第四章铁碳相图
第四章铁碳相图

解度曲线 K GS: 先共析α 6.69 相析出线
0.0008Q
Fe
C%
Fe3C
L+δ
J点―包晶点
A 1495℃
δ
B
L
HN J
L+γ
L +Fe3C D
1495℃ 0.17% C
T
γ
2.1 1E
4.3 C
1148℃ F
C点―共晶点
G α+γ 0.77 PS
α 0.0218
γ +Fe3C
A1 727 ℃
2 可锻性:低碳钢塑性好,可锻性 好。随含碳量增加,可锻性变差。
3 铸造性: 共晶成分的铸铁流动性好,缩孔
集中,偏析小,铸造性好; 液相线和固相线距离越大,流动
性差,分散缩孔多,偏析大,铸造性 越差。所以,钢的铸造性差。
§2 碳钢 一 杂质元素对钢性能的影响
少量的锰、硅、硫、磷及微量的氧、氢、 氮等元素,它们会影响到钢的质量和性能。 (一)锰的影响
0.0218
Q
Fe
铁碳相图
L+γ
2.11 E
L L +Fe3C D
4.3 1148℃ F C
727γ℃SA1时γ 发+7F生(2eα73℃P共C+析F转e3C变6).6:=9KP
α+常Fe温3C下的组织构成:
P
C%
Fe3C
不同放大倍数 下P的显微组织
亚共析钢(0.4%C) L→δ L+δ→γ
L+δ
(四)磷的影响 —— 有害杂质元素, —— 矿石和生铁等炼钢原料带入。
磷在钢中固溶强化作用很强,但同时剧 烈地降低钢的韧性,尤其是低温韧性,使韧 脆转变温度升高,称为“冷脆”。
铁碳合金相图

F % ≈ 1 – 12 % = 88 %
珠光体
强度较高,塑性、韧性和硬度介于 Fe3C 和 F 之间。
室温组织: 层片状 P ( F + 共析 Fe3C ) 500×
(3)亚共析钢 ( C % = 0.4 % )结晶过程
各组织组成物的相对量:
P % = ( 0.4 – 0.0218 ) / ( 0.77 – 0.0218 ) ≈ 51 % F % ≈ 1 – 51 % = 49 %
白口铸铁 —— 2.11 % < C % < 6.69 % 亚共晶白口铁 < 4.3 % 共晶白口铁 = 4.3 % 过共晶白口铁 > 4.3 % 类型 钢号 碳质量分数/% 亚共析钢 20 45 60 0.20 0.45 0.60 共析钢 T8 0.80 过共析钢 T10 T12 1.00 1.20
(4)各相的质量: QL= 50×2/3 = 33.3(kg) Qα = 50-33.3 = 16.7(kg)
2) 室温下,金属晶粒越细,则强度越高、塑性越低。( No )
3) 晶粒度级数数值越大,晶粒越细。(Yes )
5. 1) 金属结晶时,冷却速度越快,其实际结晶温度将: a. 越高 b. 越低 c. 越接近理论结晶温度
2) 为细化晶粒,可采用: a. 快速浇注 b. 加变质剂
√ √
c. 以砂型代金属型
各相的相对量:
Fe3CII % ≈ 1.2 / 6.69 = 18 % F % ≈ 1 – 18 % = 82 %
室温组织
P + Fe3CII
400×
(5)共晶白口铁 ( C % = 4.3 % )结晶过程
室温组织 (低温)莱氏体 (P + Fe3CII + 共晶 Fe3C) 莱氏体 Le′的性能
第4章 铁碳合金相图与碳钢

1227
(I)
亚共析钢
过共析钢
工业纯铁
共析钢
亚共晶白口铁
过共晶白口铁
共晶白口铁
0.02% 0.40% 0.77% 1.2%
2.11%
3.0% 4.3%
5.0%
1227
(I)
0.01%
1227
(I)
(1)工业纯铁(C=0.01%): L→L+δ →δ →δ +A→A→A+F→F→F+Fe3CⅢ
WF= (6.69-0.01) /6.69=99.85%
L+Fe3C
6.69
莱氏体( Ld)-奥氏体和渗碳体混合物 珠光体(P)-铁素体和渗碳体层片 状混合物
区的意义:
1495
(1)单相区:L、δ 、A、F;
(2)两相区:L+δ 、L+A、
L+Fe3CⅠ、δ +A、A+F、A+Fe3C F+Fe3C (3)三相共存点:
J点:(L+δ +A)
C点:(L+A+ Fe3C); S点:(A+F+ Fe3C);
