt △EDF 中 {EG =ED EF =EF∴Rt △EGF ≌Rt △EDF (HL )∴FG =FD∵F 点恰好是DC 的中点∴CF =DF =FG =12CD =12AB∴BF =BG +FG =AB +12AB =32AB在Rt △BCF 中 BC 2+CF 2=BF 2即:(2√6)2+(12AB )2=(32AB )2 解得:AB =2√3.总结提升:本题考查了折叠的性质、矩形的性质、全等三角形的判定与性质、勾股定理等知识 熟练掌握折叠的性质 证明三角形全等是解题的关键.8.(2018春•新抚区校级期中)如图 在矩形ABCD 中 已知AD =10 AB =8 将矩形ABCD 沿直线AE 折叠 顶点D 恰好落在BC 边上的F 处 求CE 的长.思路引领:先根据矩形的性质得AD =BC =10 AB =CD =8 再根据折叠的性质得AF =AD =10 EF =DE 在Rt △ABF 中 利用勾股定理计算出BF =6 则CF =BC ﹣BF =4 设CE =x 则DE =EF =8﹣x 然后在Rt △ECF 中根据勾股定理得到x 2+42=(8﹣x )2 再解方程即可得到CE 的长.解:∵四边形ABCD 为矩形∴AD =BC =10 AB =CD =8∵矩形ABCD 沿直线AE 折叠 顶点D 恰好落在BC 边上的F 处∴AF=AD=10 EF=DE在Rt△ABF中∵BF=√AF2−AB2=6∴CF=BC﹣BF=10﹣6=4设CE=x则DE=EF=8﹣x在Rt△ECF中∵CE2+FC2=EF2∴x2+42=(8﹣x)2解得x=3即CE=3.总结提升:本题考查了折叠的性质:折叠是一种对称变换它属于轴对称折叠前后图形的形状和大小不变位置变化对应边和对应角相等.也考查了矩形的性质和勾股定理.9.(2018秋•通川区校级期中)将一张边长为2的正方形纸片ABCD对折设折痕为EF(如图(1));再沿过点D的折痕将∠A翻折使得点A落在线段EF上的点H处(如图(2))折痕交AE于点G则EG 的长度是()A.8﹣4√3B.4√3−6C.4﹣2√3D.2√3−3思路引领:由于正方形纸片ABCD的边长为2 所以将正方形ABCD对折后AF=DF=1 由折叠的性质得出AD=DH=2 AG=GH在Rt△DFH中利用勾股定理可求出HF的长进而求出EH的长再设EG=x在Rt△EGH中利用勾股定理即可求解.解:∵正方形纸片ABCD的边长为2∴将正方形ABCD对折后AE=DF=1∵△GDH是△GDA沿直线DG翻折而成∴AD=DH=2 AG=GH在Rt△DFH中HF=√HD2−DF2=√22−12=√3∴EH=2−√3在Rt△EGH中设EG=x则GH=AG=1﹣x∴GH2=EH2+EG2即(1﹣x)2=(2−√3)2+x2解得x=2√3−3.∴EG=2√3−3.故选:D.总结提升:本题考查了正方形的性质折叠的性质勾股定理关键是学会用方程的思想方法解题.10.(2020秋•新都区校级月考)如图AD是△ABC的中线∠ADC=45°把△ADC沿着直线AD对折点C落在点E的位置.如果BC=6 那么以线段BE为边长的正方形的面积为()A.6B.72C.12D.18思路引领:由题意易得BD=CD=DE=3 再求出∠BDE=90°然后根据勾股定理求出BE最后由正方形的面积进行求解即可.解:∵D是BC中点BC=6∴BD=CD=3由折叠的性质得:CD=DE=3 ∠ADC=∠ADE=45°即∠CDE=90°∴BD=DE=3 ∠BDE=90°在Rt△BDE中由勾股定理得:BE=√BD2+DE2=√32+32=3√2∴以BE为边的正方形面积为:(3√2)2=18故选:D.总结提升:本题考查了折叠的性质、勾股定理、正方形的面积计算等知识熟练掌握勾股定理及折叠的性质是解题的关键.。
新人教版八年级下数学《函数》练习题

新人教版八年级下数学《函数》练习题新人教版八年级下数学《函数》练题19.1 函数19.1.1 变量与函数课前预要点感知1:在一个变化过程中,数值发生的量叫做变量,数值始终不变的量叫做常量。
预练1-1:如果直角三角形两锐角的度数分别为x、y,其关系式为y=90-x,其中变量为x,常量为90.要点感知2:在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有确定的值与其对应,那么我们就说x是自变量,y是x的函数。
如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。
预练2-1:如果球的体积为V,半径为R,则V=πR^3.其中自变量是R,函数是V。
要点感知3:函数自变量的取值范围既要满足函数关系式,又要满足实际问题。
预练3-1:甲乙两地相距100km,一辆汽车以每小时40km的速度从甲地开往乙地,t小时与乙地相距s km,s与t的函数解析式是s=40t,自变量t的取值范围是0≤t≤2.5.当堂训练知识点1:变量与常量1.圆周长公式C=2πR中,下列说法正确的是(B)R是变量,2、π、C为常量。
2.写出下列各问题中的数量关系,并指出各个关系式中,哪些是常量?哪些是变量?1)购买单价为5元的钢笔n支,共花去y元;变量是n,常量是5.2)全班50名同学,有a名男同学,b名女同学;变量是a、b,常量是50.3)汽车以60km/h的速度行驶了t h,所走过的路程为s km;变量是t,常量是60.知识点2:函数的有关概念3.下列关系式中,一定能称y是x的函数的是(B)y=3x-1.4.若93号汽油售价7.85元/升,则付款金额y(元)与购买数量x(升)之间的函数关系式为y=7.85x,其中x是自变量,y是的函数。
5.当x=2和x=-3时,分别求下列函数的函数值。
1)y=(x+1)(x-2);当x=2时,y=0;当x=-3时,y=20.2)y=2x^2-3x+2;当x=2时,y=8;当x=-3时,y=29.知识点3:函数的解析式及自变量的取值范围6.(云南中考)函数y=(x-2)/x的自变量x的取值范围为(x≠2)。
2024年人教版八年级下册数学第四单元课后练习题(含答案和概念)

