图形的相似和解直角三角形

合集下载

解直角三角形及相似三角形运用难题及答案

解直角三角形及相似三角形运用难题及答案

解直角三角形及相似三角形运用难题及答案1.(2009•西城区一模)已知:,PB=4,以AB为一边作正方形ABCD,使P、D两点落在直线AB的两侧.(1)如图,当∠APB=45°时,求AB及PD的长;(2)当∠APB变化,且其它条件不变时,求PD的最大值,及相应∠APB的大小.【分析】(1)作辅助线,过点A作AE⊥PB于点E,在Rt△PAE中,已知∠APE,AP的值,根据三角函数可将AE,PE的值求出,由PB的值,可求BE的值,在Rt△ABE中,根据勾股定理可将AB的值求出;求PD的值有两种解法,解法一:可将△PAD绕点A顺时针旋转90°得到△P'AB,可得△PAD ≌△P'AB,求PD长即为求P′B的长,在Rt△AP′P中,可将PP′的值求出,在Rt△PP′B中,根据勾股定理可将P′B的值求出;解法二:过点P作AB的平行线,与DA的延长线交于F,交PB于G,在Rt△AEG中,可求出AG,EG的长,进而可知PG的值,在Rt△PFG中,可求出PF,在Rt△PDF中,根据勾股定理可将PD的值求出;(2)将△PAD绕点A顺时针旋转90°,得到△P'AB,PD的最大值即为P'B的最大值,故当P'、P、B三点共线时,P'B取得最大值,根据P'B=PP'+PB可求P'B的最大值,此时∠APB=180°﹣∠APP'=135°.【解答】解:(1)①如图,作AE⊥PB于点E,∵△APE中,∠APE=45°,PA=,∴AE=PE=×=1,∵PB=4,∴BE=PB﹣PE=3,在Rt△ABE中,∠AEB=90°,∴AB==.②解法一:如图,因为四边形ABCD为正方形,可将△PAD绕点A顺时针旋转90°得到△P'AB,可得△PAD≌△P'AB,PD=P'B,PA=P'A.∴∠PAP'=90°,∠APP'=45°,∠P'PB=90°∴PP′=PA=2,∴PD=P′B===;解法二:如图,过点P作AB的平行线,与DA的延长线交于F,与DA的延长线交PB于G.在Rt△AEG中,可得AG===,EG=,PG=PE﹣EG=.在Rt△PFG中,可得PF=PG•cos∠FPG=PG•cos∠ABE=,FG=.在Rt△PDF中,可得,PD===.(2)如图所示,将△PAD绕点A顺时针旋转90°得到△P'AB,PD的最大值即为P'B的最大值,∵△P'PB中,P'B<PP'+PB,PP′=PA=2,PB=4,且P、D两点落在直线AB的两侧,∴当P'、P、B三点共线时,P'B取得最大值(如图)此时P'B=PP'+PB=6,即P'B的最大值为6.此时∠APB=180°﹣∠APP'=135度.【点评】考查综合应用解直角三角形、直角三角形性质,进行逻辑推理能力和运算能力,在解题过程中要求学生充分发挥想象空间,确定P′B取得最大值时点P′的位置.2.(2012•渝北区一模)如图1,在平面直角坐标系中有一个Rt△OAC,点A(3,4),点C(3,0)将其沿直线AC翻折,翻折后图形为△BAC.动点P从点O出发,沿折线0⇒A ⇒B的方向以每秒2个单位的速度向B运动,同时动点Q从点B出发,在线段BO上以每秒1个单位的速度向点O运动,当其中一个点到达终点时,另一点也随之停止运动.设运动的时间为t(秒).(1)设△OPQ的面积为S,求S与t之间的函数关系式,并写出自变量t的取值范围;(2)如图2,固定△OAC,将△ACB绕点C逆时针旋转,旋转后得到的三角形为△A′CB′设A′B′与AC交于点D当∠BCB′=∠CAB时,求线段CD的长;(3)如图3,在△ACB绕点C逆时针旋转的过程中,若设A′C所在直线与OA所在直线的交点为E,是否存在点E使△ACE为等腰三角形?若存在,求出点E的坐标;若不存在,请说明理由.【分析】(1)根据勾股定理和折叠的性质易求得OA=AB=5,OB=6,可用t表示出OP、OQ的长,分两种情况讨论:①点P在线段OA上运动,即0≤t≤2.5,以OQ为底,OP•sin∠AOC为高,即可得S、t的函数关系式;②点P在线段AB上运动,即2.5<t≤5,以OQ为底,BP•sin∠ABC为高,即可得S、t的函数关系式.(2)若∠BCB′=∠CAB,那么∠DCB′、∠ABC为等角的余角,而根据旋转的性质知:∠ABC=∠B′,通过等量代换后可发现此时D点是斜边A′B′的中点,即CD=A′B′,由此得解.(3)首先根据A点坐标,求出直线OP的解析式,然后设出点E的坐标;再根据A、C的坐标,分别表示出AE2、CE2的长,然后分三种情况讨论:①AE=CE,②AE=AC,③CE=AC;根据上述三种情况所得不同等量关系,即可求得符合条件的E点坐标.【解答】解:(1)由题意知:OA=AB=5,OC=BC=3,OB=6;P从O→A→B,所用的总时间为:(5+5)÷2=5s;Q从B→O所用的总时间为:6÷1=6;因此t的取值范围为:0≤t≤5;①当0≤t≤2.5时,点P在线段OA上;OP=2t,OQ=OB﹣BQ=6﹣t;∴S=×2t××(6﹣t)=﹣t2+t;②当2.5≤t≤5时,点P在线段AB上;OP=2t,BP=10﹣2t,OQ=6﹣t;∴S=×(10﹣2t)××(6﹣t)=t2﹣t+24;综上可知:S=.(2)∵∠BCB′=∠CAB,∴∠DCB′=∠ABC=90°﹣∠CAB=90°﹣∠BCB′,由旋转的性质知:∠ABC=∠B′,即∠DCB′=∠B′;∴∠A′=∠A′CD=90°﹣∠DCB′=90°﹣∠B′,∴A′D=DB′=CD,即CD=A′B′=AB=2.5.(3)由A(3,4),可得直线OA:y=x;设点E(x,x),已知A(3,4),C(3,0);∴AE2=(x﹣3)2+(x﹣4)2,CE2=(x﹣3)2+(x)2,AC=4;①当AE=CE时,AE2=CE2,则有:(x﹣3)2+(x﹣4)2=(x﹣3)2+(x)2,解得x=,∴E1(,2);②当AE=AC时,AE2=AC2=16,则有:(x﹣3)2+(x﹣4)2=16,整理得:25x2﹣150x+81=0,解得:x=,x=;∴E2(,),E3(,);③当CE=AC时,CE2=AC2=16,则有:(x﹣3)2+(x)2=16,整理得:25x2﹣54x﹣63=0,解得:x=﹣,x=3(舍去);∴E4(﹣,﹣);综上可知:存在符合条件的E点:E1(,2),E2(,),E3(,),E4(﹣,﹣).【点评】此题是一次函数的综合题,涉及到图形的旋转、图形面积的求法、等腰三角形的构成情况等知识,难度较大.3.如图,在直角坐标系中,点A坐标为(1,0),点B坐标为(0,1),E、F是线段AB 上的两个动点,且∠EOF=45°,过点E、F分别作x轴和y轴的垂线CE、DF相交于点P,垂足分别为C、D、设P点的坐标为(x,y),令xy=k,(1)求证:△AOF∽△BEO;(2)当OC=OD时,求k的值;(3)在点E、F运动过程中,点P也随之运动,探索:k是否为定值?请证明你的结论.【分析】(1)要证明△AOF∽△BEO,由题意可知OA=OB,∠AOB=90°,∴∠OAF=∠OBE=45°,看边角关系,只要证∠AOF=∠BEO即可∠AOF=∠AOE+∠EOF,∠BEO=∠OAF+∠AOE;∵∠EOF=45°,∴∠AOF=∠BEO.问题得证.(2)当OC=OD时,作OM⊥AB于M,,由OC=OD,OA=OB=1,可以得到CE=DF,又∠OCE=∠ODF,∴△OCE≌△ODF,故有OF=OE,,而∠COE=∠AOM﹣∠EOM=45°﹣22.5°=22.5°=∠EOM,∴,k值可求.(3)假设k的值为定值,即PC•PD=定值,作FK⊥OA于点K,EH⊥OB于点H,由△AOF∽△BEO得,∴AF×BE=OA×OB=1,,于是FK=1,即HE×FK=,,问题可求.【解答】(1)证明:由题意得OA=OB,∠AOB=90°,∴∠OAF=∠OBE=45°;又∵∠AOF=∠AOE+∠EOF,∠BEO=∠OAF+∠AOE;∠EOF=45°,∴∠AOF=∠BEO,∴△AOF∽△BEO.(2)解:作OM⊥AB于M,则∵OC=OD,OA=OB=1,∴CE=DF,又∵∠OCE=∠ODF,∴△OCE≌△ODF,∴OF=OE,∵,又∠COE=∠AOM﹣∠EOM=45°﹣22.5°=22.5°=∠EOM∴,∴.(3)解:如图,作FK⊥OA于点K,EH⊥OB于点H,∵△AOF∽△BEO,∴,∴AF×BE=OA×OB=1,∵,∴FK=1,即HE×FK=,∴,∴k的值为定值.【点评】本题综合运用了全等、相似三角形的判定和性质,及三角形的内外角关系等,来解题,综合性强,属能力拔高题.4.(2015•抚顺)在Rt△ABC中,∠BAC=90°,过点B的直线MN∥AC,D为BC边上一点,连接AD,作DE⊥AD交MN于点E,连接AE.(1)如图①,当∠ABC=45°时,求证:AD=DE;(2)如图②,当∠ABC=30°时,线段AD与DE有何数量关系?并请说明理由;(3)当∠ABC=α时,请直接写出线段AD与DE的数量关系.(用含α的三角函数表示)【分析】(1)首先过点D作DF⊥BC,交AB于点F,得出∠BDE=∠ADF,以及∠EBD=∠AFD,再得出△BDE≌△FDA(ASA),求出即可;(2)首先过点D作DG⊥BC,交AB于点G,进而得出∠EBD=∠AGD,证出△BDE∽△GDA即可得出答案;(3)首先过点D作DG⊥BC,交AB于点G,进而得出∠EBD=∠AGD,证出△BDE∽△GDA即可得出答案.【解答】(1)证明:如图1,过点D作DF⊥BC,交AB于点F,则∠BDE+∠FDE=90°,∵DE⊥AD,∴∠FDE+∠ADF=90°,∴∠BDE=∠ADF,∵∠BAC=90°,∠ABC=45°,∴∠C=45°,∵MN∥AC,∴∠EBD=180°﹣∠C=135°,∵∠BFD=45°,DF⊥BC,∴∠BFD=45°,BD=DF,∴∠AFD=135°,∴∠EBD=∠AFD,在△BDE和△FDA中,∴△BDE≌△FDA(ASA),∴AD=DE;(2)解:DE=AD,理由:如图2,过点D作DG⊥BC,交AB于点G,则∠BDE+∠GDE=90°,∵DE⊥AD,∴∠GDE+∠ADG=90°,∴∠BDE=∠ADG,∵∠BAC=90°,∠ABC=30°,∴∠C=60°,∵MN∥AC,∴∠EBD=180°﹣∠C=120°,∵∠ABC=30°,DG⊥BC,∴∠BGD=60°,∴∠AGD=120°,∴∠EBD=∠AGD,∴△BDE∽△GDA,∴=,在Rt△BDG中,=tan30°=,∴DE=AD;(3)AD=DE•tanα;理由:如图2,∠BDE+∠GDE=90°,∵DE⊥AD,∴∠GDE+∠ADG=90°,∴∠BDE=∠ADG,∵∠EBD=90°+α,∠AGD=90°+α,∴∠EBD=∠AGD,∴△EBD∽△AGD,∴=,在Rt△BDG中,=tanα,则=tanα,∴AD=DE•tanα.【点评】此题主要考查了全等三角形的判定与性质以及相似三角形的判定与性质,得出△EBD∽△AGD是解题关键.5.(2013•常德)已知两个等腰Rt△ABC,Rt△CEF有公共顶点C,∠ABC=∠CEF=90°,连接AF,M是AF的中点,连接MB、ME.(1)如图1,当CB与CE在同一直线上时,求证:MB∥CF;(2)如图1,若CB=a,CE=2a,求BM,ME的长;(3)如图2,当∠BCE=45°时,求证:BM=ME.【分析】(1)证法一:如答图1a所示,延长AB交CF于点D,证明BM为△ADF的中位线即可;证法二:如答图1b所示,延长BM交EF于D,根据在同一平面内,垂直于同一直线的两直线互相平行可得AB∥EF,再根据两直线平行,内错角相等可得∠BAM=∠DFM,根据中点定义可得AM=MF,然后利用“角边角”证明△ABM和△FDM全等,再根据全等三角形对应边相等可得AB=DF,然后求出BE=DE,从而得到△BDE是等腰直角三角形,根据等腰直角三角形的性质求出∠EBM=45°,从而得到∠EBM=∠ECF,再根据同位角相等,两直线平行证明MB∥CF即可,(2)解法一:如答图2a所示,作辅助线,推出BM、ME是两条中位线;解法二:先求出BE的长,再根据全等三角形对应边相等可得BM=DM,根据等腰三角形三线合一的性质可得EM⊥BD,求出△BEM是等腰直角三角形,根据等腰直角三角形的性质求解即可;(3)证法一:如答图3a所示,作辅助线,推出BM、ME是两条中位线:BM=DF,ME= AG;然后证明△ACG≌△DCF,得到DF=AG,从而证明BM=ME;证法二:如答图3b所示,延长BM交CF于D,连接BE、DE,利用同旁内角互补,两直线平行求出AB∥CF,再根据两直线平行,内错角相等求出∠BAM=∠DFM,根据中点定义可得AM=MF,然后利用“角边角”证明△ABM和△FDM全等,再根据全等三角形对应边相等可得AB=DF,BM=DM,再根据“边角边”证明△BCE和△DFE全等,根据全等三角形对应边相等可得BE=DE,全等三角形对应角相等可得∠BEC=∠DEF,然后求出∠BED=∠CEF=90°,再根据等腰直角三角形的性质证明即可.【解答】(1)证法一:如答图1a,延长AB交CF于点D,则易知△ABC与△BCD均为等腰直角三角形,∴AB=BC=BD,∴点B为线段AD的中点,又∵点M为线段AF的中点,∴BM为△ADF的中位线,∴BM∥CF.证法二:如答图1b,延长BM交EF于D,∵∠ABC=∠CEF=90°,∴AB⊥CE,EF⊥CE,∴AB∥EF,∴∠BAM=∠DFM,∵M是AF的中点,∴AM=MF,在△ABM和△FDM中,,∴△ABM≌△FDM(ASA),∴AB=DF,∵BE=CE﹣BC,DE=EF﹣DF,∴BE=DE,∴△BDE是等腰直角三角形,∴∠EBM=45°,∵在等腰直角△CEF中,∠ECF=45°,∴∠EBM=∠ECF,∴MB∥CF;(2)解法一:如答图2a所示,延长AB交CF于点D,则易知△BCD与△ABC为等腰直角三角形,∴AB=BC=BD=a,AC=CD=a,∴点B为AD中点,又点M为AF中点,∴BM=DF.分别延长FE与CA交于点G,则易知△CEF与△CEG均为等腰直角三角形,∴CE=EF=GE=2a,CG=CF=a,∴点E为FG中点,又点M为AF中点,∴ME=AG.∵CG=CF=a,CA=CD=a,∴AG=DF=a,∴BM=ME=×a=a.解法二:如答图1b.∵CB=a,CE=2a,∴BE=CE﹣CB=2a﹣a=a,∵△ABM≌△FDM,∴BM=DM,又∵△BED是等腰直角三角形,∴△BEM是等腰直角三角形,∴BM=ME=BE=a;(3)证法一:如答图3a,延长AB交CE于点D,连接DF,则易知△ABC与△BCD均为等腰直角三角形,∴AB=BC=BD,AC=CD,∴点B为AD中点,又点M为AF中点,∴BM=DF.延长FE与CB交于点G,连接AG,则易知△CEF与△CEG均为等腰直角三角形,∴CE=EF=EG,CF=CG,∴点E为FG中点,又点M为AF中点,∴ME=AG.在△ACG与△DCF中,,∴△ACG≌△DCF(SAS),∴DF=AG,∴BM=ME.证法二:如答图3b,延长BM交CF于D,连接BE、DE,∵∠BCE=45°,∴∠ACD=45°×2+45°=135°∴∠BAC+∠ACF=45°+135°=180°,∴AB∥CF,∴∠BAM=∠DFM,∵M是AF的中点,∴AM=FM,在△ABM和△FDM中,,∴△ABM≌△FDM(ASA),∴AB=DF,BM=DM,∴AB=BC=DF,在△BCE和△DFE中,,∴△BCE≌△DFE(SAS),∴BE=DE,∠BEC=∠DEF,∴∠BED=∠BEC+∠CED=∠DEF+∠CED=∠CEF=90°,∴△BDE是等腰直角三角形,又∵BM=DM,∴BM=ME=BD,故BM=ME.【点评】本题考查了三角形中位线定理、全等三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出中位线、全等三角形和等腰直角三角形是解题的关键,也是本题的难点.6.(2013•绍兴)在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD交于点G,点F在BC上.(1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.(2)如图2,AC:AB=1:,EF⊥CE,求EF:EG的值.【分析】(1)根据同角的余角相等得出∠CAD=∠B,根据AC:AB=1:2及点E为AB的中点,得出AC=BE,再利用AAS证明△ACD≌△BEF,即可得出EF=CD;(2)作EH⊥AD于H,EQ⊥BC于Q,先证明四边形EQDH是矩形,得出∠QEH=90°,则∠FEQ=∠GEH,再由两角对应相等的两三角形相似证明△EFQ∽△EGH,得出EF:EG=EQ:EH,然后在△BEQ中,根据正弦函数的定义得出EQ=BE,在△AEH中,根据余弦函数的定义得出EH=AE,又BE=AE,进而求出EF:EG的值.【解答】(1)证明:如图1,在△ABC中,∵∠CAB=90°,AD⊥BC于点D,∴∠CAD=∠B=90°﹣∠ACB.∵AC:AB=1:2,∴AB=2AC,∵点E为AB的中点,∴AB=2BE,∴AC=BE.在△ACD与△BEF中,,∴△ACD≌△BEF,∴CD=EF,即EF=CD;(2)解:如图2,作EH⊥AD于H,EQ⊥BC于Q,∵EH⊥AD,EQ⊥BC,AD⊥BC,∴四边形EQDH是矩形,∴∠QEH=90°,∴∠FEQ=∠GEH=90°﹣∠QEG,又∵∠EQF=∠EHG=90°,∴△EFQ∽△EGH,∴EF:EG=EQ:EH.∵AC:AB=1:,∠CAB=90°,∴∠B=30°.在△BEQ中,∵∠BQE=90°,∴sinB==,∴EQ=BE.在△AEH中,∵∠AHE=90°,∠AEH=∠B=30°,∴cos∠AEH==,∴EH=AE.∵点E为AB的中点,∴BE=AE,∴EF:EG=EQ:EH=BE:AE=1:=:3.【点评】本题考查了相似三角形的判定和性质、全等三角形的判定和性质、矩形的判定和性质,解直角三角形,综合性较强,有一定难度.解题的关键是作辅助线,构造相似三角形,并且证明四边形EQDH是矩形.7.(2012•成都)如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=a,CQ=时,P、Q两点间的距离(用含a的代数式表示).【分析】(1)由△ABC是等腰直角三角形,易得∠B=∠C=45°,AB=AC,又由AP=AQ,E是BC的中点,利用SAS,可证得:△BPE≌△CQE;(2)由△ABC和△DEF是两个全等的等腰直角三角形,易得∠B=∠C=∠DEF=45°,然后利用三角形的外角的性质,即可得∠BEP=∠EQC,则可证得:△BPE∽△CEQ;根据相似三角形的对应边成比例,即可求得BE的长,即可得BC的长,继而求得AQ与AP的长,利用勾股定理即可求得P、Q两点间的距离.【解答】(1)证明:∵△ABC是等腰直角三角形,∴∠B=∠C=45°,AB=AC,∵AP=AQ,∴BP=CQ,∵E是BC的中点,∴BE=CE,在△BPE和△CQE中,∵,∴△BPE≌△CQE(SAS);(2)解:连接PQ,∵△ABC和△DEF是两个全等的等腰直角三角形,∴∠B=∠C=∠DEF=45°,∵∠BEQ=∠EQC+∠C,即∠BEP+∠DEF=∠EQC+∠C,∴∠BEP+45°=∠EQC+45°,∴∠BEP=∠EQC,∴△BPE∽△CEQ,∴,∵BP=a,CQ=a,BE=CE,∴,∴BE=CE=a,∴BC=3a,∴AB=AC=BC•sin45°=3a,∴AQ=CQ﹣AC=a,PA=AB﹣BP=2a,在Rt△APQ中,PQ==a.【点评】此题考查了相似三角形的判定与性质、等腰直角三角形的性质、全等三角形的判定与性质以及勾股定理.此题难度较大,注意数形结合思想的应用.8.(2011•武汉)(1)如图1,在△ABC中,点D、E、Q分别在AB、AC、BC上,且DE∥BC,AQ交DE于点P,求证:=;(2)如图,△ABC中,∠BAC=90°,正方形DEFG的四个顶点在△ABC的边上,连接AG,AF分别交DE于M,N两点.①如图2,若AB=AC=1,直接写出MN的长;②如图3,求证:MN2=DM•EN.【分析】(1)可证明△ADP∽△ABQ,△ACQ∽△ADP,从而得出=;(2)①根据三角形的面积公式求出BC边上的高,根据△ADE∽△ABC,求出正方形DEFG的边长,根据等于高之比即可求出MN;②可得出△BGD∽△EFC,则DG•EF=CF•BG;又由DG=GF=EF,得GF2=CF•BG,再根据(1)==,从而得出答案.【解答】(1)证明:在△ABQ和△ADP中,∵DP∥BQ,∴△ADP∽△ABQ,∴=,同理在△ACQ和△APE中,=,∴=.(2)①作AQ⊥BC于点Q.∵BC边上的高AQ=,∵DE=DG=GF=EF=BG=CF∴DE:BC=1:3又∵DE∥BC,∴AD:AB=1:3,∴AD=,DE=,∵DE边上的高为,MN:GF=:,∴MN:=:,∴MN=.故答案为:.②证明:∵∠B+∠C=90°∠CEF+∠C=90°,∴∠B=∠CEF,又∵∠BGD=∠EFC,∴△BGD∽△EFC,∴=,∴DG•EF=CF•BG,又∵DG=GF=EF,∴GF2=CF•BG,由(1)得==,∴×=•,∴()2=•,∵GF2=CF•BG,∴MN2=DM•EN.【点评】本题考查了相似三角形的判定和性质以及正方形的性质,是一道综合题目,难度较大.9.(2009•绵阳)如图,在平面直角坐标系中,矩形AOBC在第一象限内,E是边OB上的动点(不包括端点),作∠AEF=90°,使EF交矩形的外角平分线BF于点F,设C(m,n).(1)若m=n时,如图,求证:EF=AE;(2)若m≠n时,如图,试问边OB上是否还存在点E,使得EF=AE?若存在,请求出点E的坐标;若不存在,请说明理由.(3)若m=tn(t>1)时,试探究点E在边OB的何处时,使得EF=(t+1)AE成立?并求出点E的坐标.【分析】(1)根据m=n,我们可得出四边形AOBC应该是个正方形.要证EF=AE,可通过构建全等三角形来实现,在OA上取点C,使AG=BE,则OG=OE.那么我们的目的就是证三角形ABE和EBF全等,这两个三角形中已知的条件只有AG=BE,我们发现∠AGE和∠EBF都是90+45=135°,而∠GAE和∠FEB都是∠AEO的余角,那么这两组对应角就相等,构成了三角形全等的条件,于是EF=AE了.(2)可用反证法来求解,方法同(1)类似,也是通过构建全等三角形来求解.作FH⊥x 轴于H,假设题目给出的条件成立,通过证明三角形AOE和EHF全等来得出线段相等,即AO=EH,OE=FH,根据FBH=45°,设E(a,0).那么FH=BH=OE=a,那么不难得出EH=EB+BH=OE+EB=m,又根据AO=EH,m=n,因此不存在点E.(3)可根据相似三角形来得出线段之间的比例关系来求得.辅助线作法同(2),我们不难证得三角形AOE和FEH相似(根据同角的余角相等和一组直角即可得出相似),那么就能将EF=(t+1)AE转换为FH=(t+1)OE,根据相似我们还可得出关于AO、EH、OE、FH 的比例关系,那么就能得出一个关于OE、FH、m、n的关系式,将这式子进行化简,即可得出OE与m、n的关系,便能求出E的坐标了.【解答】解:(1)由题意得m=n时,AOBC是正方形.如图,在OA上取点G,使AG=BE,∵正方形OACB,OA=OB,∴OG=OE.∴∠EGO=∠GEO=(180°﹣90°)=45°,从而∠AGE=90°+45°=135°.由BF是外角平分线,得∠EBF=135°,∴∠AGE=∠EBF.∵∠AEF=90°,∴∠FEB+∠AEO=90°.在Rt△AEO中,∵∠EAO+∠AEO=90°,∴∠EAO=∠FEB,在△AGE和△EBF中∵∴△AGE≌△EBF,EF=AE.(2)假设存在点E,使EF=AE.设E(a,0).作FH⊥x轴于H,如图.由(1)知∠EAO=∠FEH,于是Rt△AOE≌Rt△EHF.∴FH=OE,EH=OA.∴点F的纵坐标为a,即FH=a.由BF是外角平分线,知∠FBH=45°,∴BH=FH=a.又由C(m,n)有OB=m,∴BE=OB﹣OE=m﹣a,∴EH=m﹣a+a=m.又EH=OA=n,∴m=n,这与已知m≠n相矛盾.因此在边OB上不存在点E,使EF=AE成立.(3)如(2)图,设E(a,0),FH=h,则EH=OH﹣OE=h+m﹣a.由∠AEF=90°,∠EAO=∠FEH,得△AOE∽△EHF,∴EF=(t+1)AE等价于FH=(t+1)OE,即h=(t+1)a,且,即,整理得nh=ah+am﹣a2,∴h=.把h=(t+1)a代入得=(t+1)a,即m﹣a=(t+1)(n﹣a).而m=tn,因此tn﹣a=(t+1)(n﹣a).化简得ta=n,解得a=.∵t>1,∴<n<m,故E在OB边上.∴当E在OB边上且离原点距离为处时满足条件,此时E(,0).【点评】本题解题的关键是根据全等三角形的判定或相似三角形得出线段相等或成比例.相似三角形经典大题解析1.如图,已知一个三角形纸片ABC ,BC 边的长为8,BC 边上的高为6,B ∠和C ∠都为锐角,M 为AB 一动点(点M 与点A B 、不重合),过点M 作MN BC ∥,交AC 于点N ,在AMN △中,设MN 的长为x ,MN 上的高为h . (1)请你用含x 的代数式表示h .(2)将AMN △沿MN 折叠,使AMN △落在四边形BCNM 所在平面,设点A 落在平面的点为1A ,1A MN △与四边形BCNM 重叠部分的面积为y ,当x 为何值时,y 最大,最大值为多少?【答案】解:(1)MN BC ∥AMN ABC ∴△∽△ 68h x ∴= 34x h ∴=(2)1AMN A MN △≌△1A MN ∴△的边MN 上的高为h ,①当点1A 落在四边形BCNM 内或BC 边上时,1A MN y S =△=211332248MN h x x x ==··(04x <≤) ②当1A 落在四边形BCNM 外时,如下图(48)x <<,设1A EF △的边EF 上的高为1h , 则132662h h x =-=- 11EF MNA EF A MN ∴∥△∽△11AMN ABC A EF ABC ∴△∽△△∽△1216A EF S h S ⎛⎫= ⎪⎝⎭△△ABC168242ABC S =⨯⨯=△ 22363224122462EFx S x x ⎛⎫- ⎪∴==⨯=-+ ⎪⎪⎝⎭1△A 1122233912241224828A MN A EF y S S x x x x x ⎛⎫=-=--+=-+- ⎪⎝⎭△△所以 291224(48)8y x x x =-+-<<综上所述:当04x <≤时,238y x =,取4x =,6y =最大 当48x <<时,2912248y x x =-+-, 取163x =,8y =最大 86>∴当163x =时,y 最大,8y =最大M NCBEFAA 12.如图,已知直线128:33l y x =+与直线2:216l y x =-+相交于点C l l 12,、分别交x 轴于A B 、两点.矩形DEFG 的顶点D E 、分别在直线12l l 、上,顶点F G 、都在x 轴上,且点G 与点B 重合.(1)求ABC △的面积;(2)求矩形DEFG 的边DE 与EF 的长;(3)若矩形DEFG 从原点出发,沿x 轴的反方向以每秒1个单位长度的速度平移,设移动时间为(012)t t ≤≤秒,矩形DEFG 与ABC △重叠部分的面积为S ,求S 关于t 的函数关系式,并写出相应的t 的取值范围.【答案】(1)解:由28033x +=,得4x A =-∴.点坐标为()40-,.由2160x -+=,得8x B =∴.点坐标为()80,.∴()8412AB =--=.由2833216y x y x ⎧=+⎪⎨⎪=-+⎩,.解得56x y =⎧⎨=⎩,.∴C 点的坐标为()56,. ∴111263622ABC C S AB y ==⨯⨯=△·. (2)解:∵点D 在1l 上且2888833D B D x x y ==∴=⨯+=,. ∴D 点坐标为()88,.又∵点E 在2l 上且821684E D E E y y x x ==∴-+=∴=,.. ∴E 点坐标为()48,. ∴8448OE EF =-==,.(3)解法一:①当03t <≤时,如图1,矩形DEFG 与ABC △重叠部分为五边形CHFGR (0t =时,为四边形CHFG ).过C 作CM AB ⊥于M ,则Rt Rt RGB CMB △∽△.∴BG RG BM CM =,即36t RG=,∴2RG t =. Rt Rt AFH AMC △∽△,∴()()11236288223ABC BRG AFH S S S S t t t t =--=-⨯⨯--⨯-△△△.即241644333S t t =-++.当83<≤t 时,如图2,为梯形面积,∵G (8-t,0)∴GR=32838)8(32t t -=+-,∴38038]32838)4(32[421+-=-++-⨯=t t t s 当128<≤t 时,如图3,为三角形面积,4883)12)(328(212+-=--=t t t t s3.如图,矩形ABCD 中,3AD =厘米,AB a =厘米(3a >).动点M N ,同时从B 点出发,分别沿B A →,B C →运动,速度是1厘米/秒.过M 作直线垂直于AB ,分别交AN ,CD 于P Q ,.当点N 到达终点C 时,点M 也随之停止运动.设运动时间为t 秒. (1)若4a =厘米,1t =秒,则PM =______厘米;(2)若5a =厘米,求时间t ,使PNB PAD △∽△,并求出它们的相似比;(3)若在运动过程中,存在某时刻使梯形PMBN 与梯形PQDA 的面积相等,求a 的取值范围;(4)是否存在这样的矩形:在运动过程中,存在某时刻使梯形PMBN ,梯形PQDA ,梯形PQCN 的面积都相等?若存在,求a 的值;若不存在,请说明理由.(图3)(图1)(图2)【答案】解: (1)34PM =,(2)2t =,使PNB PAD △∽△,相似比为3:2 (3)PM AB CB AB AMP ABC ∠=∠⊥,⊥,,AMP ABC △∽△,PM AM BN AB ∴=即()PM a t t a t PM t a a--==,,(1)3t a QM a-∴=-当梯形PMBN 与梯形PQDA 的面积相等,即()()22QP AD DQ MP BN BM++=()33(1)()22t a t t a a t t ta a -⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭==化简得66a t a =+,3t ≤,636aa∴+≤,则636a a ∴<≤,≤, (4)36a <≤时梯形PMBN 与梯形PQDA 的面积相等∴梯形PQCN 的面积与梯形PMBN 的面积相等即可,则CN PM =()3t a t t a ∴-=-,把66a t a=+代入,解之得a =±a = 所以,存在a ,当a =PMBN 与梯形PQDA 的面积、梯形PQCN 的面积相等.N4.如图,已知△ABC 是边长为6cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB 、BC 匀速运动,其中点P 运动的速度是1cm/s ,点Q 运动的速度是2cm/s ,当点Q 到达点C 时,P 、Q 两点都停止运动,设运动时间为t (s ),解答下列问题: (1)当t =2时,判断△BPQ 的形状,并说明理由;(2)设△BPQ 的面积为S (cm 2),求S 与t 的函数关系式;(3)作QR //BA 交AC 于点R ,连结PR ,当t 为何值时,△APR ∽△PRQ ?【答案】 解:(1)△BPQ 是等边三角形,当t=2时,AP=2×1=2,BQ=2×2=4,所以BP=AB-AP=6-2=4,所以BQ=BP.又因为∠B=600,所以△BPQ 是等边三角形. (2)过Q 作QE ⊥AB,垂足为E,由QB=2y,得QE=2t ·sin600=3t,由AP=t,得PB=6-t,所以S △BPQ=21×BP ×QE=21(6-t)×3t=-23t 2+33t ; (3)因为Q R ∥BA,所以∠QRC=∠A=600,∠RQC=∠B=600,又因为∠C=600, 所以△QRC 是等边三角形,所以QR=RC=QC=6-2t.因为BE=BQ ·cos600=21×2t=t, 所以EP=AB-AP-BE=6-t-t=6-2t,所以EP ∥QR,EP=QR,所以四边形EPRQ 是平行四边形, 所以PR=EQ=3t,又因为∠PEQ=900,所以∠APR=∠PRQ=900.因为△APR ~△PRQ,所以∠QPR=∠A=600,所以tan600=PR QR ,即3326=-tt,所以t=56, 所以当t=56时, △APR ~△PRQ5.在直角梯形OABC中,CB∥OA,∠CO A=90º,CB=3,OA=6,BA=35.分别以OA、OC边所在直线为x轴、y轴建立如图1所示的平面直角坐标系.(1)求点B的坐标;(2)已知D、E分别为线段OC、OB上的点,OD=5,OE=2E B,直线DE交x轴于点F.求直线DE的解析式;(3)点M是(2)中直线DE上的一个动点,在x轴上方的平面内是否存在另一个点N.使以O、D、M、N为顶点的四边形是菱形?若存在,请求出点N的坐标;若不存在,请说明理由.图7-2AD O BC 21MN图7-1AD BMN 12图7-3A D OBC21MNO.6.在图15-1至图15-3中,直线MN 与线段AB 相交 于点O ,∠1 = ∠2 = 45°.(1)如图15-1,若AO = OB ,请写出AO 与BD的数量关系和位置关系;(2)将图15-1中的MN 绕点O 顺时针旋转得到图15-2,其中AO = OB . 求证:AC = BD ,AC ⊥ BD ;(3)将图15-2中的OB 拉长为AO 的k 倍得到图15-3,求ACBD的值. 【答案】 解:(1)AO = BD ,AO ⊥BD ;(2)证明:如图4,过点B 作BE ∥CA 交DO 于E ,∴∠ACO = ∠BEO .又∵AO = OB ,∠AOC = ∠BOE ,∴△AOC ≌ △BOE .∴AC = BE . 又∵∠1 = 45°, ∴∠ACO = ∠BEO = 135°. ∴∠DEB = 45°.∵∠2 = 45°,∴BE = BD ,∠EBD = 90°.∴AC = BD . 延长AC 交DB 的延长线于F ,如图4.∵BE ∥AC ,∴∠AFD = 90°.∴AC ⊥BD .(3)如图5,过点B 作BE ∥CA 交DO 于E ,∴∠BEO = ∠ACO . 又∵∠BOE = ∠AOC , ∴△BOE ∽ △AOC .∴AOBO AC BE =. 又∵OB = kAO ,由(2)的方法易得 BE = BD .∴k ACBD=.10.如图,已知过A (2,4)分别作x 轴、y 轴的垂线,垂足分别为M 、N ,若点P 从O 点出发,沿OM 作匀速运动,1分钟可到达M 点,点Q 从M 点出发,沿MA 作匀速运动,1图4A DO B C21 MNE FAO BC1D 2图5 M NE分钟可到达A点。