4.3%
1227
(I)
共晶白口铁(C=4.3%) L→Ld→Ld′
相组成:WF=(6.69-4.3)/6.69 =35.7% 组织组成:Ld’=100%
5.0%
1227
(I)
过共晶白口铁(C=5.0%):
L→L+ Fe3CⅠ→Ld+ Fe3CⅠ→Ld′+ Fe3CⅠ
相组成:WF=(6.695.0)/6.69=25.3% 组织组成 WLd’=(6.69-5.0)/(6.69-4.3)=70.7% WFe3CI=29.3%
铁碳合金相图分析

第四章铁碳合金第一节铁碳合金的相结构与性能一、纯铁的同素异晶转变δ-Fe→γ-Fe→α-Fe体心面心体心同素异晶转变——固态下,一种元素的晶体结构随温度发生变化的现象.特点:是形核与长大的过程重结晶将导致体积变化产生内应力通过热处理改变其组织、结构→ 性能二、铁碳合金的基本相基本相定义力学性能溶碳量铁素体 F碳在α-Fe中的间隙固溶体强度,硬度低,塑性,韧性好最大%奥氏体 A碳在γ-Fe中的间隙固溶体硬度低,塑性好最大%渗碳体Fe3C Fe与C的金属化合物硬而脆800HBW,δ↑=αk=0%第二节铁碳合金相图一、相图分析两组元:Fe、 Fe3C上半部分图形二元共晶相图共晶转变:1148℃ 727℃→ + Fe3C →P + Fe3C莱氏体Ld Ld′2、下半部分图形共析相图两个基本相:F、Fe3C共析转变:727℃→ + Fe3C珠光体P二、典型合金结晶过程分类:三条重要的特性曲线① GS线---又称为A3线它是在冷却过程中由奥氏体析出铁素体的开始线或者说在加热过程中铁素体溶入奥氏体的终了线.② ES线---是碳在奥氏体中的溶解度曲线当温度低于此曲线时就要从奥氏体中析出次生渗碳体通常称之为二次渗碳体因此该曲线又是二次渗碳体的开始析出线.也叫Acm线.③ PQ线---是碳在铁素体中的溶解度曲线.铁素体中的最大溶碳量于727oC时达到最大值%.随着温度的降低铁素体中的溶碳量逐渐减少在300oC以下溶碳量小于%.因此当铁素体从727oC冷却下来时要从铁素体中析出渗碳体称之为三次渗碳体记为Fe3CⅢ.工业纯铁<%C钢——亚共析钢、共析钢%C、过共析钢白口铸铁——亚共晶白口铸铁、共晶白口铸铁、过共晶白口铸铁L → L+A → A → PF+Fe3CL → L+A → A → A+F →P+FL → L+A → A → A+ Fe3CⅡ→P+ Fe3CⅡ4、共晶白口铸铁L → LdA+Fe3C →LdA+Fe3C+ Fe3CⅡ → Ld′P+Fe3C+Fe3CⅡ5、亚共晶白口铸铁L → LdA+Fe3C + A →Ld+A+ Fe3CⅡ → Ld′+P+ Fe3CⅡ6、过共晶白口铸铁L → LdA+Fe3C + Fe3C → Ld + Fe3C→ Ld′+ Fe3C三、铁碳合金的成分、组织、性能之间的关系1、含碳量对铁碳合金平衡组织的影响2、含碳量对铁碳合金力学性能的影响四、铁碳合金相图的应用1、选材方面的应用2、在铸造、锻造和焊接方面的应用3、在热处理方面的应用第三节碳钢非合金钢碳钢是指ωc≤%,并含有少量锰、硅、磷、硫等杂质元素的铁碳合金.铁碳合金具有良好的力学性能和工艺性能,且价格低廉,故广泛应用.一、杂质元素对碳钢性能的影响1、锰Mn + FeO → MnO + Fe 脱氧Mn+ S → MnS 炉渣去硫Mn溶入铁素体→ 固溶强化Mn溶入Fe3C → 形成合金渗碳体Fe, Mn3C Mn <%,对性能影响不大2、硅Si + FeO → SiO2 + Fe 脱氧Si溶入铁素体→ 固溶强化Si<%,对性能影响不大3、硫钢中S+Fe → FeS.FeS与Fe形成低熔点的共晶体985℃分布在晶界上,当钢在热加工1000~1200℃时,共晶体熔化,导致开裂——热脆消除热脆:Mn+ S → MnS熔点高1620℃并有一定塑性硫是一种有害元素4、磷钢中磷全部溶于铁素体,产生强烈固溶强化,低温时更加严重——冷脆磷是一种有害元素二、碳钢的分类按含碳量分:低碳钢~、中碳钢~、高碳钢~%按质量分类:普通碳钢、优质碳钢、特殊碳钢S、P含量按用途分类:碳素结构钢、碳素工具钢三、碳钢的牌号、性能和应用1、碳素结构钢GB700-88 Q195, Q215, Q235, Q255, Q275五大类,20个钢种GB700-79 A1, A2, A3, A4, A5Q235-AF表示:σs≥235Mpa,质量等级为A,沸腾钢.