2024年人教版八年级下册数学第四单元课后练习题(含答案和概念)试题部分一、选择题:1. 下列函数中,哪一个函数是二次函数?()A.y=2x+1B.y=x²3x+2C.y=3/xD.y=√x2. 已知二次函数y=ax²+bx+c的图象开口向上,且顶点坐标为(1,2),则a的取值范围是()A.a>0B.a<0C.a=0D.a≠03. 二次函数y=x²4x+3的图象与x轴的交点坐标是()A.(1,0)和(3,0)B.(0,1)和(3,0)C.(0,3)和(1,0)D.(1,0)和(3,0)4. 下列哪个点在二次函数y=x²+2x+3的图象上?()A.(0,3)B.(1,4)C.(2,3)D.(3,0)A.当c>0时,图象与y轴正半轴相交B.当c<0时,图象与y轴正半轴相交C.当c=0时,图象过原点6. 已知二次函数y=x²2x3的图象开口向上,则它的最小值是()A.4B.3C.2D.17. 二次函数y=x²4x+4的图象是()A.一条直线B.一条抛物线C.一个圆D.一个点8. 下列哪个二次函数的图象开口向下?()A.y=x²+2x+1B.y=x²2x+1C.y=2x²4x+3D.y=2x²+4x39. 已知二次函数y=ax²+bx+c的图象开口向上,且a+b+c=0,则该函数的图象与x轴的交点个数为()A.0B.1C.2D.310. 二次函数y=x²2x3的图象与x轴的交点坐标是()A.(1,0)和(3,0)B.(1,0)和(3,0)C.(1,0)和(3,0)D.(1,0)和(3,0)二、判断题:1. 二次函数的图象一定过原点。
()2. 二次函数的图象一定是一条直线。
()3. 二次函数的图象与x轴的交点个数最多为2个。
()4. 当a>0时,二次函数的图象开口向下。
新课程课堂数学人教版八年级下册同步练习册参考答案
新课程课堂数学人教版八年级下册同步练习册参考答案新课程课堂数学人教版八年级下册同步练习册参考答案参考答案第16章分式§16.1.1一、1、C 2、B 3、D二、1、,三、1、 2、(1)(2) 3、§一、1、C 2、D 3、A二、1、 2、1 3、,三、(1)(2)§一、1、C 2、C 3、C二、1、 2、 3、三、1、(1)(2)(3)2、(1),(2),§一、1、D 2、A 3、D二、1、 2、 3、三、1、 2、 3、§16.2.1(二)一、1、B 2、A 3、C二、1、 2、 3、三、1、原式=,当时原式=2 2、 3、§一、1、B 2、B 3、C二、1、 2、0 3、三、1、 2、 3、0§一、1、C 2、B 3、A二、1、 2、三、1、 2、 3、,§一、1、A 2、A二、1、 2、 3、三、1、, 2、, -5§一、1、D 2、B 3、A二、1、 2、1;;9 3、三、1、 2、-5 3、§一、1、B 2、B 3、A二、1、1.514× 2、4.3× 3、-8.1×三、1、 2、新课程课堂数学人教版八年级下册同步练习册参考答案参考答案第16章分式§16.1.1一、1、C 2、B 3、D二、1、,三、1、 2、(1)(2) 3、§一、1、C 2、D 3、A二、1、 2、1 3、,三、(1)(2)§一、1、C 2、C 3、C二、1、 2、 3、三、1、(1)(2)(3)2、(1),(2),§一、1、D 2、A 3、D二、1、 2、 3、三、1、 2、 3、§16.2.1(二)一、1、B 2、A 3、C二、1、 2、 3、三、1、原式=,当时原式=2 2、 3、§一、1、B 2、B 3、C二、1、 2、0 3、三、1、 2、 3、0§一、1、C 2、B 3、A二、1、 2、三、1、 2、 3、,§一、1、A 2、A二、1、 2、 3、三、1、, 2、, -5§一、1、D 2、B 3、A二、1、 2、1;;9 3、三、1、 2、-5 3、§一、1、B 2、B 3、A二、1、1.514× 2、4.3× 3、-8.1×三、1、 2、新课程课堂数学人教版八年级下册同步练习册参考答案参考答案第16章分式§16.1.1一、1、C 2、B 3、D二、1、,三、1、 2、(1)(2) 3、一、1、C 2、D 3、A二、1、 2、1 3、,三、(1)(2)§一、1、C 2、C 3、C二、1、 2、 3、三、1、(1)(2)(3)2、(1),(2),§一、1、D 2、A 3、D二、1、 2、 3、三、1、 2、 3、§16.2.1(二)一、1、B 2、A 3、C二、1、 2、 3、三、1、原式=,当时原式=2 2、 3、§一、1、B 2、B 3、C二、1、 2、0 3、三、1、 2、 3、0一、1、C 2、B 3、A二、1、 2、三、1、 2、 3、,§一、1、A 2、A二、1、 2、 3、三、1、, 2、, -5§一、1、D 2、B 3、A二、1、 2、1;;9 3、三、1、 2、-5 3、§一、1、B 2、B 3、A二、1、1.514× 2、4.3× 3、-8.1×三、1、 2、。
人教版八年级数学下册第18章《平行四边形》练习题(含答案)
人教版八年级数学下册第18章《平行四边形》练习题(含答案)1.在正方形ABCD中,E是△ABD内的点,EB=EC.(1)如图1,若EB=BC,求∠EBD的度数;(2)如图2,EC与BD交于点F,连接AE,若S四边形ABFE=a,试探究线段FC与BE之间的数量关系,并说明理由.2.(1)如图1,在正方形ABCD中,E是AB上一点,G是AD上一点,∠ECG=45°,那么EG与图中两条线段的和相等?证明你的结论.(2)请用(1)中所积累的经验和知识完成此题,如图2,在四边形ABCD中,AG∥BC(BC >AG),∠B=90°,AB=BC=12,E是AB上一点,且∠ECG=45°,BE=4,求EG的长?3.如图,正方形ABCD的边长为1,对角线AC、BD交于点O,E是BC延长线上一点,且AC =EC,连接AE交BD于点P.(1)求∠DAE的度数;(2)求BP的长.4.如图,在矩形ABCD中,点O为对角线AC的中点,过点O作EF⊥AC交BC于点E,交AD 于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)连接OB,若AB=8,AF=10,求OB的长.5.如图,在平行四边形ABCD中,对角线AC,BD交于点O,E是AD上任意一点,连接EO 并延长,交BC于点F,连接AF,CE.(1)求证:四边形AFCE是平行四边形;(2)若∠DAC=60°,∠ADB=15°,AC=6.求出平行四边形ABCD的边BC上的高h的值.6.