初三数学相似三角形》知识点归纳

初三数学相似三角形》知识点归纳

初三数学《相似三角形》知识提纲(何老师归纳)一:比例的性质及平行线分线段成比例定理(一)相关概念:1.两条线段的比:两条线段的比就是两条线段长度的比 在同一长度单位下两条线段a ,b 的长度分别为m ,n ,那么就说这两条线段 的比是,或写成a :b=m :n ; 其中 a 叫做比的前项,b 叫做比的后项 2:比例尺= 图上距离/实际距离3:成比例线段:在四条线段a ,b ,c ,d 中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段,记作:cda b =(或a :b=c :d ) ① 线段a ,d 叫做比例外项,线段b ,c 叫做比例内项, ② 线段a 叫首项,d 叫a ,b ,c 的第四比例项。

③ 比例中项:若c a b c a b cbb a ,,2是则即⋅==的比例中项. (二)比例式的性质 1.比例的基本性质:bc ad dcb a =⇔= 2.合比:若,则或a b c d a b b c d d a b a c d c =±=±±=±3.等比:若……(若……)a b c d e f mn k b d f n =====++++≠04、黄金分割:把线段AB 分成两条线段AC ,BC (AC>BC ),并且使AC 是AB 和BC 的比例中项,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AC=215-≈, (三)平行线分线段成比例定理1.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.如图:当AD∥BE∥CF 时,都可得到=.=,= ,语言描述如下:=, =,=.(4)上述结论也适合下列情况的图形:nm b a =图(2) 图(3) 图(4) 图(5)2.推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.A 型 X 型 由DE ∥BC 可得:ACAEAB AD EA EC AD BD EC AE DB AD ===或或. 3.推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边.如上图:若 = . = ,=,则AD ∥BE ∥CF此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.4.定理:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边......与原三角形....三边..对应成比例. 二:相似三角形: (一):定义:1:对应角相等,对应边成比例的三角形,叫做相似三角形。