应用:Q195, Q215——塑性高,用于冲压件、铆钉、型钢等; Q235——强度较高,用于轴、拉杆、连杆等;Q255, Q275——强度更高,用于轧辊、主轴、吊钩等.2、优质碳素结构钢优质碳素结构钢:优质钢、高级优质钢A、特级优质钢E 牌号:08F ——冲压件;45——齿轮、连杆、轴类;65 Mn——弹簧、弹簧垫圈、轧辊等.3、碳素工具钢牌号:T8、T8A——木工工具;T10、T10A——手锯锯条、钻头、丝锥、冷冲模;T12、T12A——锉刀、绞刀、量具.4、铸钢表示方法:用力学性能表示ZG200-400σs≥200Mpa,σb≥400Mpa用化学成分表示ZG30%C用于制作形状复杂且强度和韧性要求较高的零件,如轧钢机架、缸体、制动轮、曲轴等.. 状态图中的特性点Fe- Fe3C相图中各点的温度、浓度及其含义Fe-Fe3C 相图中各特性点的符号及意义二. 状态图中的特性线Fe-C合金相图中的特性线三. 状态图中的相区在Fe-Fe3C相图中共有五个单相区、七个两相区和三个三相区.五个单相区是:ABCD以上——液相区LAHNA——δ固溶体区δα、δNJESGN——奥氏体区γ或AGPQG——铁素体区α或FDFKL——渗碳体区Fe3C或Cm两相区是:L+δ、L+γ、L+ Fe3C、δ+γ、α+γ、γ+ Fe3C和α+ Fe3C.三个三相区是:HJB线、ECF线和PSK线.1. 工业纯铁含C≤%——其显微组织为铁素体+Fe3CⅢ.2. 钢含C在~%——其特点是高温组织为单相奥氏体具有良好的塑性因而适于锻造.根据室温组织的不同钢又可分为三类:① 亚共析钢< C <%——其组织是铁素体+珠光体② 共析钢C=%——其组织为珠光体③ 过共析钢< C≤%——其组织为珠光体+渗碳体3. 铁在1538ºC结晶为δ-FeX射线结构分析表明它具有体心立方晶格.当温度继续冷却至1394ºC时δ-Fe转变为面心立方晶格的γ- Fe通常把δ-Fe←→γ- Fe的转变称为A4转变转变的平衡临界点称为A4点.当温度继续降至912ºC时面心立方晶格的γ- Fe又转变为体心立方晶格的α-Fe把γ- Fe←→α-Fe的转变称为A3转变转变的平衡临界点称为A3点.4. 三条重要的特性曲线① GS线---又称为A3线它是在冷却过程中由奥氏体析出铁素体的开始线或者说在加热过程中铁素体溶入奥氏体的终了线.② ES线---是碳在奥氏体中的溶解度曲线当温度低于此曲线时就要从奥氏体中析出次生渗碳体通常称之为二次渗碳体因此该曲线又是二次渗碳体的开始析出线.也叫Acm线.③ PQ线---是碳在铁素体中的溶解度曲线.铁素体中的最大溶碳量于727ºC时达到最大值%.随着温度的降低铁素体中的溶碳量逐渐减少在300ºC以下溶碳量小于%.因此当铁素体从727ºC冷却下来时要从铁素体中析出渗碳体称之为三次渗碳体记为Fe3CⅢ.四. 名词1. 铁素体:是碳在α-Fe中形成的固溶体常用“δ”或“F”表示.铁素体在770ºC以上具有顺磁性在770ºC以下时呈铁磁性.通常把这种磁性转变称为A2转变把磁性转变温度称为铁的居里点.碳溶于δ-Fe中形成的固溶体叫δ铁素体在1495ºC时其最大溶碳量为%.2. 顺磁性:就是在顺磁物质中分子具有固有磁矩无外磁场时由于热运动各分子磁矩的取向无规宏观上不显示磁性;在外磁场作用下各分子磁矩在一定程度上沿外场排列起来宏观上呈现磁性这种性质称为顺磁性.3. 铁磁性:就是磁性很强的物质在未磁化时宏观上不显示出磁性但在外加磁场后将会显示很强的宏观磁性.4. 奥氏体:是碳溶于γ-Fe中所形成的固溶体用“γ”或“A”表示.奥氏体只有顺磁性而不呈现铁磁性.碳在γ-Fe 中是有限溶解其最大溶解度为%1148ºC.5. 渗碳体:是铁与碳的稳定化合物Fe3C 用“C”表示.其含碳量为%.由于碳在α-Fe中的溶解度很小所以在常温下碳在铁碳合金中主要是以渗碳体的形式存在.