如图,在正方形ABCD中,对角线AC、BD相交于点O,E为OC上动点(不与O、C重合),作AF⊥BE,垂足为G,分别交BC、OB于F、H,连接OG、CG.(1)求证:△AOH≌△BOE;(2)求∠AGO的度数;(3)若∠OGC=90°,BG=,求△OGC的面积.7.如图,在矩形ABCD中,BC=24cm,P、Q、M、N分别从A、B、C、D同时出发,分别沿边AD、BC、CB、DA移动,当有一个点先到达所在边的另一个端点时,其它各点也随之停止移动.已知移动一段时间后,若BQ=xcm(x≠0),AP=2xcm,CM=3xcm,DN=x2cm.当x为何值时,以P、Q、M、N为顶点的四边形是平行四边形?8.在正方形ABCD中,F是BC边的中点,ED⊥AF于点E,连接CE.(1)如图1,求证:CE=CD;(2)如图2,连接BE、BD,请直接写出图2中所有与∠BEF度数相等的角.9.如图1,已知平行四边形ABCD,DE是∠ADC的角平分线,交BC于点E.(1)求证:CD=CE.(2)如图2所示,点P是平行四边形ABCD的边BC所在直线上一点,若BE=CE,且AE =3,DE=4,求△APD的面积.10.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于F,以EC、CF为邻边作平行四边形ECFG,如图1所示.(1)证明平行四边形ECFG是菱形;(2)若∠ABC=120°,连接BG、CG、DG,如图2所示,①求证:△DGC≌△BGE;②求∠BDG的度数;(3)若∠ABC=90°,AB=8,AD=14,M是EF的中点,如图3所示,求DM的长.11.如图,已知平行四边形ABCD中,BD是它的一条对角线,过A、C两点作AE⊥BD,CF⊥BD,垂足分别为E、F,延长AE、CF分别交CD、AB于点M、N.(1)求证:四边形CMAN是平行四边形(2)已知DE=8,FN=6,求BN的长.12.如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD.若AC=2,CE=4;(1)求证:四边形ACED是平行四边形.(2)求BC的长.13.如图,长方形ABCD中,AB∥CD,∠D=90°,AB=CD,AD=4cm,点P从点D出发(不含点D)以2cm/s的速度沿D→A→B的方向运动到点B停止,点P出发1s后,点Q才开始从点C出发以acm/s的速度沿C→D的方向运动到点D停止,当点P到达点B时,点Q 恰好到达点D.(1)当点P到达点A时,△CPQ的面积为3cm2,求CD的长;(2)在(1)的条件下,设点P运动时间为t(s),运动过程中△BPQ的面积为S(cm2),请用含t(s)的式子表示面积S(cm2),并直接写出t的取值范围.14.如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:四边形ADCF是菱形;(2)若AC=6,AB=8,求菱形ADCF的面积.15.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.(1)若∠B=30°,AC=6,求CE的长;(2)过点F作AB的垂线,垂足为G,连接EG,试判断四边形CEGF的形状,并说明原因.参考答案1.解:(1)如图1,∵EB=BC=EC,∴△EBC是等边三角形,∴∠EBC=60°,∵四边形ABCD是正方形,∴∠CBD=45°,∴∠EBD=∠EBC﹣∠CBD=60°﹣45°=15°;(2)线段FC与BE之间的等量关系是:FC•BE=2a,理由是:如图2,连接AF交BE于G,∵四边形ABCD是正方形,∴AB=BC,∠ABD=∠DBC,∵BF=BF,∴△ABF≌△CBF(SAS),∴AF=CF,∠BAF=∠BCF,∵EB=EC,∴∠ECB=∠EBC,∵∠ABC=∠DCB=90°,∴∠ABE=∠DCE,∴∠ABE+∠BAF=∠DCE+∠BCE=90°,∴∠AGB=90°,∴AF⊥BE,∴S四边形ABFE=S△ABE+S△BEF,=,=,=,∵S四边形ABFE=a,∴=a,∴FC•BE=2a.2.解:(1)EG=BE+DG.如图1,延长AD至F,使DF=BE,连接CF,∵四边形ABCD为正方形,∴BC=DC,∠ABC=∠ADC=∠BCD=90°,∵∠CDF=180﹣∠ADC,∴∠CDF=90°,∴∠ABC=∠CDF,∵BE=DF,∴△EBC≌△FDC(SAS),∴∠BCE=∠DCF,EC=FC,∵∠ECG=45°,∴∠BCE+∠GCD=∠BCD﹣∠ECG=90°﹣45°=45°,∴∠GCD+DCF=∠FCG=45°,∴∠ECG=∠FCG,∵GC=GC,∴△ECG≌△FCG(SAS),∴EG=GF,∵GF=GD+DF=GD+BE,∴EG=GD+BE.(2)如图2,过点C作CD⊥AG,交AG的延长线于D.∵AG∥BC,∴∠A+∠B=180°,∵∠B=90°,∴∠A=180°﹣∠B=90°,∵∠CDA=90°,AB=BC,∴四边形ABCD是正方形,∵AB=BC=12,∴CD=AD=12,∵BE=4,∴AE=AB﹣BE=8,设EG=x,由(1)知EG=BE+GD,∴GD=x﹣4,∴AG=AD﹣GD=12﹣(x﹣4)=16﹣x,在Rt△AEG中:GE2=AG2+AE2,∴x2=(16﹣x)2+82,解得x=10,∴EG=10.3.解:(1)∵四边形ABCD的正方形,∴∠ACB=45°,AD∥BC,∵AC=EC,∴∠E=∠EAC,∵∠ACB=∠E+∠EAC=45°,∴∠E=22.5°,∵AD∥BC,∴∠DAE=∠E=22.5°;(2)∵四边形ABCD是正方形,正方形ABCD的边长是1,∴AB=1,∠DAB=90°,∠DBC=45°,∵∠DAE=22.5°,∴∠BAP=90°﹣22.5°=67.5°,∠APB=∠E+∠DBC=22.5°+45°=67.5°,∴∠BAP=∠APB,∴BP=AB=1.4.证明:(1)∵O是AC的中点,且EF⊥AC,∴AF=CF,AE=CE,OA=OC,∵四边形ABCD是矩形,∴AD∥BC,∴∠AFO=∠CEO,在△AOF和△COE中,,∴△AOF≌△COE(AAS),∴AF=CE,∴AF=CF=CE=AE,∴四边形AECF是菱形;(2)如图,∵AB=8,AF=AE=EC=10,∴BE===6,∴BC=16,∴AC===8,∵AO=CO,∠ABC=90°,∴BO=AC=4.5.