九年级数学解直角三角形与图形的相似综合过关测试

九年级数学解直角三角形与图形的相似综合过关测试

解直角三角形过关自测卷(90分钟 100分)一、选择题(每题3分,共30分)1.图1,P 是角α的边OA 上一点,点P 的坐标为(12,5),则tan α等于( ) A.135 B.1312 C.125 D.512图1 图2 图32.在直角三角形ABC 中,各边的长度都扩大为原来的2倍,那么锐角A 的正弦值、余弦值和正切值( )A.都扩大为原来的2倍B.都缩小为原来的21 C.都不变 D.无法确定3.已知在Rt △ABC 中,∠C=90°,AC =BC ,点D 在AC 上,∠CBD =30°,则DCAD 的值为( )A.3B.22C. 3-1D.不能确定 4.1,则菱形的四个角分别为( )A.30°、150°、30°、150°B.45°、135°、45°、135°C.60°、120°、60°、120°D.不能确定5.如图2,在平地上种植树木时,要求株距(相邻两树间的水平距离)为4 m.如果在坡度为0.75的山坡上种树,也要求株距为4 m,那么相邻两树间的坡面距离为()A.5 mB.6 mC.7 mD.8 m6.已知∠A,∠B是Rt△ABC的两个锐角,则方程tan A·x²-2x+tan B=0( )A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.根的情况无法确定7.如图3,一艘轮船由海平面上A地出发向南偏西40°的方向行驶40 n mile到达B地,再由B地向北偏西20°的方向行驶20 n mile到达C地,则A,C两地相距()A.30 n mileB.40 n mileC.203n mileD.103n mile 8.(2012,四川广安,有改动)如图4,某水库堤坝横断面迎水坡AB 的坡度i=1BC=50 m,则迎水坡面AB的长度是()A.100 mB.1003mC.150 mD.503m图4 图5 图69.如图5所示,学校的保管室里,有一架5 m长的梯子OC斜靠在墙上,此时梯子OC与地面所成的角为45°,如果梯子底端O固定不动,顶端C靠到对面墙上的C′点,此时梯子OC′与地面所成的角为60°,则此保管室的宽度AB为()A.25(2+1)mB.25(3+2)mC.32mD.25(3+1)m10.(2013,广州)如图6所示,四边形ABCD 是梯形,AD ∥BC ,CA 是∠BCD 的平分线,且AB ⊥AC ,AB =4,AD =6,则tan B 等于( )A .23 B.22 C.411D.55二、填空题(每题3分,共24分)11.(2012,湖北孝感)计算:cos 245°+tan30°·sin60°=________. 12.在△ABC 中,∠A ,∠B 都是锐角,且(cos A -21)²+|1-tan B |=0,则∠C =__________. 13.若tan α=5,则ααααcos 3sin 2cos -sin +=__________.14.如图7,孔明同学背着一桶水,从山脚A 出发,沿与地面成30°角的山坡向上走,送水到山上因春季受旱缺水的王奶奶家(B 处),AB =80 m ,则孔明从A 到B 上升的高度BC 是________m.图7 图8 图9 图10 15.(2014,厦门莲花中学模拟)如图8,△ABC 中,∠B =30°, ∠A =15°,若BC 边上的高为2,则BC =__________.16.在△ABC 中,∠A ,∠B 都是锐角,且sin A =21,tan B =3,AB =10,则△ABC 的面积为___________.17.全市动员修海堤抗台风,某海堤的横断面是梯形,如图9所示,迎水坡BC的坡角为30°,背水坡AD的坡度i=1∶1.2,堤顶宽DC 为3 m,堤高DF为10 m,则堤底宽AB约为________m.(精确到0.1 m)18.(2013,荆门)如图10,在Rt△ABC中,∠ACB=90°,D是AB 的中点,过D点作AB的垂线交AC于点E,BC=6,sin A=53,则DE=________.三、解答题(19题4分,20题6分,24题8分,其余每题7分,共46分)19.(1)计算:121-⎪⎭⎫⎝⎛+8+|1-2|0-2sin60°·tan60°;(2)计算:sin²30°+cos²45°+2sin60°·tan45°.20.(2013,昭通)小亮一家在一湖泊中游玩,湖泊中有一孤岛,妈妈在孤岛P处观看小亮与爸爸在湖中划船(如图11所示).小船从P 处出发,沿北偏东60°方向划行200 m到A处,接着向正南方向划行一段时间到B处.在B处小亮观测到妈妈所在的P处在北偏西37°的方向上,这时小亮与妈妈相距多少米(精确到1 m)?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,2≈1.41,3≈1.73)图1121.小明将一副三角尺如图12所示摆放在一起,发现只要知道其中一边的长就可以求出其他各边的长,若已知CD=2,求AC的长.图1222.(2013,贵阳)在一次综合实践活动中,小明要测某地一座古塔AE 的高度,如图13,已知塔基AB的高为4 m,他在C处测得塔基顶端B的仰角为30°,然后沿AC方向走5 m到达D点,又测得塔顶E 的仰角为50°.(人的身高忽略不计)(1)求AC的距离;(结果保留根号)图13(2)求塔高AE.(参考数据:tan50°≈1.2,sin50°≈0.77,cos50°≈0.64,3≈1.73,2≈1.41,结果保留整数)23.如图14,一艘小船从码头A出发,沿北偏东53°方向航行,航行一段时间到达小岛B处后,又沿着北偏西22°方向航行了10 n mile到达C处,这时从码头测得小船在码头北偏东23°的方向上,求此时小船与码头之间的距离.(2≈1.4, 3≈1.7,结果保留整数)图1424.某过街天桥的截面图为梯形,如图15所示,其中天桥斜面CD 的坡度i=1∶3,CD的长为10 m,天桥另一斜面AB的坡角∠ABG=45.(1)求过街天桥斜面AB的坡度;(2)求DE的长;(3)若决定对该过街天桥进行改建,使AB斜面的坡度变缓,将其45°坡角改为30°,方便过路群众,改建后斜面为AF,试计算此改建需占路面的宽度FB.(结果精确到0.01 m)图1525.阅读下列材料,并解决后面的问题.如图16所示,在锐角三角形ABC 中,设∠BAC ,∠B ,∠C 的对边分别是a ,b ,c .过点A 作AD ⊥BC 于点D ,则sin B =c AD ,sin C =b AD,即AD =c ·sin B ,AD =b ·sin C .于是c ·sin B =b ·sin C ,即CcB b sin sin =,同理有,sin sin sin sin B b BAC a BAC a C c =∠∠=,所以CcB b BAC a sin sin sin ==∠. 即:在一个锐角三角形中,各边和它所对角的正弦的比相等.图16(1)在锐角三角形中,∠A ,∠B ,∠C 的对边分别是a ,b ,c ,若已知三个元素,a ,b ,∠A ,运用上述结论和有关定理就可以求出其余三个未知元素c ,∠B ,∠C .请你按照下列步骤填空,完成求解过程.第一步:由a ,b ,∠A −−−→−用关系式__________求出∠B ; 第二步:由∠A ,∠B −−−→−用关系式__________求出∠C ; 第三步:由__________−−−→−用关系式__________求出c ;(2)一货轮在C 处测得灯塔A 在货轮北偏西30°方向上,随后货轮以28.4 n mile/h 的速度按北偏东45°的方向航行,0.5 h 后到达B 处,此时又测得灯塔A在货轮的北偏西70°方向上(如图17所示),利用上面的结论求此时货轮到灯塔A的距离AB.(结果精确到0.1 n mile,参考数据:sin40°≈0.643,sin65°≈0.906,sin70°≈0.940,sin75°≈0.966)图17参考答案及点拨一、1.C 2.C 3.C4.C 点拨:设较大内角为α,则tan2α =3,所以2α=60°,所以α=120°.5.A 6.B 点拨:因为b 2-4ac =(-2)2-4·tan A ·tan B =4-4×1=0,故方程有两个相等的实数根.7.C 8.A 9.A10.B 点拨:过点D 作AB 的平行线交AC 于点E ,交BC 于点F ,如答图1,易知四边形ABFD 是平行四边形,∴BF =AD =6,DF =AB =4,∵AB ⊥AC ,DF ∥AB ,∴DF ⊥AC ,又∵CA 是∠BCD 的平分线,∴CD =CF ,∠DCA =∠ACB ,又∵AD ∥BC ,∴∠DAC =∠ACB ,∴∠DAC =∠DCA .∴DC =DA =6,∴CF =6,∴BC =BF +CF =12.易求得AC =82,∴tan B =AB AC =428=22. 答图1二、11.1 点拨:cos 245°+tan30°·sin60°=222⎪⎪⎭⎫⎝⎛+33×23=21+21=1. 12.75°13.83 点拨:原式=3cos sin 2cos sin +-αααα=3tan 2tan +-αα=3525+-=83.14.4015.32-2 点拨:设BC 边上的高为AD ,由题意知,AD =2,∠ACD =∠B +∠BAC =45°,∴tan 45°=CD AD =CD 2=1,∴CD =2, ∴tan B =BD AD =22-BC =33,解得BC =23-2. 16.2325 点拨:在该题中,并没有直接指明△ABC 是直角三角形,所以需先判断其为直角三角形,然后才能利用解直角三角形的知识解题.17.32.318.415 点拨:由题易证△AED ∽△ABC ,在△ABC 中,BC =6,sin A =53,可求得AB =10,AC =8.利用相似三角形的性质可求得DE 的长. 三、19.解:(1)原式=2+22+1-2×23×3=2+22+1-3=22. (2)原式=221⎪⎭⎫ ⎝⎛+222⎪⎪⎭⎫ ⎝⎛+2×23×1=41+21+26=43+26. 20.解:过P 作PC ⊥AB 于C ,如答图2,在Rt △APC 中,AP =200 m ,∠ACP =︒90,∠P AC =60°.∴PC =200×sin60°=200×23=1003(m ).∵在Rt △PBC 中,sin ︒37=PB PC ,∴PB =︒37sin PC ≈6.073.1100⨯≈288(m ). 答:这时小亮与妈妈相距约288 m.答图221.解:在Rt △BCD 中,∠BCD =45°,CD =2,cos ∠BCD =BC CD ,∴BC =BCD CD ∠cos =︒45cos 2=22.在Rt △ABC 中,∠BAC =60°,sin ∠BAC =AC BC ,∴AC =BAC BC ∠sin =︒60sin 22=2322=364.∴AC 的长为364. 点拨:△ABC 和△BCD 都是有特殊锐角的直角三角形,所以利用特殊角的三角函数值便可求得AC 的长.22.解:(1)在Rt △ABC 中,AB =4 m ,∠BCA =30°,由tan ∠BCA =ACAB ,得AC =BCA AB ∠tan =︒30tan 4=334=43(m ). ∴AC 的距离为43 m.(2)设AE=x m ,在Rt △AED 中,由tan50°=ADx ,得AD =︒tan50x ≈1.2x (m ), ∵CD =AD -AC =5,∴1.2x -43≈5,解得x ≈14, ∴塔高AE 约为14m.23.解:由题意知:∠BAC =53°-23°=30°,∠C =23°+22°=45°.过点B 作BD ⊥AC ,垂足为D ,则CD =BD .∵BC =10 n mile ,∴CD =BD =BC ·cos45°=10×22=52 (n mile),∴AD =325332530tan ⨯==︒BD ≈5×1.4×1.7=11.9(n mile).∴AC =AD +CD ≈11.9+25≈11.9+7.0=18.9≈19(n mile ).答:此时小船与码头之间的距离约为19 n mile.24.解:(1)在Rt △AGB 中,∠ABG =45°,所以AG =BG .所以AB 的坡度为AG ∶BG =1∶1.(2)在Rt △DEC 中,tan C =33=EC DE ,所以∠C =30°.又因为CD =10 m, 所以DE =CD ·sin30°=5 m.(3)由(1)(2)知,AG =BG =DE =5 m,在Rt △AFG 中,∠AFG =30°,tan ∠AFG =FGAG ,即5533-=FB .所以FB =35-5≈3.66 (m ). 答:此改建需占路面的宽度FB 约为3.66 m.25.解:(1)Bb A a sin sin =;∠A +∠B +∠C =180°;a ,∠A ,∠C ;Cc A a sin sin = (2)根据题意,得∠ABC =180°-45°-70°=65°,∠A =180°-(30°+45°+65°)=40°,BC =0.5×28.4=14.2(n mile ).因为︒=︒40sin 2.1475sin AB ,所以AB ≈643.0966.02.14⨯≈21.3(n mile ),所以此时货轮到灯塔A 的距离AB 约为21.3 n mile.图形的相似过关自测卷(90分钟100分)一、选择题(每题3分,共24分)1.已知:a=0.2,b=1.6,c=4,d=1,则下列各式中正确的是()2A.a∶b=c∶dB.a∶c=d∶bC.a∶b=d∶cD.a∶d=c∶b 2.下列命题中:①所有的等腰三角形都相似;②有一对锐角相等的两个直角三角形相似;③四个角对应相等的两个梯形相似;④所有的正方形都相似,正确命题的个数为()A.1B.2C.3D.43.如图1,位似图形由三角尺与其灯光照射下的中心投影组成,位似比为2∶5,且三角尺的一边长为8 cm,则投影三角形的对应边长为()A.8 cmB.20 cmC.3.2 cmD.10 cm 4.如图2,已知△ABC的BC边上有两点D、E,且△ADE是正三角形,则下列条件不一定能使△ABD与△AEC相似的是()A.∠BAC=120°B.AC²=EC·EBC.DE²=BD·ECD.∠EAC+∠B=60°图1 图2 图35.如图3,AD是△ABC的高,EF⊥BC,F为垂足,E是AB边的中点,DC=1BF,若BC=10,则DC的长是()2A.310B.25C.2D. 45 6.如图4,在平行四边形ABCD 中,过点B 的直线BF 与对角线AC 、边AD 分别交于点E 和F .过点E 作EG ∥BC ,交AB 于G ,则图中相似三角形有( )A.4对B.5对C.6对D.7对图4 图5 图67.如图5,小东用长为3.2 m 的竹竿做测量工具测量学校旗杆的高度,移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面的同一点.此时,竹竿与这一点相距8 m ,与旗杆相距22 m ,则旗杆的高为( )A.12 mB.10 mC.8 mD.7 m8.(2013,新疆)如图6,在Rt △ABC 中,∠ACB =90°,∠ABC = 60°,BC =2cm ,D 为BC 的中点,若动点E 以1cm/s 的速度从A 点出发,沿着A →B →A 的方向运动,设E 点的运动时间为t 秒(0≤t <6),连接DE ,当△BDE 是直角三角形时,t 的值为( )A.2B.2.5或3.5C.3.5或4.5D.2或3.5或4.5二、填空题(每题3分,共24分)9.一个多边形的边长依次为1,2,3,4,5,6,与它相似的另一个多边形的最大边长为8,那么另一个多边形的周长是__________.10.如图7,D ,E 分别是△ABC 的边AB ,AC 上的点,DE ∥BC ,BDAD =2,则ADE S △︰ABC S △=_________.图7 图8 图9 图1011.如图8,△ABC 中,点D 在AB 上,请填上一个你认为适合的条件_______________,使得△ACD ∽△ABC .12.(2013,淄博)在△ABC 中,P 是AB 上的动点(P 异于A ,B ),过点P 的一条直线截△ABC ,使截得的三角形与△ABC 相似,我们不妨称这种直线为过点P 的△ABC 的相似线.如图9,∠A =36°,AB =AC ,当点P 在AC 的垂直平分线上时,过点P 的△ABC 的相似线最多有___________条.13.如图10,光源P 在横杆AB 的上方,AB 在灯光下的影子为CD ,AB ∥CD ,已知AB =2 m ,CD =6 m ,点P 到CD 的距离是2.7 m ,那么AB 与CD 间的距离是__________.14.如图11,在直角梯形ABCD 中,∠ABC =90°,AD ∥BC ,AD =4,AB =5,BC =6,点P 是AB 上一个动点,当PC +PD 的和最小时,PB 的长为____________.图11 图12 图1315.(2013,南通)如图12,在□ABCD中,AB=6 cm,AD=9 cm,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂cm,则EF+CF的长为_________cm.足为G,BG16.(2013,苏州)如图13,在平面直角坐标系中,四边形OABC是边长为2的正方形,顶点A,C分别在x,y轴的正半轴上.点Q在对角线OB上,且QO=OC,连接CQ并延长CQ交边AB于点P.则点P的坐标为___________.三、解答题(23题10分,其余每题7分,共52分)17.如图14,在△ABC中,AB=AC,∠BAC=120°,求AB∶BC的值.图1418.(2013,怀化)如图15,已知在△ABC与△DEF中,∠C=54°,∠A=47°,∠F=54°,∠E=79°.求证:△ABC∽△DEF.图1519.如图16,已知△ADE∽△ABC,∠A=70°,∠B=45°,AE=3cm,EB=4cm,AD=4cm,求∠AED的度数及AC的长.图1620.(2013,滨州)某高中学校为高一新生设计的学生板凳的正视图如图17所示,其中BA=CD,BC=20 cm,BC、EF平行于地面AD且到地面AD的距离分别为40 cm、8 cm,过B点作BH⊥AD,分别交EF,AD于M,H,过C点作CG⊥AD,分别交EF,AD于N,G.为使板凳两腿底端A、D之间的距离为50 cm,那么横梁EF应为多长?(材质及其厚度等暂忽略不计).图1721.如图18,在正方形ABCD中,E是BC上的一点,连接AE,作BF⊥AE,垂足为H,交CD于F,作CG∥AE,交BF于G.求证:(1)BH=CG;图18(2)FC ²=BF ·GF ;(3)22AB FC =GB GF .22.如图19,在边长均为1的小正方形网格纸中,△OAB 的顶点O 、A 、B 均在格点上,且O 是直角坐标系的原点,点A 在x 轴上. (1)以O 为位似中心,将△OAB 放大,使得放大后的△11B OA 与 △OAB 对应线段的比为2∶1,画出△11B OA (所画△11B OA 与△OAB 在原点两侧);图19(2)求出线段11B A 所在直线对应的函数关系式.23.(2013,遵义)如图20,在Rt△ABC中,∠C=90°,AC=4 cm,BC=3 cm.动点M,N从点C同时出发,均以每秒1 cm的速度分别沿CA、CB向终点A,B移动,同时动点P从点B出发,以每秒2 cm 的速度沿BA向终点A移动,连接PM,PN,设移动时间为t(单位:秒,0<t<2.5).(1)当t为何值时,以A,P,M为顶点的三角形与△ABC相似?.图20(2)是否存在某一时刻t,使四边形APNC的面积S有最小值?若存在,求S的最小值;若不存在,请说明理由参考答案及点拨一、1.C 点拨:∵a =0.2,b =1.6,c =4,d =21,且0.2×4=1.6×21,∴ac=bd ,∴a ∶b =d ∶c ,故选C .2.B 点拨:①所有的等腰三角形形状不一定相同,故不一定都相似,故此选项错误;②有一对锐角相等的两个直角三角形相似,根据已知可得出三角形两对对应角相等,故此选项正确;③在梯形内,做一腰的平行线,得一小梯形,显然小梯形与原梯形不相似,故此选项错误;④所有的正方形的四个角都是直角,对应边成比例,所以所有的正方形都相似,此选项正确,故正确的有2个,故选B . 3.B 点拨:∵位似图形由三角尺与其灯光照射下的中心投影组成,位似比为2∶5,三角尺的一边长为8 cm ,∴投影三角形的对应边长为:8÷52=20(cm ),故选B .4.B 点拨:本题在根据各选项中条件判定△ABD 与△AEC 相似时,易不理解判定定理2中“两边成比例且夹角相等”这一条件而出错. 5.C 点拨:∵AD 是△ABC 的高,EF ⊥BC ,F 为垂足,E 是AB 边的中点,∴EF ∥AD ,∴BF=DF ,∵DC =21BF ,BC =10,∴25BF =10,∴BF =4,∴DC =2.故选C .6.B 点拨:题图中相似三角形有△ABC ∽△CDA ,△AGE ∽△ABC ,△AFE ∽△CB E ,△BGE ∽△BAF ,△AGE ∽△CDA 共5对,理由是:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB ∥CD ,AD=BC ,AB=CD ,∠D =∠ABC ,∴△ABC ≌△CDA ,即△ABC ∽△CDA ,∵GE ∥BC ,∴△AGE ∽△ABC ∽△CDA ,∵GE ∥BC ,AD ∥BC ,∴GE ∥AD ,∴△BGE ∽△BAF ,∵AD ∥BC ,∴△AFE ∽△CBE ,故选B . 7.A 点拨:如答图1,∵ED ⊥AD ,BC ⊥AC ,∴ED ∥BC ,∴△AED∽△ABC ,∴BCED =AC AD,而AD =8 m ,AC=AD+CD =8+22=30(m ),ED =3.2 m ,∴BC=AD AC ED ∙ =8302.3⨯=12(m ),∴旗杆的高为12 m ,故选A .答图18.D 点拨:∵在Rt △ABC 中,∠ACB =90°,∠ABC =60°,BC =2 cm ,∴AB =2BC =4 cm ,∵BC =2 cm ,D 为BC 的中点,动点E 以1 cm/s 的速度从A 点出发,∴BD =21BC =1 cm ,BE=AB -AE ,若∠BED =90°,当A →B 时,∵∠ABC =60°,∴∠BDE =30°,∴BE =21BD =12cm ,∴t =3.5,当B →A 时,t =4+0.5=4.5.若∠BDE =90°,当A →B 时,∵∠ABC=60°,∴∠BED =30°,∴BE=2BD =2 cm ,∴t =4-2=2,当B →A 时,t =4+2=6(舍去).综上可得:t 的值为2或3.5或4.5,故选D .二、9.28 点拨:设另一个多边形的周长是x ,依题意,有x ∶(1+2+3+4+5+6)=8∶6,解得x =28,故另一个多边形的周长是28. 10.4∶9 点拨:∵DE ∥BC ,∴△ADE ∽△ABC ,又∵AD ∶DB =2∶1,∴AD ∶AB =2∶3,∴S △ADE ∶S △ABC =4∶9.11.∠2=∠ACB 点拨:要使△ACD ∽△ABC ,已知有一对公共角,则可添加∠2=∠ACB 或∠1=∠B ,从而利用有两组角对应相等的两个三角形相似来判定,答案不唯一.12.3 点拨:如答图2,过P 点作PD ∥BC 交AC 于D ,过P 点作PE ∥AC ,交BC 于E ,当PD ∥BC 时,△APD ∽△ABC ;当PE ∥AC 时,△BPE ∽△BAC ;连接PC ,∵∠A =36°,AB=AC ,点P 在AC 的垂直平分线上,∴AP=PC ,∠ABC=∠ACB =72°,∴∠ACP =∠P AC =36°,∴∠PCB =36°,∴∠B =∠B ,∠PCB =∠A ,∴△CPB ∽△ACB ,故过点P 的△ABC 的相似线最多有3条,故答案为3.答图213.1.8 m 点拨:∵AB ∥CD ,∴△P AB ∽△PCD ,设CD 到AB 距离为x m ,则7.27.2x -=CD AB ,又∵AB =2 m ,CD =6 m ,∴7.27.2x -=31,∴x =1.8,故答案为1.8 m .14.3 点拨:延长CB 到E ,使EB =CB ,连接DE 交AB 于P .则DE 就是PC+PD 的和的最小值,如答图3.∵AD ∥BE ,∴∠A =∠PBE ,∠ADP =∠E ,∴△ADP ∽△BEP ,∴AP ∶BP =AD ∶BE =4∶6=2∶3,∴PB =23P A ,又∵P A+PB=AB =5,∴PB =53AB =3.答图315.5 点拨:∵AE 平分∠BAD ,∴∠DAE =∠BAE ;又∵AD ∥BC ,∴∠BEA =∠DAE =∠BAE ,∴AB=BE=6 cm ,∴EC =9-6=3(cm ),∵BG ⊥AE ,垂足为G ,∴AE =2AG .在Rt △ABG 中,∵∠AGB =90°,AB =6 cm ,BG =42 cm ,∴AG =2BG AB—2 =2 cm ,∴AE =2AG =4 cm ;∵EC ∥AD ,∴EF AE EF + =AD EC =CD FC FC + =93=31,∴4+EF EF =31,6+FC FC =31,解得:EF =2 cm ,FC =3 cm ,∴EF+CF 的长为5 cm ,故答案为5.16.(2,4-22) 点拨:∵四边形OABC 是边长为2的正方形,∴OA=OC =2,OB =22,∵QO=OC ,∴BQ=OB -OQ =22-2,∵AB ∥OC ,∴△BPQ ∽△OCQ ,∴OC BP =OQBQ,即2BP =2222—,解得BP =22-2,∴AP=AB -BP =2-(22-2)=4-22,∴点P 的坐标为(2,4-22),故答案为(2,4-22).三、17.解:如答图4,过点A 作AD ⊥BC 于D ,∵AB=AC ,∠BA C=120°,∴∠B =∠C =30°,BC =2BD ,设AD=x ,则AB =2AD =2x ,根据勾股定理,BD =22AD AB — =()222x x — =3x ,∴BC =23x ,∴AB ∶BC =2x ∶23x =1∶3.答图418.证明:在△DEF 中,∠D =180°-∠E -∠F =180°-79°-54°=47°,∵∠C =∠F =54°,∠A =∠D =47°,∴△ABC ∽△DEF . 19.解:∵∠A =70°,∠B =45°,∴∠C =180°-∠A -∠B =180°-70°-45°=65°,∵△ADE ∽△ABC ,∴∠AED =∠C =65°;AE ∶AC=AD ∶AB ,而AE =3 cm ,EB =4 cm ,AD =4 cm ,∴AB=AE+EB =4+3=7(cm ),∴AC =473 =421(cm ).∴∠AED 的度数为65°,AC 的长为421cm . 20.解:由题意得,MH =8 cm ,BH =40 cm ,则BM =32 cm ,易知四边形ABCD 是等腰梯形,AD =50 cm ,BC =20 cm ,∴AH =21(AD -BC )=15 cm .∵EF ∥AD ,∴△BEM ∽△BAH ,∴AH EM =BHBM ,即15EM =4032,解得:EM =12 cm ,∵四边形ABCD 是等腰梯形,且EF ∥AD ,∴EF=EM+NF+BC =2EM+BC =44 cm . 答:横梁EF 应为44 cm .21.证明:(1)∵BF ⊥AE ,CG ∥AE ,∴CG ⊥BF ,∵在正方形ABCD 中,∠ABH +∠CBG =90°,∠CBG +∠BCG =90°,∠BAH +∠ABH =90°,∴∠BAH =∠CBG ,∠ABH =∠BCG ,AB=BC ,∴△ABH ≌△BCG ,∴BH=CG .(2)∵∠BFC =∠CFG ,∠BCF =∠CGF=90°,∴△CFG ∽△BFC ,∴BF FC =FCGF,即FC 2=BF ·GF ; (3)∵BF ⊥AE ,CG ∥AE ,∴CG ⊥BF ,∴∠CBG+∠BCG =90°,∵四边形ABCD 为正方形,∴∠BCD =90°,∴∠CBG +∠BFC =90°,∴∠BCG =∠BFC ,∵∠CBG =∠FBC ,∴△BCG ∽△BFC ,∴BFBC=BCBG,BC 2=BG ·BF ,∵AB =BC ,∴AB 2=BG ·BF ,∴22AB FC =BF BG BF FG ⋅⋅,即22ABFC =GB GF.22.解:(1)如答图5,△OA 1B 1为所求作的三角形.答图5(2)由(1)可得点A 1、B 1的坐标分别为A 1(4,0)、B 1(2,-4),故设线段A 1 B 1所在直线对应的函数关系式为y=kx+b (k ≠0), ∴⎩⎨⎧+=+=,24,40b k b k - 解得⎩⎨⎧==.82-,b k故线段A 1 B 1所在直线对应的函数关系式为:y =2x -8. 23.解:∵如答图6,答图6在Rt △ABC 中,∠C =90°,AC =4 cm ,BC =3 cm .∴根据勾股定理,得AB =22BC AC — =5 cm .(1)以A ,P ,M 为顶点的三角形与△ABC 相似,分两种情况:①当△AMP ∽△ABC 时,AB AM =AC AP ,即54t —=425t —,解得t =23;②当△APM ∽△ABC 时,AC AM =AB AP ,即44t —=525t—,解得t =0(不合题意,舍去),综上所述,当t =23时,以A ,P ,M 为顶点的三角形与△ABC 相似.(2)存在某一时刻t ,使四边形APNC 的面积S 有最小值.假设存在某一时刻t ,使四边形APNC 的面积S 有最小值.如答图6,过点P作PH ⊥BC 于点H .则PH ∥AC ,∴△BPH ∽△BAC ,∴AC PH =BABP,即4PH =52t ,∴PH =58t cm ,∴S =S △ABC -S △BPN =21×3×4-21×(3-t )·58t =54(t -23)2+521(0<t <2.5).∵54>0,∴S 有最小值.当t =23时,S 最小值=521.答:当t =23时,四边形APNC 的面积S 有最小值,其最小值是521cm 2.。