渗碳体于低温下具有一定的铁磁性但是在230ºC以上铁磁性就消失了所以230ºC是渗碳体的磁性转变温度称为A0转变.渗碳体的熔点为1227ºC.它不能单独存在总是与铁素体混合在一起.在钢中它主要是强化相它的形态、大小及分布对钢的性能有很大的影响.另外渗碳体在一定的条件下可以分解形成石墨状的自由碳.即Fe3C——→3Fe+C石墨6. 珠光体:是由铁素体和渗碳体所组成的机械混合物常用“P”表示.珠光体存在于727ºC以下至室温.五. 铁碳合金相图的应用一在选材方面的应用若需要塑性、韧性高的材料应选用低碳钢含碳为~%;需要强度、塑性及韧性都较好的材料应选用中碳钢含碳为~%;当要求硬度高、耐磨性好的材料时应选用高碳钢含碳为~%.一般低碳钢和中碳钢主要用来制造机器零件或建筑结构.高碳钢主要用来制造各种工具.二在制定热加工工艺方面的应用铁碳相图总结了不同成分的合金在缓慢加热和冷却时组织转变的规律即组织随温度变化的规律这就为制定热加工及热处理工艺提供了依据.钢处于奥氏体状态时强度较低、塑性较好便于塑性变形.因此钢材在进行锻造、热轧时都要把坯料加热到奥氏体状态.各种热处理工艺与状态图也有密切的关系退火、正火、淬火温度的选择都得参考铁碳相图.六. 应用铁碳相图应注意的几个问题1. 铁碳相图不能说明快速加热或冷却时铁碳合金组织的变化规律.2. 可参考铁碳相图来分析快速加热或冷却的问题但还应借助于其他理论知识.3. 相图告诉我们铁碳合金可能进行的相变但不能看出相变过程所经过的时间.相图反映的是平衡的概念而不是组织的概念.铁碳相图是由极纯的铁和碳配制的合金测定的而实际的钢铁材料中还含有或有意加入许多其他元素.其中有些元素对临界点和相的成分都有很大的影响此时必须借助于三元或多元相图来分析和研究.第二部分晶体结构一. 金属键1. 金属键:金属原子依靠运动于其间的公有化的自由电子的静电作用而结合起来这种结合方式叫金属键.2. 在固态金属及合金中众多的原子依靠金属键牢固的结合在一起.二. 晶体结构1. 晶体:凡是原子或离子、分子在三维空间按一定规律呈周期性排列的固体均是晶体.液态金属的原子排列无周期规则性不为晶体.2. 晶体结构:是指晶体中原子或离子、分子、原子集团的具体排列情况也就是晶体中这些质点原子或离子、分子、原子集团在三维空间有规律的周期性的重复排列方式.3. 三种典型的金属晶体结构a. 体心立方晶格:晶胞的三个棱边长度相等三个轴间夹角均为90º构成立方体.除了在晶胞的八个角上各有一个原子外在立方体的中心还有一个原子.b. 面心立方晶格:在晶胞的八个角上各有一个原子构成立方体在立方体6个面的中心各有一个原子.c. 密排六方晶格:在晶胞的12个角上各有一个原子构成六方柱体上底面和下底面的中心各有一个原子晶胞内还有3个原子.三. 固溶体1. 固溶体:合金的组元以不同的比例相互混合混合后形成的固相的晶体结构与组成合金的某一组元的相同这种相就称为固溶体.2. 置换固溶体:是指溶质原子位于溶剂晶格的某些结点位置所形成固溶体.3. 间隙固溶体:是指溶质原子不是占据溶剂晶格的正常结点位置而是填入溶剂原子间的一些间隙中.4. 金属化合物:是合金组元间发生相互作用而形成的一种新相又称为中间相其晶格类型和性能均不同于任一组元一般可以用分子式大致表示其组成.除了固溶体外合金中另一类相是金属化合物.四. 金属的结晶1. 金属的结晶:金属由液态转变为固态的过程称为凝固由于凝固后的固态金属通常是晶体所以又将这一转变过程称之为结晶.2. 杠杆定律的应用.在合金的结晶过程中合金中各个相的成分以及它们的相对含量都在发生着变化.为了了解相的成分及其相对含量就需要应用杠杆定律.对于二元合金两相共存时两个平衡相的成分固定不变.五. 同素异构转变当外部条件如温度和压强改变时金属内部由一种晶体结构向另一种晶体结构的转变称为多晶型转变或同素异构转变.六. 晶体的各向异性各向异性是晶体的一个重要特性是区别于非晶体的一个重要标志.晶体具有各向异性的原因是由于在不同的晶向上的原子紧密程度不同所致.原子的紧密程度不同意味着原子之间的距离不同从而导致原子之间的结合力不同使晶体在不同晶向上的物理、化学和机械性能不同.