证明:(1)∵四边形ABCD是平行四边形∴AD∥BC,AO=CO∴∠AEF=∠CFE,∠EAC=∠FCA,且AO=CO ∴△AOE≌△COF(AAS)∴OF=OE,且AO=CO∴四边形AFCE是平行四边形;(2)∵∠DAC=60°∴,∴h=×AC=3.6.(1)证明:∵四边形ABCD是正方形,∴OA=OB,∠ABC=90°,AC⊥BD,∴∠AOB=∠BOE=90°,∵AF⊥BE,∴∠GAE+∠AEG=∠OBE+∠AEG=90°,∴∠GAE=∠OBE,在△AOH和△BOE中,,∴△AOH≌△BOE(ASA);(2)∠AGO=45°;(3)S△OGC=OG•CG=×6=3.7.当x为2或﹣3+时,以P、Q、M、N为顶点的四边形是平行四边形.8.(1)证明:作CH⊥DE交DE于点H,交AD于点N,∵ED⊥AF,CH⊥DE,∴AF∥CN,又AN∥CF,∴四边形AFCN为平行四边形,∴AN=CF,∵F是BC边的中点,AD=BC,∴N是AD边的中点,∵NH∥AE,DN=NA,∴DH=HE,又CH⊥DE,∴CE=CD;(2)解:作BG⊥AF于点G,设正方形的边长为4a,则BF=2a,由勾股定理得,AF===2a,×AB×BF=×AF×BG,即×4a×2a=×2a×BG,解得,BG=a,∵∠ABF=90°,BG⊥AF,∴BF2=FG•FA,即(2a)2=FG•2a,解得,FG=a,∵∠BAF+∠DAE=90°,∠ADE+∠DAE=90°,∴∠BAG=∠ADE,在△BAG和△ADE中,∴△BAG≌△ADE(AAS)∴AE=BG=a,∴EG=AF﹣AE﹣FG=a,∴BG=EG,∴∠BEF=45°,则图2中所有与∠BEF度数相等的角有∠ABD、∠CBD、∠ADB、∠CDB.9.(1)证明:∵DE是∠ADC的角平分线,∴∠ADE=∠CDE,在平行四边形ABCD中,AD∥BC,∴∠ADE=∠CED,∴∠CDE=∠CED,∴CD=CE;(2)解:∵CD=CE,BE=CE,∴BE=CD=AB,∴△ABE为等腰三角形,∴设∠BAE=∠BEA=α,∠CED=∠CDE=β,∴∠ABE=180°﹣2α,∠DCE=180°﹣2β,又∵∠ABE+∠DCE=180°,∴180°﹣2α+180°﹣2β=180°,∴α+β=90°,∴∠AED=90°,即△AED为直角三角形,∴AD===5,过点E作EK⊥AD,∴EK==,△APD的面积=AD•EK=×5×=6.10.解:(1)证明:∵AF平分∠BAD,∴∠BAF=∠DAF,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAF=∠CEF,∠BAF=∠CFE,∴∠CEF=∠CFE,∴CE=CF,又∵四边形ECFG是平行四边形,∴四边形ECFG为菱形;(2)①∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC,AD∥BC,∵∠ABC=120°,∴∠BCD=60°,∠BCF=120°由(1)知,四边形CEGF是菱形,∴CE=GE,∠BCG=∠BCF=60°,∴CG=GE=CE,∠DCG=120°,∵EG∥DF,∴∠BEG=120°=∠DCG,∵AE是∠BAD的平分线,∴∠DAE=∠BAE,∵AD∥BC,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∴BE=CD,∴△DGC≌△BGE(SAS);②∵△DGC≌△BGE,∴BG=DG,∠BGE=∠DGC,∴∠BGD=∠CGE,∵CG=GE=CE,∴△CEG是等边三角形,∴∠CGE=60°,∴∠BGD=60°,∵BG=DG,∴△BDG是等边三角形,∴∠BDG=60°;(3)方法一:如图3中,连接BM,MC,∵∠ABC=90°,四边形ABCD是平行四边形,∴四边形ABCD是矩形,又由(1)可知四边形ECFG为菱形,∠ECF=90°,∴四边形ECFG为正方形.∵∠BAF=∠DAF,∴BE=AB=DC,∵M为EF中点,∴∠CEM=∠ECM=45°,∴∠BEM=∠DCM=135°,在△BME和△DMC中,∵,∴△BME≌△DMC(SAS),∴MB=MD,∠DMC=∠BME.∴∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°,∴△BMD是等腰直角三角形.∵AB=8,AD=14,∴BD=2,∴DM=BD=.方法二:过M作MH⊥DF于H,∵∠ABC=90°,四边形ABCD是平行四边形,∴四边形ABCD是矩形,又由(1)可知四边形ECFG为菱形,∠ECF=90°,∴四边形ECFG为正方形,∴∠CEF=45°,∴∠AEB=∠CEF=45°,∴BE=AB=8,∴CE=CF=14﹣8=6,∵MH∥CE,EM=FM,∴CH=FH=CF=3,∴MH=CE=3,∴DH=11,∴DM==.11.(1)证明:∵AE⊥BD,CF⊥BD,∴AM∥CN,∵四边形ABCD是平行四边形,∴CM∥AN∴四边形CMAN是平行四边形;(2)解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠ADE=∠CBF,∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°,在△ADE与△CBF中,∠ADE=∠CBF,∠AED=∠CFB,AD=BC,∴△ADE≌△CBF(AAS);∴DE=BF=8,∵FN=6,∴.12.解:(1)证明:∵∠ACB=90°,DE⊥BC,∴AC∥DE又∵CE∥AD∴四边形ACED是平行四边形.(2)∵四边形ACED是平行四边形.∴DE=AC=2.在Rt△CDE中,由勾股定理得CD===2.∵D是BC的中点,∴BC=2CD=4.13.解:(1)设点P运动时间为t(s),根据题意,得点P出发1s后,点Q才开始从点C出发以acm/s的速度沿C→D的方向运动到点D停止,当点P到达点B时,点Q恰好到达点D.∴2(t﹣2)=a(t﹣1),当点P到达点A时,△CPQ的面积为3cm2,即a×1×4=3,∴a=.即2(t﹣2)=(t﹣1),解得t=5,所以CD=a(t﹣1)=6.