第七章《图形的相似与解直角三角形》自我测评

第七章《图形的相似与解直角三角形》自我测评

4
宇轩图书
解析:已知 AB= AC,得∠ ABC=∠ ACB, 由∠ CBD =∠ A,∠ DCE=∠ CBD,∠ EDF=∠ DCE,得 △ ABC∽△ BDC, △ BCD∽△ CED, △ CDE∽△ DFE,利 4 b 用相似三角形的性质,可得 EF= 3 . 故选 C. a 答案: C
宇轩图书
宇轩图书
BD 在 Rt△ BDC 中, tan∠ BCD= ,∴ CD= CD BD 4.455 ≈ ≈23.447(km).∴ AC= AD+ CD≈3.245 tan∠ BCD 0.19 + 23.447=26.692(km).∴航行的时间为 26.692÷30≈0.89(h). 答:需要约 0.89 小时到达.
宇轩图书
解析:在 Rt△ ABC 中, ∠ACB= 90° , BC= 6, 3 BC BC sin A= , ∵ sin A= , ∴ AB= =10, ∴ AC 5 AB sin A = AB - BC = 10 - 6 = 8.∵ D 是 AB 的中点, ∴ AD = 5.∵∠ADE = ∠ C = 90°, ∠ A 是 公 共 角 , DE AD DE 5 ∴△ ADE∽△ACB,∴ = ,即 = ,解得 DE 6 8 BC AC 15 = . 4
宇轩图书
15.(8 分 )(2013· 济宁 )钓鱼岛及其附属岛屿是中国固 有领土(如图① ),A,B,C 分别是钓鱼岛、南小岛、 黄尾屿上的点(如图② ),点 C 在点 A 的北偏东 47° 方向,点 B 在点 A 的南偏东 79° 方向,且 A,B 两 点的距离约为 5.5 km;
图①
图②
宇轩图书
宇轩图书
8. (2013· 雅安)如图, DE 是△ ABC 的中位线,延 长 DE 至 F 使 EF= DE, 连结 CF, 则 S△ 的值为 ( )