第三部分元素的影响1. 锰和硅的影响:锰和硅是炼钢过程中必须加入的脱氧剂用以去除溶于钢液中的氧.它还可以把钢液中的F eO还原成铁并生成MnO和SiO2.脱氧剂中的锰和硅总会有一部分溶于钢液中冷至室温后即溶于铁素体中提高铁素体的强度.锰对钢的机械性能有良好的影响它能提高钢的强度和硬度当含锰量低于%时可以稍微提高或不降低钢的塑性和韧性.碳钢中的含硅量一般小于%它也是钢中的有益元素.硅溶于铁素体后有很强的固溶强化作用显著的提高了钢的强度和硬度但含量较高时将使钢的塑性和韧性下降.2. 硫的影响:硫是钢中的有害元素.硫只能溶于钢液中在固态中几乎不能溶解而是以FeS夹杂的形式存在于固态钢中.硫的最大危害是引起钢在热加工时开裂这种现象称为热脆.防止热脆的方法是往钢中加入适量的锰形成MnS可以避免产生热脆.硫能提高钢的切削加工性能.在易切削钢中含硫量通常为%~%同时含锰量为%~%.3. 磷的影响:一般来说磷是有害的杂质元素.无论是高温还是低温磷在铁中具有较大的溶解度所以钢中的磷都固溶于铁中.磷具有很强的固溶强化作用它使钢的强度、硬度显著提高但剧烈地降低钢的韧性尤其是低温韧性称为冷脆磷的有害影响主要就在于此.4. 氮的影响:一般认为钢中的氮是有害元素但是氮作为钢中合金元素的应用已日益受到重视.5. 氢的影响:氢对钢的危害是很大的.一是引起氢脆.二是导致钢材内部产生大量细微裂纹缺陷——白点在钢材纵断面上呈光滑的银白色的斑点在酸洗后的横断面上则成较多的发丝壮裂纹.存在白点时钢材的延伸率显著下降尤其是断面收缩率和冲击韧性降低的更多有时可接近于零值.因此具有白点的钢是不能用的.6. 氧及其它非金属夹杂物的影响:氧在钢中的溶解度非常小几乎全部以氧化物夹杂的形式存在于钢中如FeO、AL2O3、SiO2、MnO、CaO、MgO等.除此之外钢中往往存在FeS、MnS、硅酸盐、氮化物及磷化物等.这些非金属夹杂物破坏了钢的基体的连续性在静载荷和动载荷的作用下往往成为裂纹的起点.它们的性质、大小、数量及分布状态不同程度地影响着钢的各种性能尤其是对钢的塑性、韧性、疲劳强度和抗腐蚀性能等危害很大.因此对非金属夹杂物应严加控制.第四部分热处理一. 热处理的作用1. 热处理:是将钢在固态下加热到预定的温度保温一定的时间然后以预定的方式冷却下来的一种热加工工艺.钢中组织转变的规律是热处理的理论基础称为热处理原理.热处理原理包括钢的加热转变、珠光体转变、马氏体转变、贝氏体转变和回火转变.在临界温度以下处于不稳定状态的奥氏体称为过冷奥氏体.钢在加热和冷却时临界温度的意义如下:Ac1——加热时珠光体向奥氏体转变的开始温度;Ar1——冷却时奥氏体向珠光体转变的开始温度;Ac3——加热时先共析铁素体全部转变为奥氏体的终了温度;Ar3——冷却时奥氏体开始析出先共析铁素体的温度;Accm——加热时二次渗碳体全部溶入奥氏体的终了温度;Arcm——冷却时奥氏体开始析出二次渗碳体的温度.通常把加热时的临界温度加注下标“C”而把冷却时的临界温度加注下标“r”.2. 珠光体转变——是过冷奥氏体在临界温度A1以下比较高的温度范围内进行的转变.珠光体转变是单相奥氏体分解为铁素体和渗碳体两个新相的机械混合物的相变过程因此珠光体转变必然发生碳的重新分布和铁的晶格改组.由于相变在较高温度下发生铁、碳原子都能进行扩散所以珠光体转变是典型的扩散型相变.无论珠光体、索氏体还是屈氏体都属于珠光体类型的组织.它们的本质是相同的都是铁素体和渗碳体组成的片层相间的机械混合物.它们之间的差别只是片层间距的大小不同而已.珠光体的片层间距:450~150 nm形成于A1~650℃温度范围内.索氏体的片层间距:150~80nm形成于650~600℃温度范围内.屈氏体的片层间距:80~30nm形成于600~550℃温度范围内.3. 马氏体转变——是指钢从奥氏体化状态快速冷却抑制其扩散性分解在较低温度下低于Ms点发生的转变.马氏体转变属于低温转变.钢中马氏体是碳在α-Fe中的过饱和固溶体具有很高的强度和硬度.由于马氏体转变发生在较低温度下此时铁原子和碳原子都不能进行扩散马氏体转变过程中的Fe的晶格改组是通过切变方式完成的因此马氏体转变是典型的非扩散型相变.