答:CD的长为6;(2)根据题意,得BC=AD=4,CD=6DP=2t,CQ=1.5(t﹣1),①点P的运动时间为t,0﹣1秒时点Q还在点C,△BPQ面积不变为=12;即S=12(0<t≤1)②当1<t≤2时,DQ=6﹣1.5(t﹣1)=7.5﹣1.5t,S=S梯形DPBC﹣S△DPQ﹣S△BQC=(2t+4)×6﹣×2t×(7.5﹣1.5t)﹣×1.5(t﹣1)×4 =1.5t2﹣4.5t+15;③当2<t≤5时,BP=10﹣2t,S=BP•BC=(10﹣2t)×4=20﹣4t.综上所述:运动过程中△BPQ的面积为S(cm2),用含t(s)的式子表示面积S(cm2)为:S=12 (0<t≤1)或S=1.5t2﹣4.5t+15(1<t≤2)或S=20﹣4t(2<t≤5).14.解:(1)证明:∵E是AD的中点∴AE=DE∵AF∥BC∴∠AFE=∠DBE在△AEF和△DEB中∴△AEF≌△DEB(AAS)∴AF=DB∴四边形ADCF是平行四边形∵∠BAC=90°,D是BC的中点∴AD=CD=BC∴四边形ADCF是菱形;(2)解:法一、设AF到CD的距离为h,∵AF∥BC,AF=BD=CD,∠BAC=90°,∴S菱形ADCF=CD•h=BC•h=S△ABC=AB•AC=.法二、连接DF∵AF=DB,AF∥DB∴四边形ABDF是平行四边形∴DF=AB=8∴S菱形ADCF=AC•DF=.法三、∵三角形ABD与三角形ADC与三角形AFC的面积相等,∴菱形ADCF的面积等于三角形ABC的面积为24.答:菱形ADCF的面积为24.15.解:(1)∵∠ACB=90°,∠B=30°,∴∠CAB=60°,∵CD⊥AB,∴∠ADC=90°,∴∠ACD=30°,∵AF平分∠CAB,∴∠CAF=∠BAF=30°,∴CE=AE,过点E用EH垂直于AC于点H,∴CH=AH∵AC=6,∴CE=2答:CE的长为2;(2)∵FG⊥AB,FC⊥AC,AF平分∠CAB,∴∠ACF=∠AGF=90°,CF=GF,在Rt△ACF与Rt△AGF中,AF=AF,CF=GF,∴Rt△ACF≌Rt△AGF(HL),∴∠AFC=∠AFG,∵CD⊥AB,FG⊥AB,∴CD∥FG,∴∠CEF=∠EFG,∴∠CEF=∠CFE,∴CE=CF,∴CE=FG,∴四边形CEGF是菱形。
八年级数学下册《第十七章 勾股定理的应用》练习题-附答案(人教版)
八年级数学下册《第十七章勾股定理的应用》练习题-附答案(人教版)一、选择题1.如图,在高为3米,斜坡长为5米的楼梯台阶上铺地毯,则地毯的长度至少要( )A.4米B.5米C.6米D.7米2.某工程的测量人员在规划一块如图所示的三角形土地时,在BC上有一处古建筑D,使得BC 的长不能直接测出,工作人员测得AB=130米,AD=120米,BD=50米,在测出AC=150米后,测量工具坏了,使得DC的长无法测出,请你想办法求出BC的长度为( )A.90米B.120米C.140米D.150米3.《九章算术》第九章有如下题目,原文:今有垣高一丈,倚木于垣,上与垣齐.引木却行一尺,其木至地.问木长几何?译文是:今有墙高1丈,倚木杆于墙.使木杆之上端与墙平齐.牵引木杆下端退行1尺,则木杆(从墙上)滑落至地上.间木杆长是多少?(1丈=10尺,1尺=10寸)( )A.5尺5寸B.1丈1尺C.5丈5寸D.5丈5尺4.如图,长方形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )A.2.5B.2 2C. 3D. 55.如图,小明在广场上先向东走10米,又向南走40米,再向西走20米,又向南走40米,再向东走70米.则小明到达的终止点与原出发点的距离是( )A.90米B.100米C.120米D.150米6.如图,有一个由传感器控制的灯A装在门上方离地高4.5 m的墙上,任何东西只要移至距该灯5 m及5 m以内时,灯就会自动发光,请问一个身高1.5 m的学生要走到离墙多远的地方灯刚好发光?( )A.4 mB.3 mC.5 mD.7 m7.如图,在波平如镜的湖面上,有一朵盛开的美丽的红莲,它高出水面3尺.突然一阵大风吹过,红莲被吹至一边,花朵刚好齐及水面,如果知道红莲移动的水平距离为6尺,则水深是( )尺A.3.5B.4C.4.5D.58.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8 m处,发现此时绳子末端距离地面2 m,则旗杆的高度为(滑轮上方的部分忽略不计)( )A.12 mB.13 mC.16 mD.17 m9.如图,数轴上点A,B分别对应1,2,过点B作PQ⊥AB,以点B为圆心,AB长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M对应的数是( )A. 3B. 5C. 6D.710.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为( )A.32B.43C.53D.8511.如图,已知线段BC,分别以B、C为圆心,大于12BC为半径作弧,两弧相交于E、F两点,连接CE,过点E作射线BA,若∠CEA=60°,CE=4,则△BCE的面积为( )A.4B.4 3C.8D.8 312.如图,圆柱形纸杯高8 cm,底面周长为12 cm,在纸杯内壁离杯底2 cm的点C处有一滴蜂蜜,一只蚂蚁正好在纸杯外壁,离杯上沿2 cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为( )3 B.6 2 C.10 D.以上答案都不对二、填空题13.上午8时,一条船从海岛A出发,以15海里/时的速度向正北航行,10时到达海岛B处,从A、B望灯塔C,测得∠BAC=60°,点C在点B的正西方向,海岛B与灯塔C之间的距离是海里.14.在平面直角坐标系中,点P(﹣5,2)到原点的距离是.15.如图,要做一个两条直角边的长分别是7 cm和4 cm的三角尺,斜边长应为 cm.16.如图,A,B,C,D为四个养有珍稀动物的小岛,连线代表连接各个小岛的晃桥(各岛之间也可以通过乘船到达),四边形ABCD为长方形,如果黄芳同学想从A岛到C岛,则至少要经过________米.17.某快递公司要在街道旁设立一个派送还点,向A、B两居民区投送快递,派送点应该设在什么地方,才能使它到A、B的距离之和最短?