(遵义专版)2019年中考数学总复习第1节图形的相似与位似(精练)试题

(遵义专版)2019年中考数学总复习第1节图形的相似与位似(精练)试题

第五章图形的相似与解直角三角形第一节图形的相似与位似1.如图,在△ABC中,∠C=90°,BC=6,D,E分别在AB,AC上,将△ABC沿DE折叠,使点A落在点A′处,若A′为CE的中点,则折痕DE的长为( B )A.12B.2 C.3 D.4(第1题图)(第2题图)2.(2019泰安中考)如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交AD的延长线于点E.若AB=12,BM=5,则DE的长为( B )A.18 B.1095C.965D.2533.(2019遵义十九中一模)如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是( D )A.∠ABP=∠C B.∠APB=∠ABCC.APAB=ABACD.ABBP=ACCB(第3题图)(第4题图)4.(济南中考)如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的平分线分别交AB,DB于M,N两点.若AM=2,则线段ON的长为( C )A.22B.32C.1 D.625.(2019滨州中考)在平面直角坐标系中,点C,D的坐标分别为C(2,3),D(1,0).现以原点为位似中心,将线段CD放大得到线段AB,若点D的对应点B在x轴上且OB=2,则点C的对应点A的坐标为__(4,6)或(-4,-6)__.6.(2019随州中考)在△ABC 中,AB =6,AC =5,点D 在边AB 上,且AD =2,点E 在边AC 上,当AE =__125或53__时,以A ,D ,E 为顶点的三角形与△ABC 相似. 7.(汇川升学一模)如图,正方形DEFG 的边EF 在△ABC 的边BC 上,顶点D ,G 分别在边AB ,AC 上.若△ABC 的边BC 长为40 cm ,高AH 为30 cm ,则正方形DEFG 的边长为__1207__cm.(第7题图)(第8题图)8.(2019包头中考)如图,在平面直角坐标系中,Rt △ABO 的顶点O 与原点重合,顶点B 在x 轴上,∠ABO =90°,OA 与反比例函数y =kx 的图象交于点D ,且OD =2AD ,过点D 作x 轴的垂线交x 轴于点C.若S 四边形ABCD =10,则k 的值为__-16__.9.(2019六盘水中考)如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,在BA 的延长线上取一点E ,连接OE 交AD 于点F ,若CD =5,BC =8,AE =2,则AF =__169__. 10.(泰安中考)如图,在△ABC 中,AB =AC ,点P ,D 分别是BC ,AC 边上的点,且∠APD=∠B.(1)求证:AC·CD=CP·BP;(2)若AB =10,BC =12,当PD∥AB 时,求BP 的长. 解:(1)∵AB=AC , ∴∠B =∠C. ∵∠APD =∠B, ∴∠APD =∠B=∠C. ∵∠APC =∠BAP+∠B, ∠APC =∠APD+∠DPC, ∴∠BAP =∠DPC, ∴△ABP ∽△PCD ,∴BP CD =AB CP, ∴AB ·CD =CP·BP. ∵AB =AC ,∴AC ·CD =CP·BP;(2)∵PD∥AB,∴∠APD =∠BAP. ∵∠APD =∠C ,∴∠BAP =∠C. ∵∠B =∠B,∴△BAP ∽△BCA , ∴BA BC =BP BA. ∵AB =10,BC =12, ∴1012=BP 10,∴BP =253.11.(随州中考)如图,D ,E 分别是△ABC 的边AB ,BC 上的点,且DE∥AC,AE ,CD 相交于点O ,若S △DOE ∶S △COA =1∶25,则S △BDE 与S △CDE 的比是( B ) A .1∶3 B .1∶4 C .1∶5 D .1∶2512.(盘锦中考)如图,四边形ABCD 是矩形,点E 和点F 是矩形ABCD 外两点,AE ⊥CF 于点H ,AD =3,DC =4,DE =52,∠EDF =90°,则DF 长是( C )A.158 B.113 C.103 D.165(第12题图)(第13题图)13.(2019杭州中考)如图,在Rt △ABC 中,∠BAC =90°,AB =15,AC =20,点D 在边AC 上,AD =5,DE ⊥BC 于点E ,连接AE ,则△ABE 的面积等于__78__.14.(2019长春中考)如图,在▱ABCD 中,点E 在边BC 上,点F 在边AD 的延长线上,且DF =BE ,EF 与CD 交于点G. (1)求证:BD∥EF;(2)若DG GC =23,BE =4,求EC 的长.解:(1)∵四边形ABCD 是平行四边形, ∴AD ∥BC. ∵DF =BE ,∴四边形BEFD 是平行四边形, ∴BD ∥EF ;(2)∵四边形BEFD 是平行四边形, ∴DF =BE =4. ∵DF ∥EC , ∴△DFG ∽△CEG , ∴DG CG =DF CE, ∴CE=DF·CG DG =4×32=6.15.(2019杭州中考)如图,在锐角三角形ABC 中,点D ,E 分别在边AC ,AB 上,AG ⊥BC 于点G ,AF ⊥DE 于点F ,∠EAF =∠GAC.(1)求证:△ADE∽△ABC; (2)若AD =3,AB =5,求AFAG的值. 解:(1)∵AG⊥BC,AF ⊥DE , ∴∠AFE =∠AGC=90°.∵∠EAF =∠GAC,∴∠AED =∠ACB, ∵∠EAD =∠BAC,∴△ADE ∽△ABC ; (2)由(1)可知:△ADE∽△ABC, ∴AD AB =AE AC =35. ∵∠AFE =∠AGC=90°,∠EAF =∠GAC, ∴△EAF ∽△CAG , ∴AF AG =AE AC , ∴AF AG =35. 16 .(2019枣庄中考)如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别是A(2,2),B(4,0),C(4,-4).(1)请在图中,画出△ABC 向左平移6个单位长度后得到的△A 1B 1C 1;(2)以点O 为位似中心,将△ABC 缩小为原来的12,得到△A 2B 2C 2,请在图中y 轴右侧,画出△A 2B 2C 2,并求出∠A 2C 2B 2的正弦值.解:(1)如图所示,△A 1B 1C 1即为所求; (2)如图所示,△A 2B 2C 2即为所求, 由图形可知,∠A 2C 2B 2=∠ACB, 过点A 作AD⊥BC 交BC 的延长线于点D ,由A(2,2),C(4,-4),B(4,0),易得D(4,2), ∴AD =2,CD =6,AC =22+62=210, ∴sin ∠ACB =AD AC =2210=1010,即sin ∠A 2C 2B 2=1010.17.(2019连云港中考)如图,在△ABC 中,∠ABC =90°,BC =3,D 为AC 延长线上一点,AC =3CD ,过点D 作DH∥AB,交BC 的延长线于点H. (1)求BD·cos ∠HBD 的值; (2)若∠CBD=∠A,求AB 的长. 解:(1)∵DH∥AB,∴∠BHD =∠ABC=90°,∠A =∠HDC, ∴△ABC ∽△DHC , ∴AC CD =BCCH=3, ∴CH =1,BH =BC +CH =4, 在Rt △BHD 中,cos ∠HBD =BH BD, ∴BD ·cos ∠HBD =BH =4;(2)∵∠CBD=∠A,∠ABC =∠BHD, ∴△ABC ∽△BHD , ∴BC HD =AB BH. ∵△ABC ∽△DHC , ∴AB DH =ACCD=3, ∴AB =3DH , ∴3DH =3DH4,解得DH =2, ∴AB =3DH =3×2=6.18.(2019眉山中考)如图,△ABC 和△BEC 均为等腰直角三角形,且∠ACB=∠BEC=90°,AC =42,点P 为线段BE 延长线上一点,连接CP ,以CP 为直角边向下作等腰直角△CPD,线段BE 与CD 相交于点F.(1)求证:PC CD =CECB;(2)连接BD ,请你判断AC 与BD 有什么位置关系?并说明理由; (3)设PE =x ,△PBD 的面积为S ,求S 与x 之间的函数关系式. 解:(1)∵△BCE 和△CDP 均为等腰直角三角形, ∴∠ECB =∠PCD=45°, ∠CEB =∠CPD=90°, ∴△BCE ∽△DCP , ∴PC DC =EC CB; (2)AC∥BD.理由如下:∵∠PCE +∠ECD=∠BCD+∠ECD=45°, ∴∠PCE =∠BCD. 又∵PC DC =EC CB ,∴△PCE ∽△DCB , ∴∠CBD =∠CEP=90°, ∴∠ACB =∠CBD, ∴AC ∥BD ;(3)作PM ⊥BD ,交BD 的延长线于点M. ∵AC =42,△ABC 和△BEC 均为等腰直角三角形, ∴BE =CE =4. ∵△PCE ∽△DCB ,∴EC CB =PE BD ,即442=x BD, ∴BD =2x.∵∠PBM =∠CBD-∠CBP=45°, BP =BE +PE =4+x , ∴PM =4+x 2,∴S △PBD =12BD ·PM=12×2x×4+x 2, =12x 2+2x.2019-2020学年数学中考模拟试卷一、选择题1.如图,BD,CE分别是△ABC的高线和角平分线,且相交于点O.若AB=AC,∠A=40°,则∠BOE的度数是()A.60°B.55°C.50°D.40°2.若抛物线y=x2﹣6x+m与x轴没有交点,则m的取值范围是()A.m>9 B.m≥9C.m<﹣9 D.m≤﹣93.如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE2=2(AD2+AB2)﹣CD2.其中正确的是()A.①③④B.②④C.①②③D.①②③④4.如图,向正六边形的飞镖游戏盘内随机投掷一枚飞镖则该飞镖落在阴影部分的概率( ).A. B. C. D.5.下面的统计图反映了我国五年来农村贫困人口的相关情况,其中“贫困发生率”是指贫困人口占目标调查人口的百分比.(以上数据来自国家统计局)根据统计图提供的信息,下列推断不合理...的是( ) A.与2017年相比,2018年年末全国农村贫困人口减少了1386万人 B.2015~2018年年末,与上一年相比,全国农村贫困发生率逐年下降C.2015~2018年年末,与上一年相比,全国农村贫困人口的减少量均超过1000万D.2015~2018年年末,与上一年相比,全国农村贫困发生率均下降1.4个百分点6.如果340x y -=,那么代数式23()x y y x y-⋅+的值为( )A .1B .2C .3D .47.使得关于x 的不等式组22141x m x m >-⎧⎨-+≥-⎩有解,且使分式方程1222m xx x --=--有非负整数解的所有的m 的和是( ) A .﹣1B .2C .﹣7D .08.如图,四边形ABCD 是⊙O 的内接四边形,⊙O 的半径为4,∠B =135°,则劣弧AC 的长是( )A.4πB.2πC.πD.23π9.如图1,在Rt ABC ∆中,090C ∠=,点P 从点A 出发,沿A C B →→的路径匀速运动到点B 停止,作PD AB ⊥于点D ,设点P 运动的路程为x ,PD 长为y ,y 与x 之间的函数关系图象如图2所示,当12x =时,y 的值是( )A .6B .245C .65D .210.如图,在四边形ABCD 中,AD ∥BC ,DE ⊥BC ,垂足为点E ,连接AC 交DE 于点F ,点G 为AF 的中点,∠ACD =2∠ACB .若DG =5,EC =1,则DE 的长为( )A .2B .4C .D .11.如图,正方形OABC 绕着点O 逆时针旋转40°得到正方形ODEF ,连接AF ,则∠OFA 的度数是( ).A.15°B.20°C.25°D.30°12.下列运算正确的是( )A.222()x y x y +=+ B.632x x x ÷= 3=D.32361126xy x y ⎛⎫-=- ⎪⎝⎭二、填空题13.分解因式(a -b)(a -9b)+4ab 的结果是____.14.如图,在△ABC 中,点D 在BC 边上,△ABC ∽△DBA .若BD =4,DC =5,则AB 的长为_____.15.方程3x x -=1xx +的解是_____. 16.使得关于x 的分式方程111x k kx x +-=+-的解为负整数,且使得关于x 的不等式组322144x x x k+≥-⎧⎨-≤⎩有且仅有5个整数解的所有k 的和为_____.17.已知a ,b 是一元二次方程x 2+x ﹣4=0的两个不相等的实数根,则a 2﹣b =_____. 18.书架上有3本小说、2本散文,从中随机抽取2本都是小说的概率是_____. 三、解答题19.一个不透明的布袋里装有4个大小、质地均相同的乒乓球,每个球上面分别标有1,2,3,4.小林先从布袋中随机抽取一个乒乓球(不放回去),再从剩下的3个球中随机抽取第二个乒乓球,记两次取得乒乓球上的数字依次为a 、b . (1)求a 、b 之积为偶数的概率;(2)若c =5,求长为a 、b 、c 的三条线段能围成三角形的概率.20.在正方形ABCD 中,点M 是射线BC 上一点,点N 是CD 延长线上一点,且BM =DN ,直线BD 与MN 交于点E .(1)如图1.当点M 在BC 上时,为证明“BD﹣2DE BM”这一结论,小敏添加了辅助线:过点M 作CD 的平行线交BD 于点P .请根据这一思路,帮助小敏完成接下去的证明过程.(2)如图2,当点M 在BC 的延长线上时,则BD ,DE ,BM 之间满足的数量关系是 . (3)在(2)的条件下,连接BN 交AD 于点F ,连接MF 交BD 于点G ,如图3,若1,3AF AD = CM =2,则线段DG = .21.如图,在Rt △ABC 中,∠C=90°,D 是AC 边上一点,tan ∠DBC=43,且BC=6,AD=4.求cosA 的值.22.计算:(π0﹣3|+(12)﹣123.已知二次函数y =﹣x 2+2mx ﹣m 2﹣1(m 为常数).(1)证明:不论m 为何值,该函数的图象与x 轴没有公共点;(2)当自变量x 的值满足﹣3≤x≤﹣1时,与其对应的函数值y 的最大值为﹣5,求m 的值.24.(1)计算:10124303)cos -︒⎛⎫-++-- ⎪⎝⎭(2)先化简,再求值:2222121111a a aa a a a+-+⋅---+,其中a=﹣12.25.某校七、八年级各有10名同学参加市级数学竞赛,各参赛选手的成绩如下(单位:分):七年级:89,92,92,92,93,95,95,96,98,98八年级:88,93,93,93,94,94,95,95,97,98整理得到如下统计表根据以上信息,完成下列问题(1)填空:a=;m=;n=;(2)两个年级中,年级成绩更稳定;(3)七年级两名最高分选手分别记为:A1,A2,八年级第一、第二名选手分别记为B1,B2,现从这四人中,任意选取两人参加市级经验交流,请用树状图法或列表法求出这两人分别来自不同年级的概率.【参考答案】***一、选择题二、填空题13.(a-3b)214.615.x=﹣3 216.5 17.518.3 10三、解答题19.(1)P(数字之积为偶数)=56;(2)P(三线段能围成三角形)=13.【解析】【分析】(1)通过列表法可得a、b所有可能的结果,计算出a、b之积为偶数的次数,然后用a、b之积为偶数的次数除以总次数即可计算a、b之积为偶数的概率;(2)首先列出a、b、c所有可能的结果,根据三角形的性质找到能组成三角形的结果,最后计算能围成三角形的概率.【详解】(1)根据题意列表如下:由以上表格可知:有12种可能结果,分别为:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3),其积分别为:2,3,4,2,6,8,3,6,12,4,8,12;积为偶数的有2,4,2,6,8,6,12,4,8,12,共10个,则P(数字之积为偶数)=1012=56;(2)所有的可能结果有12种,a,b及c的值分别为(1,2,5),(1,3,5),(1,4,5),(2,1,5),(2,3,5),(2,4,5),(3,1,5),(3,2,5),(3,4,5),(4,1,5),(4,2,5),(4,3,5),能构成三角形的有(2,4,5),(3,4,5),(4,2,5),(4,3,5),共4种,则P(三线段能围成三角形)=412=13.【点睛】本题考查了用列举法计算概率的知识,正确理解题意是解题的关键.20.(1)见解析;(2)BD+2DE BM;(3.【解析】【分析】(1)过点M作MP∥CD,交BD于点P,推出PM=DN,证明△EPM≌△EDN,推出EP=ED,根据正方形的性质和勾股定理求出即可;(2)过点M作MP∥CD交BD的延长线于点P,推出BM=PM=DN,根据AAS证明△EPM≌△EDN,推出EP =ED,根据正方形的性质和勾股定理求出即可;(3)证明△ABF∽△DNF,得出比例式,得到AB:ND=1:2,设AB=x,则DN=2x,根据BM =DN ,列出方程求出AB 的长度,根据DF ∥BM ,得到413,43DF DG BM BG ===即可求解. 【详解】解:(1)如图1,过点M 作MP ∥CD ,交BD 于点P ,∵四边形ABCD 是正方形,∴∠C =90°,∠CBD =∠CDB =45°, ∵PM ∥CD ,∴∠NDE =∠MPE ,∠BPM =∠CDB =45°, ∴△BPM 是等腰直角三角形, ∴PM =BM,PB =,∵BM =DN , ∴PM =DN ,在△EPM 和△EDN 中,,MPE NDE PEM DEN PM DN ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△EPM ≌△EDN (AAS ), ∴EP =ED ,∴PB =BD ﹣PD =BD ﹣2DE ,根据勾股定理得:BP =,即2BD DE -=;(2)如图2,过点M 作MP ∥CD 交BD 的延长线于点P ,∴∠PMB=∠BCD=90°,∵∠CBD=45°,∴△BMP是等腰直角三角形,∴BM=PM=DN,与(1)证法类似:△EPM≌△EDN(AAS),∴EP=ED,∴PB=BD+PD=BD+2DE,根据勾股定理得:BP BM,即BD+2DE=BP BM,故答案为:BD+2DE BM;(3)如图3,∵AB∥CD,∴AB∥DN,∴△ABF∽△DNF,∴AF:FD=AB:ND,∵AF:FD=1:2,∴AB:ND=1:2,设AB =x ,则DN =2x , ∵BM =DN , ∴x+2=2x ,x =2, ∴AB =AD =2,DF =43,∴BD = ∵DF ∥BM ,∴413,43DF DG BM BG ===∴142DG =⨯=故答案为:2【点睛】本题综合考查了正方形的性质,相似三角形的性质和判定,全等三角形的性质和判定等知识点,此题综合性比较强,难度较大,但题型较好,训练了学生分析问题和解决问题的能力.用的数学思想是类比推理的思想.21.5【解析】 【分析】先在Rt △BDC 中,利用锐角三角函数的定义求出CD 的长,由AC=AD+DC 求出AC 的长,然后在Rt △ABC 中,根据勾股定理求出AB 的长,从而求出 cosA 的值. 【详解】解:在Rt △BDC 中, tan ∠DBC=43, 且BC=6 , ∴ tan ∠DBC=DC BC =6DC =43, ∴CD=8, ∴AC=AD+DC=12,在Rt △ABC 中,,∴ cosA =ACAB =.【点睛】本题主要考查解直角三角形.