二. 热处理工艺1. 退火和正火:将金属及其合金加热保温和冷却使其组织结构达到或接近平衡状态的热处理工艺称为退火或回火.A. 低温退火去应力退火:是指钢材及各类合金为消除内应力而施行的退火.加热温度< A1 碳钢及低合金钢550~650℃高合金工具钢600~750℃B. 再结晶退火:加热温度> Tr Tr+150~250℃C. 扩散退火:是指为了改善和消除在冶金过程中形成的成分不均匀性而实行的退火.1 通过扩散退火可以使在高温下固溶于钢中的有害气体主要是氢脱溶析出这时称为脱氢退火.2 均匀化退火的任务在于消除枝晶成分偏析改善某些可以溶入固溶体夹杂物如硫化物的状态从而使钢的组织与性能趋与均一.扩散退火的加热温度> Ac3 Acm 在固相线以下高温加热同时也要考虑不使奥氏体晶粒过于长大.碳钢1100~1200℃D. 完全退火:是指将充分奥氏体化的钢缓慢冷却而完成重结晶过程的退火.加热温度 Ac3+30~50℃E. 等温退火:是指将奥氏体用较快的速度冷却到临界点以下较高温度范围进行珠光体等温转变的退火. 加热温度 Ac3~Ac12. 正火:是指将碳合金加热到临界点Ac3以上适当温度并保持一定时间然后在空气中冷却的工艺方法.过共析钢正火后可消除网状碳化物而低碳钢正火后将显著改善钢的切削加工性.所有的钢铁材料通过正火均可使锻件过热晶粒细化和消除内应力.正火比退火的冷却速度快正火后的组织比退火后的组织细.3. 淬火与回火1. 淬火:是指将钢通过加热、保温和大于临界淬火速度Vc的冷却是过冷奥氏体转变为马氏体或贝氏体组织的工艺方法.2. 钢的淬透性:就是钢在淬火时能够获得马氏体的能力它是钢材本身固有的一个属性.3. 当淬火应力在工件内超过材料的强度极限时在应力集中处将导致开裂.4. 回火:本质上是淬火马氏体分解以及碳化物析出、聚集长大的过程.它与淬火不同点是由非平衡态向平衡态稳定态的转变.4. 化学热处理:是将工件放在一定的活性介质中加热使非金属或金属元素扩散到工件表层中、改变表面化学成分的热处理工艺.如:渗入碳、氮、硼、钒、铌、铬、硅等元素第五部分宏观检验一. 宏观检验主要可分为低倍组织及缺陷酸蚀检验、断口检验、硫印检验等.二. 酸蚀试验在宏观检验领域中酸蚀检验是最常用的检验金属材料缺陷、评定钢铁产品质量的方法.如果一批钢材在酸蚀中显示出不允许存在的缺陷或超过允许程度的缺陷时其它检验可不必进行.1. 酸蚀试验:是用酸蚀方法来显示金属或合金的不均匀性.1 热酸浸蚀实验方法2 冷酸浸蚀实验方法3 电解腐蚀实验方法2. 酸蚀试验所检验的常见组织和缺陷A:偏析:是钢中化学成分不均匀现象的总称.在酸蚀面上偏析若是易蚀物质和气体夹杂物析集的结果将呈现出颜色深暗、形状不规则而略凹陷、底部平坦的斑点;若是抗蚀性较强元素析集的结果则呈颜色浅淡、形状不规则、比较光滑微凸的斑点.根据偏析的位置和形状可分为中心偏析、锭型偏析或称方框偏析、点状偏析、白斑和树枝状组织.中心偏析:出现在试面中心部位形状不规则的深暗色斑点.锭型偏析:具有原钢锭横截面形状的、集中在一条宽窄不同的闭合带上的深暗色斑点.B. 疏松:这种缺陷是钢凝固过程中由于晶间部分低熔点物最后凝固收缩和放出气体而产生的孔隙.在横向酸蚀面上这种孔隙一般呈不规则多边形、底部尖狭的凹坑这种凹坑多出现在偏析斑点之内.根据疏松分布的情况可分为中心疏松和一般疏松.C. 夹杂:宏观夹杂可分为外来金属、外来非金属和翻皮三大类.D. 缩孔:由于最后凝固的钢液凝固收缩后得不到填充而遗留下来的宏观孔穴.E. 气泡:由于钢锭浇注凝固过程中所产生和放出气体所造成的.一般可分为皮下气泡和内部气泡两类.a. 皮下气泡: 由于浇注时钢锭模涂料中的水分和钢液发生作用而产生的气体.b. 内部气泡:又可分为蜂窝气泡和针孔气泡.蜂窝气泡是由于钢液去气不良所导致一般为不允许存在的缺陷存在钢坯内部在试面上较易浸蚀象排列有规律的点状偏析但颜色更深暗些;针孔是因为较深的皮下气泡在锻轧过程中未焊合而被延伸成细管状在横试面上呈孤立的针状小孔.白点:也称发裂是由于氢气脱溶析集到疏松孔中产生巨大压力和钢相变时所产生的局部内应力联合造成的细小裂缝.