快递员根据实际情况,以街道为x轴,建立了如图所示的平面直角坐标系,测得坐标A(﹣2,2)、B(6,4),则派送点的坐标是.18.如图,在平面直角坐标系中,已知点P(2,1),点A是x轴上的一个动点,当△PAO是等腰三角形时,点A的坐标为.三、解答题19.如图所示,一棵36米高的树被风刮断了,树顶落在离树根24米处,求折断处的高度AB.20.如图,飞机在空中水平飞行,某一时刻刚好飞到一男孩子头顶上方4000米处,过了20秒,飞机距离这个男孩头顶50000米.飞机每小时飞行多少千米?21.如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了5003m 到达B点,然后再沿北偏西30°方向走了500m到达目的地C点.(1)求A、C两点之间的距离;(2)确定目的地C在营地A的什么方向?22.如图,∠AOB=90°,OA=45cm,OB=15cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?23.如图,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=∠90°,D为AB边上一点.(1)求证:△ACE≌△BCD;(2)若AD=6,BD=8,求ED的长.24.如图,在△ABC中,AD是BC边的中线,∠BAD=90°,AB=2,AC=11,求BC的长.25.如图,公路MN和公路PQ在点P处交汇,且∠QPN=30°,点A处有一所中学,AP=160m.假设拖拉机行驶时,周围100m以内会受到噪音的影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否会受到噪声影响?请说明理由,如果受影响,已知拖拉机的速度为18km/h,那么学校受影响的时间为多少秒?参考答案1.D2.C3.C4.D5.B.6.A.7.C8.D.9.B.10.A11.B.12.C.13.答案为:30 3.14.答案为:3.15.答案为:65.16.答案为:370.17.答案为:(23,0).18.答案为:A(4,0),(5,0),(﹣5,0).19.解:设AB=x米,则AC=(36﹣x)米∵AB⊥BC∴AB2+BC2=AC2∴x2+242=(36﹣x)2.∴x=10∴折断处的高度AB是10米.20.解:如图,在Rt△ABC中,根据勾股定理可知BC=3000(米).3000÷20=150米/秒=540千米/小时.所以飞机每小时飞行540千米.21.解:(1)过B点作BE∥AD如图,∴∠DAB=∠ABE=60°.∵30°+∠CBA+∠ABE=180°∴∠CBA=90°.即△ABC为直角三角形.由已知可得:BC=500 m,AB=500 3 m由勾股定理可得:AC2=BC2+AB2所以AC=1 000(m);(2)在Rt△ABC中,∵BC=500 m,AC=1 000 m∴∠CAB=30°∵∠DAB=60°∴∠DAC=30°.即点C在点A的北偏东30°的方向.22.解:∵小球滚动的速度与机器人行走的速度相等,运动时间相等即BC=CA设AC为x,则OC=45﹣x由勾股定理可知OB2+OC2=BC2又∵OA=45,OB=15把它代入关系式152+(45﹣x)2=x2解方程得出x=25(cm).答:如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是25cm.23.(1)证明:∵△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=∠90°∴AC=BC,EC=DC,∠B=∠CAB=45°,∠ACE=∠BCD=90°﹣∠ACD在△ACE和△BCD中∴△ACE ≌△BCD(SAS);(2)解:∵△ACE ≌△BCD∴∠CAE =∠B ,AE =BD =8∵∠CAB =∠B =45°∴∠EAD =45°+45°=90°在Rt △EAD 中,由勾股定理得:ED =10.24.解:延长AD 至点E ,使AD =ED ,连结CE.∵D 是BC 的中点,∴BD =CD.在△ABD 和△ECD 中∵⎩⎨⎧AD =ED ,∠ADB =∠EDC ,BD =CD ,∴△ABD ≌△ECD(SAS)∴EC =AB = 2∴∠CED =∠BAD =90°.在Rt △AEC 中,∵AE 2=AC 2﹣EC 2∴AE =(11)2-(2)2=3∴AD =12AE =32. 在Rt △ABD 中,∵BD 2=AB 2+AD 2∴BD =172∴BC =2BD =17.25.解:作AB⊥MN,垂足为B在 RtΔABP中,∵∠ABP=90°,∠APB=30°, AP=160∴ AB=12AP=80∵点 A到直线MN的距离小于100m∴这所中学会受到噪声的影响.如图,假设拖拉机在公路MN上沿PN方向行驶到点C处学校开始受到影响那么AC=100(m)由勾股定理得: BC2=1002﹣802=3600∴ BC=60.同理,拖拉机行驶到点D处学校开始脱离影响那么AD=100(m),BD=60(m)∴CD=120(m).拖拉机行驶的速度为:18km/h=5m/s,t=120m÷5m/s=24s.答:拖拉机在公路 MN上沿PN方向行驶时,学校会受到噪声影响,学校受影响的时间为24秒.。
八年级数学下册(人教版)课堂练习检测—正比例函数2(含答案)