熟练掌握三角函数的定义是解题的关键.22【解析】【分析】直接利用绝对值的性质以及负指数幂的性质、零指数幂的性质分别化简得出答案.【详解】原式=1﹣(3+2【点睛】此题主要考查了实数运算,正确化简各数是解题关键.23.(1)见解析;(2)m的值为﹣5或1.【解析】【分析】(1)根据判别式的值得到△=﹣4<0,然后根据判别式的意义得到结论;(2)利用配方法得到y=﹣(x﹣m)2﹣1,则抛物线的对称轴为直线x=m,讨论:当m<﹣3时,根据二次函数性质得到x=﹣3时,y=﹣5,所以﹣(﹣3﹣m)2﹣1=﹣5;当﹣3≤m≤﹣1时,x=m,y的最大值为﹣1,不合题意;当m>﹣1时,利用二次函数的性质得到x=﹣1时,y=﹣5,所以﹣(﹣1﹣m)2﹣1=﹣5,然后分别解关于m的方程即可得到满足条件的m的值.【详解】(1)证明:△=4m2﹣4×(﹣1)×(﹣m2﹣1)=﹣4<0,所以﹣x2+2mx﹣m2﹣1=0没有实数解,所以不论m为何值,该函数的图象与x轴没有公共点;(2)解:y=﹣x2+2mx﹣m2﹣1=﹣(x﹣m)2﹣1,抛物线的对称轴为直线x=m,当m<﹣3时,﹣3≤x≤﹣1,y随x的增大而减下,则x=﹣3时,y=﹣5,所以﹣(﹣3﹣m)2﹣1=﹣5,解得m1=﹣5,m2=﹣1(舍去);当﹣3≤m≤﹣1时,x=m,y的最大值为﹣1,不合题意;当m>﹣1时,﹣3≤x≤﹣1,y随x的增大而增大,则x=﹣1时,y=﹣5,所以﹣(﹣1﹣m)2﹣1=﹣5,解得m1=1,m2=﹣3(舍去);综上所述,m的值为﹣5或1.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.24.(1)4;(2)1a,-2. 【解析】 【分析】(1)根据零指数幂、负整数指数幂的意义,特殊角的三角函数值以及绝对值的意义进行计算; (2)将原式的分子、分母因式分解,约分后计算减法,再代值计算即可. 【详解】(1) )0+(13)﹣1+4cos30°﹣﹣==4; (2)2222121111a a a a a a a+-+-+-- =22111(1)(1(1)1a a a a a a a +--+--+())=21(1)(1)a aa a a a +-++=1(1)a a a ++=1a, 当a =﹣12 时,原式=11-2=﹣2.【点睛】本题考查了实数的混合运算,分式的化简求值.解答(1)题的关键是根据零指数幂、负整数指数幂的意义,特殊角的三角函数值以及绝对值的意义进行计算;解答(2)题的关键是把分式化到最简,然后代值计算.25.(1)94;(2)94,92,94;八;(3)23【解析】 【分析】(1)根据中位数、众数和平均数的定义求解; (2)根据方差的意义进行判断;(3)画树状图展示所有12等可能的结果数,再找出这两人分别来自不同年级的结果数,然后利用概率公式求解.【详解】(1)n=110(88+93+93+93+94+94+95+95+97+98)=94(分);把七年级的10名学生的成绩从小到大排列,最中间的两个数的平均数是:93+952=94(分),则中位数a=94;七年级的10名学生的成绩中92分出现次数最多,故众数为92分;(2)七年级和八年级的平均数相同,但八年级的方差较小,所以八年级的成绩稳定;(3)列表得:共有12种等可能的结果,这两人分别来自不同年级的有8种情况,∴P(这两人分别来自不同年级的概率)=82= 123.【点睛】题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.2019-2020学年数学中考模拟试卷一、选择题1.如图,在等腰梯形ABCD 中,AD ∥BC ,AB≠AD,对角线AC 、BD 相交于点O .以下结论不正确的是( )A.梯形ABCD 是轴对称图形B.∠DAC =∠DCAC.△AOB ≌△DOCD.△AOD ∽△COB2.下列说法正确的是( )A.打开电视,它正在播天气预报是不可能事件B.要考察一个班级中学生的视力情况适合用抽样调查C.在抽样调查过程中,样本容量越大,对总体的估计就越准确D.甲、乙两人射中环数的方差分别为22S =甲,21S =乙,说明甲的射击成绩比乙稳定3.12019的倒数是( ) A.12019 B.﹣12019C.2019D.﹣20194.在四边形ABCD 中,//,AB CD AB AD =,添加下列条件不能推得四边形ABCD 为菱形的是( ) A .AB CD =B .//AD BCC .BC CD =D .AB BC =5.下列各式变形中,正确的是( )A .2=x B .2(1)(1)1x x x ---=-C .x xx y x y=--++D .22131=x+-24x x ⎛⎫++ ⎪⎝⎭6.如图,在数轴上,点A 表示的数是2,△OAB 是Rt △,∠OAB =90°,AB =1,现以点O 为圆心,线段OB 长为半径画弧,交数轴负半轴于点C ,则点C 表示的实数是( )A B C.﹣3 D.﹣7.如图,边长为4个单位长度的正方形ABCD的边AB与等腰直角三角形EFG的斜边FG重合,△EFG以每秒1个单位长度的速度沿BC向右匀速运动(保持FG⊥BC),当点E运动到CD边上时△EFG停止运动,设△EFG的运动时间为t秒,△EFG与正方形ABCD重叠部分的面积为S,则S关于t的函数大致图象为()A.B.C.D.8.如图,△ABC是一张顶角为120°的三角形纸片,AB=AC,BC=6,现将△ABC折叠,使点B与点A 重合,折痕为DE,则DE的长为()A.1 B.2 C.D.39.在菱形ABCD中,∠ABC=60°,若AB=3,菱形ABCD的面积是()A B.C D10.我国古代算书《九章算术》中第九章第六题是:今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深葭长各几何?你读懂题意了吗?请回答水深______尺,葭长_____尺.解:根据题意,设水深OB=x尺,则葭长OA'=(x+1)尺.可列方程正确的是()A.x 2+52 =(x+1)2B.x 2+52 =(x ﹣1)2C.x 2+(x+1)2 =102D.x 2+(x ﹣1)2=52 11.下列计算正确的是( )A .3a ﹣a =3B .(a 2)3=a 6C .3a+2a =2a 2D .a 2﹣a 2=a 412.2018年国庆小长假,泰安市旅游再次交出漂亮“成绩单”,全市纳入重点监测的21个旅游景区、旅游大项目、乡村旅游点实现旅游收入近132000000元,将132000000用科学记数法表示为( )A .1.32×109B .1.32×108C .1.32×107D .1.32×106二、填空题13.已知:如图,△ABC 中,过AB 的中点F 作DE ⊥BC ,垂足为E ,交CA 的延长线于点D .若EF =3,BE =4,∠C =45°,则DF :FE 的值为_____.14.如图,OC 是O 的半径,弦AB OC ⊥于点D ,点E 在O 上,EB 恰好经过圆心O ,连接EC .若B E ∠=∠,32OD =,则劣弧AB 的长为__________.15.分解因式:228ax a -=_______.16.对非负实数x“四舍五入”到个位的值记为< x >,即已知n 为正整数,如果n -12≤x<n +12,那么< x >=n .例如:< 0 >=< 0.48 >=0,< 0.64 >=< 1.493 >=1,< 2 >=2,< 3.5 >=< 4.12 >=4,…则满足方程< x >=1x 1.62+的非负实数x 的值为____. 17.在不透明的袋子中有2个白球,3个红球,除颜色外完全相同,任意摸出一个球,摸到红球的概率18.截至2019年4月份,全国参加汉语考试的人数约为3500万,将3500万用科学记数法表示为_____.三、解答题19.如图,AB为⊙O的直径,C为⊙O上一点,∠CAB的平分线交⊙O于点D,过点D作ED⊥AE,垂足为E,交AB的延长线于F.(1)求证:ED是⊙O的切线;(2)若AD=,AB=6,求FD的长.20.如图,在数轴上点A、B、C分别表示-1、-2x+3、x+1,且点A在点B的左侧,点C在点B的右侧.(1)求x的取值范围;(2)当AB=2BC时,x的值为_____.21.化简分式:2222334424x x xx x x x⎛⎫---÷⎪-+--⎝⎭,并从1,2,3,4这四个数中取一个合适的数作为x的值代入求值.22.2018年4月,无锡外卖市场竞争激烈,美团、滴滴、饿了么等公司订单大量增加,某公司负责招聘外卖送餐员,每月工资:底薪1000元,另加外卖送单补贴(送一次外卖称为一单),具体方案如下:(1)若某“外卖小哥”4月份送餐600单,求他这个月的工资总额;(2)设这个月“外卖小哥”送餐x单,所得工资为y元,求y与x的函数关系式;(3)若“外卖小哥”本月送餐800单,所得工资6400≤y≤6500,求m的取值范围.23.如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,∠OAB=90°且OA=AB,OB=8,(1)求点A的坐标;(2)点P是从O点出发,沿X轴正半轴方向以每秒1单位长度的速度运动至点B的一个动点(点P不与点O,B重合),过点P的直线l与y轴平行,交四边形ABCD的边AO或AB于点Q,交OC或BC于点R.设运动时间为t(s),已知t=3时,直线l恰好经过点 C.求①点P出发时同时点E也从点B出发,以每秒1个单位的速度向点O运动,点P停止时点E也停止.设△QRE的面积为S,求当0<t<3时S与t的函数关系式;并直接写出S的最大值.②是否存在某一时刻t,使得△ORE为直角三角形?若存在,请求出相应t的值;若不存在,请说明理由.24.在一条笔直的公路上有A、B两地.甲、乙两人同时出发,甲骑电动车从A地到B地,中途出现故障后停车维修,修好车后以原速继续行驶到B地;乙骑摩托车从B地到A地,到达A地后立即按原原速返回,结果两人同时到B地.如图是甲、乙两人与B地的距离y(km)与乙行驶时间x(h)之间的函数图象.(1)A、B两地间的距离为km;(2)求乙与B地的距离y(km)与乙行驶时间x(h)之间的函数关系式;(3)求甲、乙第一次相遇的时间;(4)若两人之间的距离不超过10km时,能够用无线对讲机保持联系,请求出乙在行进中能用无线对讲机与甲保持联系的x取值范围.25.如图,以点B为圆心,适当长为半径画弧,交BA于点D,交BC于点E;分别以点D,E为圆心,大于12DE 的长为半径画弧,两弧在∠ABC 的内部相交于点F ;画射线BF ,过点F 作FG ⊥AB 于点G ,作FH ⊥BC 于点H求证:BG =BH .【参考答案】***一、选择题二、填空题13.7:314.2π15.2(2)(2)a x x +-16.817.3518.5×107三、解答题19.(1)证明见解析;(2)7. 【解析】【分析】(1)连接OD ,根据等腰三角形的性质和角平分线的性质可求得∠1=∠3,再由“内错角相等,两直线平行”可得AE ∥OD ,然后再由垂线的定义和切线的判定即可证明;(2)连接BD ,由切线的性质及勾股定理可求出BD 的长,然后再根据三角形相似的判定和性质求得BFDF ,然后再在Rt △ODF 中,求DF 即可. 【详解】(1)证明:连接OD ,如图,∵OA =OD ,∴∠2=∠3,∵AD 平分∠EAB ,∴∠1=∠2,∴∠1=∠3,∴AE ∥OD ,∵ED ⊥CA ,∴OD ⊥ED ,∵OD 是⊙O 的半径,∴ED 是⊙O 的切线;(2)连接BD ,如图,∵AB 是直径,∴∠ADB =90°.∴BD =2,∵EF 是⊙O 的切线,∴OD ⊥EF ,∴∠4+∠5=90°,∵∠3+∠5=90°,∴∠4=∠3=∠2,∵∠F =∠F ,∴△FBD ∽△FDA , ∴BF BD DF AD ==∴BF =4DF , 在Rt △ODF 中,∵(3+BF )2=32+DF 2,∴(3+4DF )2=32+DF 2,∴DF =7.【点睛】本题主要考查了等腰三角形的性质、角平分线的性质、平行线的判定、切线的性质及判定、勾股定理等知识点,综合性比较强,熟练掌握基础知识是解题的关键.20.(1) 223x<<;(2)1【解析】【分析】(1)根据A、B、C三点在数轴上的位置列不等式组即可得出x的取值范围;(2)分别求出AB、BC的距离,根据AB=2BC列方程即可得出x的值.【详解】(1)由题意得:231123xx x-+>-⎧⎨+>-+⎩①②解不等式①得:x<2;解不等式②得:x>23.∴不等式组的解集为:23<x<2.(2)∵AB=2BC,∴-2x+3-(-1)=2[x+1-(-2x+3)]-2x+4=2x+2+4x-68x=8解得x=1.故答案为:1【点睛】本题考查数轴的性质、解一元一次不等式组及解一元一次方程,不等式解集遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.21.x+2,3.【解析】【分析】利用分式的运算,先对分式化简单,再选择使分式有意义的数代入求值即可.【详解】2222334424x x x x x x x ⎛⎫---÷ ⎪-+--⎝⎭ =22(2)33(224x x x x x x ⎡⎤---÷⎢⎥---⎣⎦) =233()224x x x x x --÷--- =(-2)(2)323x x x x x -⋅--+ =x+2,∵x 2﹣4≠0,x ﹣3≠0,∴x≠2且x≠﹣2且x≠3,∴可取x =1代入,原式=3.【点睛】本题主要考查分式的化简求值,熟悉掌握分式的运算法则是解题的关键,注意分式有意义的条件.22.(1)若某“外卖小哥”4月份送餐600单,他这个月的工资总额是4800元;(2)见解析;(3)750≤m≤900.【解析】【分析】:(1)根据题意,直接按照第一个标准,由底薪每单补贴,求解即可(2)按照x >m,0<x≤500和0<x≤500三种情况,分别求解即可;(3)根据(2)中的关系式,分别代入求解,注意要符合工资要求【详解】(1)由题意可得,1000+500×6+(600﹣500)×8=1000+3000+800=4800(元),答:若某“外卖小哥”4月份送餐600单,他这个月的工资总额是4800元;(2)由题意可得,当0<x≤500时,y =1000+6x ,当500<x≤m 时,y =1000+500×6+(x﹣500)×8=8x ,当x >m 时,y =1000+500×6+(m﹣500)×8+(x﹣m)×10=10x ﹣2m ,由上可得,y =10006(05008(500102(x x x x m x m x m +⎧⎪⎨⎪-⎩<≤)<≤)>) ;(3)若800<m≤900,y =8×800=6400,符合题意,若700≤m≤800,6400≤﹣2m+10×800≤6500,解得,750≤m≤800,综上所述:750≤m≤900.【点睛】此题考查不等式组的应用,解题关键在于列出方程23.(1)A (4,4);(2)①2728.S (t 2)33=-+,S 有最大值为283;②t 的值为4或3614. 【解析】【分析】(1)根据等腰直角三角形的性质即可解决问题;(2)①首先求出直线OA 、OB 、OC 、BC 的解析式.①求出P 、Q 的坐标即可解决问题;即可表示出QR 和PE 的长,即可得到三角形面积解析式利用配方法求出最值即可;②分三种情况讨论,即∠REO =90°或∠ORE =90°或∠ROE =90°分别求解即可.【详解】解:(1)由题意△OAB 是等腰直角三角形,∵OB =8,即B (8,0)∴A (4,4),(2)∵A (4,4),B (8,0),∴直线OA 的解析式为y =x ,直线AB 的解析式y =﹣x+6,∵t =3时,直线l 恰好过点C ,即OP =3,OC =5,∴PR =4,C (3,﹣4),∴直线OC 的解析式为y =-43x ,直线BC 的解析式为y =43255x -, ①当0<t <3时,Q (t ,t ),R (t ,-43t ), ∴QR=t-(-43t)=73t .PE =8﹣2t . ∴S =2117728(82)(2)22333PE QR t t t =-=--+. ∴t =2时,S 有最大值为283. ②要使△ORE 为直角三角形,则有三种情况:Ⅰ.若∠REO=90°,如图1,则点P与E点重合,∴8﹣2t=0,解得t=4,Ⅱ.若∠ORE=90°,如图2.△ORP∽△REP,∴OP RPRP PE=,即RP2=OP•PE,∴24(82) 3tt t⎛⎫=-⎪⎝⎭,解之得:t=36 17,Ⅲ.当t>4时,△ORE不可能为直角三角形.故使得△ORE为直角三角形时,t的值为:4或36 17,【点睛】本题考查四边形综合题、一次函数的应用、二次函数的应用、等腰直角三角形的性质等知识,解题的关键是学会构建一次函数或二次函数解决实际问题,属于中考压轴题.24.(1)30;(2)y=﹣30x+60;(3)甲、乙第一次相遇是在出发后0.6小时;(4)25≤x≤56或76≤x≤2.【解析】【分析】(1)观察图形即可求得A 、B 两地间的距离;(2)乙前往A 地的距离y (km )与乙行驶时间x (h )之间的关系式为y 乙1=k 1x ,设乙返回B 地距离B 地的距离y (km )与乙行驶时间x (h )之间的关系式为y 乙2=k 2x+b 2,由待定系数法可求乙与B 地的距离y (km )与乙行驶时间x (h )之间的函数关系式;(3)由相遇问题的数量关系直接求出结论;(4)设甲在修车前y 与x 之间的函数关系式为y 甲1=kx+b ,甲在修车后y 与x 之间的函数关系式为y 甲2=k 3x+b 3,由待定系数法求出解析式建立不等式组求出其解即可.【详解】解:(1)由题意,得A 、B 两地间的距离为30km .故答案为:30;(2)设乙前往A 地的距离y (km )与乙行驶时间x (h )之间的关系式为y 乙1=k 1x ,由题意,得 30=k 1,∴y 乙1=30x ;设乙返回B 地距离B 地的距离y (km )与乙行驶时间x (h )之间的关系式为y 乙2=k 2x+b 2,由题意,得 22223002k b k b =+⎧⎨=+⎩, 解得:223060k b =-⎧⎨=⎩, ∴y =-30x+60.(3)由函数图象,得(30+20)x =30,解得x =0.6.故甲、乙第一次相遇是在出发后0.6小时;(4)设甲在修车前y 与x 之间的函数关系式为y 甲1=kx+b ,由题意,得30150.75b k b =⎧⎨=+⎩, 解得:k 20b 30=-⎧⎨=⎩, y 甲1=﹣20x+30,设甲在修车后y 与x 之间的函数关系式为y 甲2=k 3x+b 3,由题意,得333315 1.25k b 02k b =+⎧⎨=+⎩,解得:332040k b =-⎧⎨=⎩, ∴y 甲2=﹣20x+40,当20303010301510x x x -+-≤⎧⎨-⎩…时, ∴25≤x≤56; 306015102x x -+-⎧⎨⎩……, 解得:76≤x≤2. ∴25≤x≤56或76≤x≤2.【点睛】本题考查了行程问题的数量关系路程÷时间=速度的运用,运用待定系数法求一次函数的解析式的运用,不等式组的解法的运用,解答时求出一次函数的解析式是关键.25.详见解析【解析】【分析】由作法可知BF 是∠ABC 的角平分线,再证明△GBF ≌△HBF 即可得到结论.【详解】证明:由作法可知BF 是∠ABC 的角平分线,∴∠ABF =∠CBF ,∵FG ⊥AB ,FH ⊥BC .∴∠FGB =∠FHB ,在△GBF 和△HBF 中,FGB FHB GBF HBF BF BF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△GBF ≌△HBF (AAS ),∴BG =BH .【点睛】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了全等三角形的判定.。