在横试面上呈细短裂缝三. 硫印检验是一种定性检验是用来直接检验硫元素并间接检验其它元素在钢中偏析或分布情况的操作.硫印检验时先用5~10%的稀硫酸水溶液浸泡相纸5分钟左右后取出去除多余的硫酸溶液把湿润的相纸感光面贴到受检表面上应确保相纸与试样面的紧密接触不能发生任何滑动排除相纸与试样面的气泡和液滴.其化学反应大致为:MnS+H2SO4→MnSO4+H2S↑FeS+H2SO4→FeSO4+H2S↑H2S+2AgBr→2HBr+Ag2S↓几秒到几分钟后将从试面上揭下的相纸在水中冲洗约10分钟然后放入定影液中定影10分钟以上取出后在流动水中冲洗30分钟以上干燥后既成.四. 断口检验1. 脆性断口:通常工程上把没有明显塑性变形的断裂统称为脆性断裂发生脆性断裂的断口为脆性断口.脆性断口也称晶状断口是指出现大量晶界破坏的耀眼光泽断口断口中晶状区的面积与断口原始横截面积的百分比则是脆性断面率也称晶状断面率.2. 结晶状断口:此种断口具有强烈的金属光泽有明显的结晶颗粒断面平齐而呈银灰色.是一种正常的断口.属于脆性断口.3. 纤维状断口:这种断口呈无光泽和无结晶颗粒的均匀组织.通常在断口的边缘有明显的塑性变形.一般情况下是允许存在的.属于韧性断口.4. 瓷状断口:是一种类似瓷碎片的断口呈亮灰色、致密、有绸缎的光泽和柔和感.是一种正常的断口.5. 台状断口:这种断口出现在纵向断面上呈比基体颜色略浅、变形能力稍差、宽窄不同、较为平坦的片状平台状.多分布在偏析内.6. 撕痕状断口:这种断口出现在纵向断面上沿热加工方向呈灰白色、变形能力差致密而光滑的条带.7. 层状断口:这种断口出现在纵向断面上呈劈裂的朽木状或高低不平的、无金属光泽的、层次起伏的条带条带中伴有白亮或灰色线条.8. 缩孔残余断口:出现在纵向断口的轴心区是非结晶状条带或疏松区有时伴有非金属夹杂物或夹杂沿条带常带有氧化色.9. 石状断口:在断口表面呈现粗大而凹凸不平的沿晶界断裂的粗晶颜色暗灰而无金属光泽象有棱角的沙石颗粒堆砌在一起.。
第四章 铁碳合金相图

第四节铁碳合金相图从某种意义上讲,铁碳合金相图是研究铁碳合金的工具,是研究碳钢和铸铁成分、温度、组织和性能之间关系的理论基础,也是制定各种热加工工艺的依据。
一、铁碳合金中的基本相铁碳合金相图实际上是Fe-Fe3C相图,铁碳合金的基本组元也应该是纯铁和Fe3C。
铁存在着同素异晶转变,即在固态下有不同的结构。
不同结构的铁与碳可以形成不同的固溶体,Fe—Fe3C相图上的固溶体都是间隙固溶体。
由于α-Fe和γ-Fe晶格中的孔隙特点不同,因而两者的溶碳能力也不同。
1.铁素体2.奥氏体3.渗碳体二、铁碳合金相图分析1.Fe- Fe3C相图中的特性点图4-14是Fe- Fe3C相图。
图中各点的温度、含碳量及其意义示于表4-1中。
Fe- Fe3C相图中的特性点均采用固定的字母表示。
图4-14 Fe-Fe3C相图2.Fe-Fe3C相图中的特性线相图中的ABCD线为液相线,AHJECFD为固相线,ES线是碳在γ-Fe中的固溶度曲线,又叫作Acm 线。
PQ线是碳在α-Fe中的固溶度曲线。
GS线是冷却过程中,由奥氏体中析出铁素体的开始线,或者是加热时,铁素体溶入奥氏体的终止线,GS线又叫作A3线。
根据生成条件的不同,渗碳体可分为一次渗碳体、二次渗碳体、三次渗碳体、共晶渗碳体、共析渗碳体五种。
它们的不同形态与分布,除对铁碳合金性能有不同影响外,就其本身来讲,并无本质区别。
三、铁碳合金的结晶过程下面以几种典型的铁碳合金为例,分析其平衡结晶过程及组织。
由于工业纯铁的实际应用较少,所以这里不分析其结晶过程。
所选合金的成分如图4-15所示。
图4-15 6个典型的铁碳合金结晶过程分析1.共析钢的结晶过程分析图4-15中,合金①是共析钢,其结晶过程示于图4-16。
图4-16 共析钢结晶过程示意图2.亚共析钢的结晶过程分析图4-15中的合金②是亚共析钢,其结晶过程如图4-17所示。
图4-17 亚共析钢结晶过程示意图3.过共析钢的结晶过程分析图4-15中的合金③是过共析钢,其结晶过程如图4-18所示。
第四章铁碳合金状态图