八年级数学下册(人教版)课堂练习检测—正比例函数2(含答案)一、选择题1.已知函数y=(k-1)2k x为正比例函数,则()A.k≠±1B.k=±1C.k=-1D.k=12.若y=x+2-b是正比例函数,则b的值是()A.0B.-2C.2D.-0.53.(易错题)正比例函数y=x的大致图像是()x图像上的两点,下列判断中,正确的4.P1(x1,y1),P2(x2,y2)是正比例函数y=-12是()A.y1>y2B.y1<y2C.当x1<x2时,y1<y2D.当x1<x2时,y1>y25.(易错题)已知在正比例函数y=(a-1)x的图像中,y随x的增大而减小,则a的取值范围是()A.a<1B.a>1C.a≥1D.a≤16.若正比例函数的图象经过点(-1,2),则这个图象必经过点()A.(1,2)B.(-1,-2)C.(-2,-1)D.(1,-2)7.(北京景山学校月考)若点A(-2,m)在正比例函数y=-12x的图象上,则m的值是()A.14B.14-C.1D.-18.(北京师大附中月考)某正比例函数的图像如图19-2-1所示,则此正比例函数的表达式为()A.y=-12-x B.y=12xC.y=-2xD.y=2x9.(天津河西区模拟)对于函数y=-k2x(k是常数,k≠0)的图象,下列说法不正确的是()A.是一条直线B.过点(1,kk-)C.经过一、三象限或二、四象限D.y随着x增大而减小二、填空题10.(教材习题变式)直线y=32x经过第________象限,经过点(1,________),y随x 增大而________;直线y=-(a2+1)x经过第________象限,y随x增大而________.三、解答题11.已知正比例函数y=(2m+4)x,求:(1)m为何值时,函数图象经过第一、三象限?(2)m为何值时,y随x的增大而减小?(3)m为何值时,点(1,3)在该函数的图象上?12.已知4y+3m与2x-5n成正比例,证明:y是x的一次函数.13.(教材例题变式)画正比例函数y=13x与y=-13x的图象.14.已知点(12,1)在函数y=(3m-1)x的图象上.(1)求m的值;(2)求这个函数的分析式.15.已知y-3与2x-1成正比例,且当x=1时,y=6.(1)求y与x之间的函数解析式;(2)如果y的取值范围为0≤y≤5,求x的取值范围;(3)若点A(x1,y1),B(x2,y2)都在该函数的图象上,且y1>y2,试判断x1,x2的大小关系.16.(湖北启黄中学月考)已知函数()2321-=-my m x的图象是一条过原点的直线,且y随x的增大而减小,求m的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
讲义09 平行四边形的性质与判定1.平行四边形不一定具有的性质是( )A.对边平行B.对边相等C.对角线互相垂直D.对角线互相平分2.下列说确的是().A.有两组对边分别平行的图形是平行四边形 B.平行四边形的对角线相等C.平行四边形的对角互补,邻角相等 D.平行四边形的对边平等且相等3.在四边形ABCD中,从(1)AB∥ CD,(2)BC ∥ AD (3)AB=CD(4)BC=AD这四个条件中任选两个,能使四边形ABCD是平行四边形的选法有()A 3种B 4种C 5种D 6种4.若A、B、C三点不共线,则以其为顶点的平行四边形共有()A.1个B.2个C.3个D.4个5.在ABCD中,∠A:∠B:∠C=2:3:2,则∠D=()A. 36°B. 108°C. 72°D. 60°6.平行四边形的周长为24cm,相邻两边长的比为3:1,•那么这个平行四边形较短的边长为().A. 6cmB. 3cmC. 9cmD. 12cm7.在ABCD中,对角线AC与BD相交于点O,则能通过旋转达到重合的三角形有().A. 2对B. 3对C. 4对D. 5对8.一个平行四边形的两条邻边的长分别是4cm和5cm,它们的夹角是30°,这个平行四边形的面积是().A.10cm2 B.103cm2C.5cm2 D.53cm29.如图,P是四边形ABCD的DC边上的一个动点.当四边形ABCD满足条件______时,△PBA 的面积始终保持不变(注:只需填上你认为正确的一种条件即可).10.如图,在ABCD中,∠A的平分线交BC于点E.若AB=16cm,AD=25cm,则BE=______,EC=________.11.平行四边形两邻角的平分线相交所成的角为________12.已知AD∥BC,要使四边形ABCD为平行四边形,需要增加的条件是__________________(•填一个你认为正确的条件)13.一个四边形的边长依次是a、b、c、d且,则这个四边形的形状为;其理由是 .14.ΔABC的三条边为4cm、5cm和7cm,分别以ΔABC的任意两边为边做平行四边形,这样的平行四边形能做几个?;它们的周长分别为:15.如图:平行四边形ABCD的周长为32cm,一组邻边AB:BC=3:5,∠B=600,E为AB边上bdacdcba222222+=+++16.若一个平行四边形的一边长是8,一条对角线长是6,则它的另一条对角线长x的取值围是17.如图,口ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD上的点F,若△FDE的周长为8,△FCB的周长为22,则FC的长为 .18.已知平行四边形的面积是144,相邻两边上的高分别为8和9,则它的周长是__________19.如图:平行四边形ABCD中,E、F分别为对角线BD上的点,且BE=DF,判断四边形AECF 的形状,并说明理由.20.如图,平行四边形ABCD中,AB=5cm, BC=3cm, ∠D与∠C的平分线分别交AB于F,E, 求AE, EF, BF的长?D C21.如图所示:ΔABC中,D为BC边的中点,F、E分别为AD及其延长线上的点,且CF∥BE. (1)说明:ΔBDE≌ΔCDF;(2)连结BF、CE,试判断四边形BECF的形状,并说明理由.22.如图:ΔABC中,BD平分∠ABC,DE∥BC,∠EFB=∠C,判断BE与FC的数量关系,并说明理由.23.如图:平行四边形ABCD,在AB的延长线上截取BE=AB,BF=BD,连结CE、DF交于G点,试说明:CD=CG。
24.在平行四边形ABCD中,AB:AD=1:2,M为AD的中点,求∠BMC的度数.25.已知:如图ABCD的对角线AC、BD交于点O,E、F是AC上的两点,并且AE=CF.求证:四边形BFDE是平行四边形.26.已知:O为平行四边形ABCD的对角线AC的中点,EF经过点O,且与AB交于E,与CD 交于F. 求证:四边形AECF是平行四边形.27.如图,□ABCD中, AE、AF分别为BC、CD上的高,AE=2㎝,AF=5㎝,∠EAF=30°,求,□ABCD各角度数和周长。