2020年中考数学考点梳理:相似三角形和解直角三角形

2020年中考数学考点梳理:相似三角形和解直角三角形

知识点:一、比例线段1、比:选用同一长度单位量得两条线段。

a 、b 的长度分别是m 、n ,那么就说这两条线段的比是a :b =m :n (或nm b a =) 2、比的前项,比的后项:两条线段的比a :b 中。

a 叫做比的前项,b 叫做比的后项。

说明:求两条线段的比时,对这两条线段要用同一单位长度。

3、比例:两个比相等的式子叫做比例,如dc b a = 4、比例外项:在比例d cb a =(或a :b =c :d )中a 、d 叫做比例外项。

5、比例内项:在比例d cb a =(或a :b =c :d )中b 、c 叫做比例内项。

6、第四比例项:在比例dcb a =(或a :b =c :d )中,d 叫a 、b 、c 的第四比例项。

7、比例中项:如果比例中两个比例内项相等,即比例为abb a =(或a:b=b:c 时,我们把b 叫做a 和d 的比例中项。

8、比例线段:在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么,这四条线段叫做成比例线段,简称比例线段。

9、比例的基本性质:如果a :b =c :d 那么ad =bc 逆命题也成立,即如果ad =bc ,那么a :b =c :d10、比例的基本性质推论:如果a :b=b :d 那么b 2=ad ,逆定理是如果b 2=ad 那么a :b=b :c 。

说明:两个论是比积相等的式子叫做等积式。

比例的基本性质及推例式与等积式互化的理论依据。

11、合比性质:如果d c b a =,那么d dc b b a +=+ 12.等比性质:如果n m d c b a ===K ,(0≠+++m d b Λ),那么ban d b m c a =++++++ΛΛ说明:应用等比性质解题时常采用设已知条件为k ,这种方法思路单一,方法简单不易出错。

13、黄金分割把一条线段分成两条线段,使较长的线段是原线段与较小的线段的比例中项,叫做把这条线段黄金分割。

青岛版九年级数学上册课件【全册】

青岛版九年级数学上册课件【全 册】目录
0002页 0035页 0093页 0162页 0221页 0262页 0277页 0290页 0304页 0336页 0358页 0404页 0424页 0442页
第1章 图形的相似 1.2 怎样判定三角形相似 1.4 图形的位似 2.1 锐角三角比 2.3 用计算器求锐角三角比 2.5 解直角三角形的应用 3.1 圆的对称性 3.3 圆周角 3.5 三角形的内切圆 3.7 正多边形与圆 4.1 一元二次方程 4.3 用公式法解一元二次方程 4.5 一元二次方程的应用 4.7 一元二次方程的应用
青岛版九年级数学上册课件【全册 】
2.2 30°,45°,60°角的三角比
青岛版九年级数学上册课件【全册 】
2.3 用计算器求锐角三角比
青岛版九年级数学上册课件【全册 】
第1章 图形的相似
青岛版九年级数学上册课件【全册 】
1.1 相似多边形
青岛版九年级数学上册课件【全册 】
1.2 怎样判定三角形相似
青岛版九年级数学上册课件【全册 】
1.3 相似三角形的性质
青岛版九年级数学上册课件【全册 】
1.4 图形的位似
青岛版九年级数学上册课件【全册 】
第2章 解直角三角形
青岛版九年级数学上册课件【全册 】
பைடு நூலகம்2.1 锐角三角比

解直角三角形完整版PPT课件


余弦或正切函数计算得出。
已知一边和一角求另一边
02
在直角三角形中,已知一边长和一个锐角大小可以求出另一边
长,通过正弦、余弦或正切函数计算得出。
解直角三角形的实际应用
03
例如测量建筑物高度、计算航海距离等。
三角函数在实际问题中应用
测量问题
在测量问题中,可以利用三角函数计算高度、距离等未知量。例如,利用正切函数可以计算 山的高度或者河的宽度。
直角三角形重要定理
勾股定理
如上所述,勾股定理描述了直角三角 形三边之间的数量关系。
射影定理
相似三角形判定定理
若两个直角三角形的对应角相等,则 这两个直角三角形相似。根据此定理, 可以推导出一些重要的直角三角形性 质和定理。
射影定理涉及直角三角形中斜边上的 高与斜边及两直角边之间的数量关系。
02
三角函数在解直角三角形中应用
• 性质:正弦、余弦函数值域为[-1,1],正切函数值域为R;正弦、余弦函 数在第一象限为正,第二象限正弦为正、余弦为负,第三象限正弦、余 弦都为负,第四象限余弦为正、正弦为负;正切函数在第一、三象限为 正,第二、四象限为负。
利用三角函数求边长和角度
已知两边求角度
01
在直角三角形中,已知两边长可以求出锐角的大小,通过正弦、
注意单位换算和精确度
在求解过程中,要注意单位换算和精确度的控制,避免因单位或精 度问题导致答案错误。
拓展延伸:非直角三角形解法简介
锐角三角形和钝角三角形的解法
对于非直角三角形,可以通过作高线或利用三角函数等方法将其转化为直角三角形进行 求解。
三角形的边角关系和面积公式
了解三角形的边角关系和面积公式,有助于更好地理解和解决非直角三角形问题。

解直角三角形ppt课件

经济学中的复利计算
在经济学中,经常需要进行复利计算。虽然复利计算本身与解直角三角形没有直接关系, 但是可以通过构造类似直角三角形的数学模型并求解,得到复利计算的精确结果。
06
解直角三角形的拓展与延伸
斜三角形的解法探讨
斜三角形的定义与性质
斜三角形是指一个三角形中不包含直角的情况。其性质包 括三角形的内角和为180度,以及三边关系等。
工程问题中的解直角三角形
土木工程中的坡度计算
在土木工程中,经常需要计算坡度,即斜坡的倾斜程度。 通过构造直角三角形并求解,可以得到精确的坡度值。
机械工程中的力学分析
在机械工程中,经常需要对物体进行力学分析。通过构造 直角三角形并利用三角函数求解,可以得到物体受到的力 的大小和方向。
电气工程中的相位差计算
在电气工程中,经常需要计算两个交流信号之间的相位差 。通过构造直角三角形并求解,可以得到精确的相位差值 。
其他实际问题中的解直角三角形
航海问题中的航向和航程计算
在航海问题中,经常需要计算航向和航程。通过构造直角三角形并求解,可以得到精确的 航向和航程值。
物理学中的矢量合成与分解
在物理学中,经常需要对矢量进行合成与分解。通过构造直角三角形并利用三角函数求解 ,可以得到合成或分解后的矢量的大小和方向。
在直角三角形中,已知任意两边长,可以利用勾股定理求出 第三边长。
已知角度和一边求另一边
在直角三角形中,已知一个锐角和一条边长,可以利用三角 函数和勾股定理求出另一条边长。
勾股定理在实际问题中的应用
测量问题
在测量问题中,可以利用 勾股定理解决距离、高度 等测量问题。
工程问题
在工程问题中,可以利用 勾股定理解决角度、长度 等计算问题。

中考数学总复习阶段测评(5)图形的相似与解直角三角形(含答案)

阶段测评(五) 图形的相似与解直角三角形(时间:60分钟,总分100分)一、选择题(每小题3分,共30分)1.(2018·临沂中考)如图,利用标杆BE 测量建筑物的高度.已知标杆BE 高1.2 m ,测得AB =1.6 m ,BC =12.4 m ,则建筑物CD 的高是( B )A .9.3 mB .10.5 mC .12.4 mD .14 m,(第1题图) ,(第3题图) ,(第4题图)2.(2018·滨州中考)在平面直角坐标系中,线段AB 两个端点的坐标分别为A (6,8),B (10,2),若以原点O 为位似中心,在第一象限内将线段AB 缩短为原来的12后得到线段CD ,则点A 的对应点C 的坐标为( C )A .(5,1)B .(4,3)C .(3,4)D .(1,5)3.(2018·宜宾中考)如图,将△ABC 沿BC 边上的中线AD 平移到△A ′B ′C ′的位置,已知△ABC 的面积为9,阴影部分三角形的面积为4.若AA ′=1,则A ′D 等于( A )A .2B .3 C.23 D.324.(2018·恩施中考)如图,在正方形ABCD 中,G 为CD 边的中点,连接AG 并延长交BC 边的延长线于点E ,对角线BD 交AG 于点F ,已知FG =2,则线段AE 的长度为( D )A .6B .8C .10D .125.(2018·荆门中考)如图,四边形ABCD 为平行四边形,E ,F 为CD 边的两个三等分点,连接AF ,BE 交于点G ,则S △EFG ∶S △ABG =( C )A .1∶3B .3∶1C .1∶9D .9∶1(第5题图) ,(第6题图) ,(第7题图)6.(2018·吉林中考)如图,将△ABC 折叠,使点A 与BC 边中点D 重合,折痕为MN .若AB =9,BC =6,则△DNB 的周长为( A )A .12B .13C .14D .157.(2018·长春中考)如图,某地修建高速公路,要从A 地向B 地修一条隧道(点A ,B 在同一水平面上).为了测量A ,B 两地之间的距离,一架直升机从A 地出发,垂直上升800 m 到达C 处,在C 处观察B 地的俯角为α,则A ,B 两地之间的距离为( D )A .800 sin α m ;B .800 tan α m C.800sin α m D.800tan αm8.如图,热气球的探测器显示,从热气球A 处看一栋楼顶部B 处的仰角为30°,看这栋楼底部C 处的俯角为60°,热气球A 处与楼的水平距离为120 m ,则这栋楼的高度为( A )A .160 3 mB .120 3 mC .300 mD .160 2 m,(第8题图) ,(第9题图) ,(第10题图)9.如图,在正方形ABCD 中,点E ,F 分别为BC ,CD 的中点,连接AE ,BF 交于点G ,将△BCF 沿BF 对折,得到△BPF ,延长FP 交BA 的延长线于点Q ,对于结论:①AE =BF ;②AE ⊥BF ;③sin ∠BQP =45;④S 四边形ECFG =2S △BGE ,其中正确的个数是(B )A .4B .3C .2D .110.如图,在Rt △ABC 中,AB =CB ,BO ⊥AC ,把△ABC 折叠,使AB 落在AC 上,点B 与AC 上的点E 重合,展开后,折痕AD 交BO 于点F ,连接DE ,EF .下列结论:①tan ∠ADB =2; ②图中有4对全等三角形;③若将△DEF 沿EF 折叠,则点D 不一定落在AC 上; ④BD =BF ; ⑤S 四边形DFOE =S △AOF ,上述结论中正确的个数是( B )A .4B .3C .2D .1 二、填空题(每小题4分,共20分)11.(2018·云南中考)如图,已知AB ∥CD ,若AB CD =14,则OA OC =__14__.(第11题图) (第12题图) (第13题图) (第14题图) (第15题图)12.(2018·潍坊中考)如图,一艘渔船正以60 n mile /h 的速度向正东方向航行,在A 处测得岛礁P 在东北方向上,继续航行1.5 h 后到达B 处,此时测得岛礁P 在北偏东30°方向,同时测得岛礁P 正东方向上的避风港M 在北偏东60°方向.为了在台风到来之前用最短时间到达M 处,渔船立刻加速以75 n mile /h 的速度继续航行__18+635__h 即可到达.(结果保留根号) 13.如图,AD 为△ABC 的角平分线,DE ∥AB 交AC 于点E ,如果AE EC =23,那么AB AC =__23__.14.如图,在边长相同的小正方形组成的网格中,点A ,B ,C ,D 都在这些小正方形的顶点上,AB ,CD 相交于点P ,则tan ∠APD 的值是__2__.15.如图,正方形ABCD 的边长为2,AE =EB ,MN =1,线段MN 的两端在CB ,CD 上滑动,当CM =__255或55__时,△AED 与以M ,N ,C 为顶点的三角形相似. 三、解答题(本大题4小题,共50分)16.(10分)如图,四边形ABCD 中,AD ∥BC ,点E 在CB 的延长线上,连接DE ,交AB 于点F ,连接DB ,∠AFD =∠DBE ,且DE 2=BE ·CE .(1)求证:∠DBE =∠CDE ;(2)当BD 平分∠ABC 时,求证:四边形ABCD 是菱形.证明:(1)∵DE 2=BE ·CE ,∴DE CE =BEDE. ∵∠E =∠E ,∴△DBE ∽△CDE . ∴∠DBE =∠CDE ;(2)∵∠DBE =∠CDE ,∠DBE =∠AFD ,∴∠CDE =∠AF D.∴AB ∥D C.又∵AD ∥BC ,∴四边形ABCD 是平行四边形.∴∠ADB =∠CB D. ∵BD 平分∠ABC ,∴∠CBD =∠AB D.∴∠ADB =∠AB D. ∴AB =A D.∴四边形ABCD 是菱形.17.(12分)如图是某小区入口抽象成的平面示意图.已知入口BC 宽3.9 m ,门卫室外墙AB 上的O 点处装有一盏路灯,点O 与地面BC 的距离为3.3 m ,灯臂OM 长为1.2 m (灯罩长度忽略不计),∠AOM =60°.(1)求点M 到地面的距离;(2)某搬家公司一辆总宽2.55 m ,总高3.5 m 的货车从该入口进入时,货车需与护栏CD 保持0.65 m 的安全距离,此时,货车能否安全通过?若能,请通过计算说明;若不能,请说明理由.(参考数据:3≈1.73,结果精确到0.01 m )解:(1)如图,过点M 作MN ⊥AB ,交BA 的延长线于点N . 在Rt △OMN 中,∠NOM =60°,OM =1.2, ∴∠M =30°.∴ON =12OM =0.6.∴NB =ON +OB =3.3+0.6=3.9. 即点M 到地面的距离是3.9 m ; (2)货车能安全通过. 取CE =0.65,EH =2.55, ∴HB =3.9-2.55-0.65=0.7.过点H 作GH ⊥BC ,交OM 于点G ,过O 作OP ⊥GH 于点P . ∵∠GOP =30°,∴tan 30°=GP OP =33.∴GP=33OP≈1.73×0.73≈0.40.∴GH≈3.3+0.40=3.70>3.5.∴货车能安全通过.18.(12分)(2018·衡阳中考)一名徒步爱好者来衡阳旅行,他从宾馆C出发,沿北偏东30°的方向行走2 000 m到达石鼓书院A处,参观后又从A处沿正南方向行走一段距离,到达位于宾馆南偏东45°方向的雁峰公园B处,如图.(1)求这名徒步爱好者从石鼓书院走到雁峰公园的途中与宾馆之间的最短距离;(2)若这名徒步爱好者以100 m/min的速度从雁峰公园返回宾馆,那么他在15 min内能否到达宾馆?解:(1)如图,过点C作CD⊥AB于点D.∵∠A=∠ECA=30°,AC=2 000,∴CD=1 000.答:这名徒步爱好者从石鼓书院走到雁峰公园途中与宾馆之间的最短距离为1 000 m;(2)在Rt△CBD中,∠B=∠BCF=45°,CD=1 000,∴CB=2CD=1 0002,∴1 0002÷100=102<15,答:这名徒步爱好者15 min内能到达宾馆.19.(16分)(2018·邵阳中考)如图1,在四边形ABCD中,点O,E,F,G分别是AB,BC,CD,AD的中点,连接OE,EF,FG,GO,GE.(1)证明:四边形OEFG是平行四边形;(2)将△OGE 绕点O 顺时针旋转得到△OMN ,如图2,连接GM ,EN . ①若OE =3,OG =1,求ENGM的值;②试在四边形ABCD 中添加一个条件,使GM ,EN 的长在旋转过程中始终相等.(不要求证明)(1)证明:如图1,连接A C.∵点O ,E ,F ,G 分别是AB ,BC ,CD ,AD 的中点, ∴OE ∥AC ,OE =12AC ,GF ∥AC ,GF =12A C.∴OE ∥GF ,OE =GF .∴四边形OEFG 是平行四边形;(2)解:①∵△OGE 绕点O 顺时针旋转得到△OMN ,∴OG =OM ,OE =ON ,∠GOM =∠EON . ∴OG OE =OM ON =13=33.∴△OGM ∽△OEN . ∴EN GM =OEOG= 3. ②(答案不唯一)如AC =B D.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图形的相似和解直角三角形2010年泉州中考:如图,在梯形ABCD 中,︒=∠=∠90B A ,=AB 25,点E 在AB 上,︒=∠45AED ,6=DE ,7=CE .求:AE 的长及BCE ∠sin 的值.2011年泉州中考:如图,在=,则=,=,=中,AB BC AC C ABC Rt 4390∠∆,=A sin.2012年泉州中考:在△ABC 中,P 是AB 上的动点(P 异于A 、B ),过点P 的直线截△ABC ,使截得的三角形与△ABC 相似,我们不妨称这种直线为过点P 的△ABC 的相似线,简记为P (l x )(x 为自然数).(1)如图①,∠A=90°,∠B=∠C ,当BP=2PA 时,P (l 1)、P (l 2)都是过点P 的△ABC 的相似线(其中l 1⊥BC ,l 2∥AC ),此外,还有 _________ 条; (2)如图②,∠C=90°,∠B=30°,当= _________ 时,P (l x )截得的三角形面积为△ABC 面积的.2012年洛江区质检:在△ABC 中,若∠C=90°,AC=1,AB=5,则sinB=.2012年永春质检:1、梯形的上底长为5cm ,下底长为7cm ,则它的中位线长是 cm .2、已知△ABC 与△DEF 的相似比为3∶5,则它们的面积比为 .1、如图,在直角三角形ABC 中,︒=∠90C ,10=AB ,8=AC ,点D 、E 分别为AC 和AB 的中点,则=DE ( ). A .3 B .4 C .5 D .62、如图,在矩形ABCD 中,点P 在AB 上,且PC 平分ACB ∠.若3=PB ,10=AC ,则PAC ∆的面积为 .2012年泉港质检:1、将直角三角形纸片进行如图设计,并使剪出的图形折叠成正方体的体积最大.若BC =36,则这个展开图围成的正方体的棱长为…………………………………………………( ) A .6 B .736 C .518 D .32、如图,在矩形ABCD 中,点E 是BC 边上的一动点, DF ⊥AE 于F ,连接DE . (1)求证:△ABE ∽△DF A ;(2)如果AE =BC =10,AB =6,试求出tan ∠EDF 的值.2012年南安质检:1、已知菱形面积是224cm ,一条对角线长是cm 6,则另一条对角线长是 cm . 2、如图,在矩形ABCD 中,E 、F 分别是边AD 、BC 的中点,点G 、H 在DC 边上,且GH =21DC , EH 与FG 相交于O 点. (1)求证:△EFO ∽△HGO ;(2)若AB =10,BC =12,求图中阴影部分面积.BAD FE BC1、如图,△ABC 的面积为1,分别取AC 、BC 两边的中点A 1、B 1,则四边形A 1ABB 1的面积为43,再分别取A 1C 、B 1C 的中点A 2、B 2,A 2C 、B 2C 的中点A 3、B 3,依次取下去…,则(1)线段AB 与A 4B 4的数量关系是 ;(2)四边形A 5A 4B 4B 5的面积为 .2、如图,在△ABC 中,AB =AC =5,cos B =54,点P 为BC 边上一动点(不与点B 、C 重合),过点P 作射线PM 交AC 于点M ,使∠APM =∠B . (1)求证:△ABP ∽△PCM ;(2)当∠P AM 为直角时,求线段BP .2012年丰泽区质检:如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE =∠B . (1)求证:△ADF ∽△DEC(2)若5.3=AB ,4=AD , 8.2=AF , 求平行四边形ABCD 的面积.2012年安溪质检:1、如图,边长是5的菱形ABCD 中,DE ⊥AB 于点E ,BE =2, 点F 是AC 上一动点,则EF +BF 的最小值是( ) A .2 B .3 C .4 D . 5AMBPC2、如图,梯形ABCD中,上底AD=2cm,中位线EF=3cm,则该梯形的下底BC=cm.3、如图,已知梯形ABCD,AB∥DC,∠A=90°,DC=7cm,AB=13cm,AD=8cm.点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B →C→D→A运动,速度为2cm/s,当一个动点到达终点时,另一个动点也随之停止运动,设点P运动时间为t(s).(1)求BC的长;(2)当t=3时,求tan∠CPQ的值;(3)当t为何值时,△PBQ的面积为21cm2.2011年永春质检:梯形的上底长为5cm,下底长为6cm,则它的中位线长是cm.2011年洛江区质检:1、如图,AB∥CD,AC⊥BC,垂足为C.若∠A=40°,则∠BCD= 度.2、将一张长方形的纸对折,如图所示可得到一条折痕(图中虚线),继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得7条折痕,那么对折四次可以得到条折痕,如果对折n次,可以得到条折痕.3、如图a 是长方形纸带,∠DEF=20°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是( )A .110°B .120°C .140°D .150°2011年泉州质检:1、如图,在ABC ∆中,MN 是ABC ∆的中位线,6=BC ,则MN 的长是( ).A. 2B.2.5C.3D. 12011年泉港质检:如图,在梯形ABCD 中,E 、F 分别为AB 、CD 边上的中点,AD=3,BC=5.则EF 的长为( )A .8B .6C .4D .22011年南安质检:1、如图,E 、F 分别是正方形ABCD 的边AD 、CD 上的点,且DE =CF , AF 、BE 相交于点O ,下列结论①AF =BE ;②AF ⊥BE ;③ AO =OF ; ④S △AOB =S 四边形DEOF 中,错误..的有( ). A .1个 B .2个 C .3个 D .4个2、如图,在等腰梯形ABCD 中,AB//CD ,AD =BC ,AB =5, CD =2,∠A =60°,则腰AD 的长为 .3、如图,在66⨯的正方形网格中,每个小正方形的边长都是1,△ABC 的三个顶点都在格点(即小正方形的顶点)上. (1)画出线段AC 平移后的线段BD ,其平移方向为射线AB 的方向,平移的距离为线段AB 的长; (2)求sin ∠DBC 的值.BE A A BCD EF2011年晋江质检:如图,边长为3的正方形纸片ABCD ,用剪刀沿PD 剪下PCD Rt ∆,其中︒=∠30PDC .(1)求PC 的长;(2)若从余料(梯形ABPD )再剪下另一个PBQ Rt ∆,使点Q在AB 上,则当QB 的长为多少时,PBQ ∆∽DCP ∆?2011晋江二检:1、如图,MN 是梯形ABCD 的中位线,若2=CD ,6=AB , 则MN 的长是( ). A .2B .3C .4D . 52、把一张正方形纸片按如图所示的方法对折两次后剪去两个完全一样的等腰直角三角形,设完 全展开后的形状是n 边形. (1)_____=n ;(2)若正方形的边长为3,且P 、'P 是线段AB 的三等分点,则该n 边形的周长是_______.2011年安溪质检:1、在正方形网格中,△ABC 的位置如图所示,则sin ∠B = .2、如图,矩形ABCD 的对角线相交于点O ,过点O 的直线分别交AD 、BC 于点E 、F ,若矩形的长与宽分别是4cm 、3cm ,则阴影 部分的面积是 cm 2.3、 如图,△ABC 是边长为12的等边三角形,CE 是外角平分线,点D 在AC 上,且AD =2DC .连结BD 并延长与CE 交于点E , 则CE = .(第4题图)AEB FAGDCH4、如图,在直角梯形ABCD 中,AD ∥BC ,∠A =90°,AB =6,BC =8,AD =14,点E 、F 、G 分别在BC 、AB 、AD 上,且BE =3,BF =2,以EF 、FG 为邻边作□EFGH ,设AG =x .(1)直接写出点H 到AD 的距离;(2)若点H 落在梯形ABCD 内或其边上,求△HGD 面积的最大值与最小值; (3)当x 为何值时,△EHC 是等腰三角形.2010年丰泽区质检:1、如图,若D ,E 分别是AB ,AC 中点,现测得DE 的长为20米,则池塘的宽BC 是____米.2、如图,一架梯子斜靠在墙上,若梯子到墙的距离AC =3米,3cos 4BAC ∠=,则梯子AB 的长度为 米.2010年石狮市质检1、两个相似三角形的对应边的比为2∶3,则它们的对应面积的比为 .2、如图是某商场一楼与二楼之间的手扶电梯示意图.其中AB 、CD 分别表示一楼、二楼地面的水平线,∠ABC=152°,BC=9m ,求乘电梯从点B 到点C 上升的高度CE.(精确到0.1m )3、如图,梯形ABCD 中,AD ∥BC ,BC=8,AD=CD=3,AB=4,过点D 作DE ∥AB ,交BC 于点E.(1)(4分)△CDE 是直角三角形吗?请说明理由; (2)(4分)求梯形ABCD 的面积.(第2题)ABCADBCEACD BABCD2010年泉港区质检:1、如图,等腰ABC △中,AB AC =,AD 是底边上的高,若cm AB 5=,cm BC 6=,则AD = cm .2、已知ABC △与DEF △的相似比为3∶5,则它们的面积比为 .3、在右图的方格纸中有一个菱形ABCD (A 、B 、C 、D 四点均为格点),若方格纸中每个最小正方形的边长为1,则该菱形的面积为 .4、把两块含有300的相同的直角尺按如图所示摆放,连结CE 交AB 于D .若BC = 6cm ,则①AB = cm ;②⊿BCD 的面积S= 2cm .2010年南安质检:如图,大正方形网格是由25个边长为1的小正方形组成,把图中阴影部分剪下来,用剪下来的阴影部分拼成一个正方形, 那么新正方形的边长是 .2010年洛江区质检:如图9,飞机P 在目标A 的正上方1100m 处,飞行员测得地面目标B 的俯角30α=,求地面目标B A 、之间的距离(精确到个位).2010年鲤城区质检:如图,在锐角△ABC 中,∠ABC 的平分线交AC 于点D , AB 边上的高CE 交BD 于点M,过点M作BC 的垂线段MN,若EC =4,∠BCE=45°,则MN= (结果保留三位有效数字).。

相关文档
最新文档