28.如图,ABCD中,AE⊥BC,AF⊥CD,∠EAF=30°,AE=4cm,AF=3cm,求ABCD周长.29.如图所示,在ABCD中,对角线AC与BD相交于点O,过点O•任作一条直线分别交AB,CD于点E,F.(1)求证:OE=OF;(2)若AB=7,BC=5,OE=2,求四边形BCFE的周长.30.如图所示,在形状为平行四边形的一块地ABCD中,有一条小折路EFG.•现在想把它改为经过点E的直路,要求小路两侧土地的面积都不变,•请在图中画出改动后的小路.31.如图,为公园的一块草坪,其四角上各有一棵树,现园林工人想使这个草坪的面积扩大一倍,又要四棵树不动,并使扩大后的草坪为平行四边形,试问这个想法能否实现,若能请你设计出草图,否则说明理由.32.已知,如图,△ABC是等边三角形,过AC边上的点D作DG∥BC,交AB于点G,在GD和延长线上取点E,使DE=DC,连接AE、BD。
(1)求证:△AGE≌△DAB;(2)过点E作EF∥DB,交BC于点F,连结AF,求∠AFE的度数。
课堂小练-08 期中综合复习题:1.如图所示,在ABCD中,对角线AC,BD交于点O,图中全等三角形有()A.5对 B.4对 C.3对 D.2对2.在ABCD中,∠A的平分线交BC于点E,若CD=10,AD=16,则EC为()A.10 B.16 C.6 D.133.已知ABCD的一条边长是5,则两条对角线的长可能是()A.6和16 B.6和6 C.5和5 D.8和184.将一平行四边形纸片折一次,使得折痕平分这个平行四边形的面积,•则这样的折纸方法有()A.1种 B.2种 C.3种 D.无数种5.如图所示,在ABCD中,若∠A=45°,AD=6,则AB与CD之间的距离为()A.6 B.3 C.2 D.36.在ABCD中,若AB:BC=2:3,周长为30cm,则AB=______cm,BC=______cm.7.如图所示,在ABCD中,两条对角线交于点O,若AO=2cm,△ABC的周长为13cm,则ABCD的周长为______cm.8.已知点O是□ABCD两条对角线的交点,对角线AC=24mm,BD=38mm,一边BC=28mm,则△OAD的周长为mm.9.在□ABCD中,两邻边的差是4cm,较短的一条边长是6cm,在□ABCD的周长是10.在□ABCD中,对角线AC、BD相交于点O,△OAD的面积为3,则□ABCD的面积为11.□ABCD的周长为120,对角线AC、BD相交于点O,若△AOB的周长比△BOC的周长大10,则CD= ,AD=12.若一个平行四边形的一条边长为10,一条对角线为7,则另一条对角线长x的取值围是13.如图,AD∥BC,AE∥CD,BD平分∠ABC,求证AB=CE。
14.如图,平行四边形ABCD中,AC交BD于O,AE⊥BD于E,∠EAD=60°,AE=2cm,AC+BD=14cm, 求三角形BOC的周长。
15.如图所示,在ABCD中,∠ABC=60°,且AB=BC,∠MAN=60°.请探索BM,DN与AB的数量关系,并证明你的结论.讲义10 平行四边形02 矩形性质:(1)具有平行四边形的一切性质. (2)矩形的四个角都是直角. (3)矩形的对角线相等. (4)矩形是轴对称图形. 判定:(1)定义:有一个角是直角的平行四边形是矩形. (2)定理1:有三个角是直角的四边形是矩形. (3)定理2:对角线相等的平行四边形是矩形.课堂练习:1.如图,周长为68的矩形ABCD 被分成7个全等的矩形,则矩形ABCD 的面积为( ).A.98B.196C.280D.2842.如图,矩形ABCD ,R 是CD 的中点,点M 在BC 边上运动,E ,F 分别是AM ,MR 的中点,则EF 的长随着M 点的运动( )A.变短B.变长C.不变D.无法确定3.如图,已知矩形ABCD 的对角线AC 的长为10cm ,连接各边中点E ,F ,G ,H 得四边形EFGH ,则四边形EFGH 的周长为4.如图,长方形ABCD 中,E 点在BC 上,且AE 平分∠BAC .若BE=4,AC=15,则△AEC 面积为( ) A.15 B.30 C.45 D.605.如图,在矩形ABCD 中,AB=3,AD=4,点P 在AD 上,PE ⊥AC 于E ,PF ⊥BD 于F ,则PE+PF等于( ) A.75 B.125 C.135 D.1456.如图,双曲线)0(>k xky =经过矩形QABC 的边BC 的中点E ,交AB 于点D 。
若梯形ODBC 的面积为3,则双曲线的解析式为( )A.x y 1=B.x y 2= C.x y 3= D.xy 6=7.如图(1)将矩形纸片ABCD 沿AE 折叠,使点B 落在直角梯形AECD 的中位线FG 上,若AB=3,则AE 的长为( ) A.23 B.3 C. 2 D.3328.如图,将边长为8㎝的正方形ABCD 折叠,使点D 落在BC 边的中点E 处,点A 落在F 处,折痕为MN ,则线段CN 的长是( )A .3cmB .4cmC .5cmD .6cm 9.如图,矩形ABCD 中,35AB BC ==,.过对角线交点O 作OE AC ⊥交AD 于E ,则AE 的长是( )A .1.6B .2.5C .3D .3.4 10.将矩形纸片ABCD 按如图所示的方式折叠,AE 、EF 为折痕,∠BAE =30°,AB =3,折叠后,点C 落在AD 边上的C 1处,并且点B 落在EC 1边上的B 1处.则BC 的长为( ). A.3 B.2 C.3 D.3211.如图1,在矩形MNPQ 中,动点R 从点N 出发,沿N →P →Q →M 方向运动至点M 处停止.设点R 运动的路程为x ,MNR △的面积为y ,如果y 关于x 的函数图象如图2所示,则当9x =时,点R 应运动到( ) A .N 处 B .P 处 C .Q 处 D .M 处12.在矩形ABCD 中,对角线AC ,BD 相交于点O ,若对角线AC=10cm ,•边BC=•8cm ,•则△ABO 的周长为________. 13.如图2,根据实际需要,要在矩形实验田里修一条公路(•小路任何地方水平宽度都相等),则剩余实验田的面积为________.14.如图,在矩形ABCD 中,M 是BC 的中点,且MA ⊥MD .•若矩形ABCD•的周长为48cm ,•则矩形ABCD 的面积为_______cm 2.15.如图,在矩形ABCD 中,E 为DC 上一点,且BE=BA ,∠EAD=150,则矩形两边AD:AB 的值为16.如图,在矩形ABCD 中,BC=6cm ,AE=23AD ,∠a=300,且点A 与点F 关于BE 对称,则BE= ,AB= 。