第四章铁碳相图与碳钢钢铁材料都属于铁碳合金,学习本章有助于了解铁碳合金的成分、组织和性能之间的关系,以便在生产中合理地使用。
本章包括以下内容:铁碳相图碳含量对合金组织性能的影响铁碳相图的应用与局限性碳钢4.1 铁碳相图4.1.1铁碳合金中的基本相不同温度时Fe 具有不同的晶体结构α-Fe γ-Fe δ-Fe C 可以溶解到Fe 的晶格中形成固溶体α:C 在α-Fe 中的间隙固溶体;铁素体,Fγ: C 在γ-Fe 中的间隙固溶体;奥氏体,A δ:C 在δ-Fe 中的间隙固溶体; 高温铁素体 当C 含量超过溶解度时,多余的C 形成化合物Fe 3C 或石墨1394o C 912o C4.1.2 Fe-FeC相图分析3简化铁碳相图4.1.3 铁碳合金的分类按照含碳量铁碳合金可以分为三大类(一)工业纯铁: C%≤0.0218%(二)钢: 含C%为0.0218%~2.11%1. 共析钢C%=0.77%2. 亚共析钢0.0218%< C%< 0.77%3.过共析钢0.77%< C%≤2.11%(三) 白口铸铁: 2.11%< C%< 6.69%1.共晶白口铁C%=4.3%2.亚共晶白口铁2.11%< C%< 4.3%3.过共晶白口铁4.3%< C%< 6.69%4.1.4 典型合金结晶过程1 工业纯铁室温组织为:α+Fe3C III2-1 共析钢室温组织为:珠光体P(F+Fe 3C)室温组织中组织组成物相对重量:W F = ×100% = 88% W Fe3C 共析= ×100%=12%0.026.690.776.69−−0.02-6.690.020.77−2-2 亚共析钢30钢的室温组织40钢的室温组织室温组织:F 初+P (F +Fe 3C )W P = ×100% = 51%W F 初= 1 -51% = 49%0.020.770.020.4−−2-3 过共析钢室温组织:Fe 3C Ⅱ+P (F +Fe 3C )1.2%C 钢的室温组织组成物相对重量为:Fe 3C Ⅱ%=×100%=7%,P %=1-7%=93%0.776.690.771.2−−3-1 共晶白口铸铁3-2 亚共晶白口铸铁3-3 过共晶白口铸铁Fe-Fe 3C组织组成物相图4.2 碳含量对组织性能的影响4.2.1 组织相:随着C %↑F ↓Fe 3C ↑组织:主要涉及碳化物的数量与形态: 少量Fe 3C III ,P ,二次Fe 3C II ,莱氏体基体4.2.2 含碳量对力学性能的影响F 为软相,Fe 3C 为硬脆相。
第四章 铁碳合金相图(全)
第四章 铁碳合金相图
主讲人: 刘 怿 凡
§4.1 固态合金的相结构
几个重要概念
1.合金
两种或两种以上的金属,或金属与非金属元素组成 的具有金属特性的物质
2.组元
组成合金的最基本的独立物质称为组元,可以是组 成合金的元素,也可以是化合物,有二元、三元等。
3.相
在合金中,凡成分相同、结构相同并以明显界面相 互分开的均匀组成部分,是合金中最基本的组成部分。
●白口铸铁硬度高、脆性大,不能切削加工,也不能锻造,但其耐 磨性好,铸造性能优良,适用于作要求耐磨、不受冲击、形状复杂 的铸件,例如拔丝模、冷轧辊、货车轮、犁铧、球磨机的磨球等。
§4.4 铁碳合金相图的应用
2.在铸造工艺方面的应用
根据Fe—Fe3C相图可以确定合金的浇注温度。浇注温度一般在 液相线以上50~100℃。
§4.1 固态合金的相结构
4.组织
用肉眼或显微镜观察到的金属材料的内部情景,包 括晶粒的大小、形状、相对数量和相对分布。“特殊形 态的微观形貌”
5.合金系
由相同组元配制的一系列成分不同的合金,组成一 个合金系统。
合金组织中的相结构决定合金的性能
§4.1 固态合金的相结构
合金的相结构
晶体结构、原子结构不同、组元相互作用不同——不同相结构
4.在热处理工艺方面的应用
Fe—Fe3C相图对于制订热处理工艺有着特别重要的意义。一些 热处理工艺如退火、正火、淬火的加热温度都是依据Fe—Fe3C相图 确定的。
§4.4 铁碳合金相图的应用
在运用Fe—Fe3C相图时应注意以下两点:
①Fe—Fe3C相图只反映铁碳二元合金中相的平衡状态,如含有其 它元素,相图将发生变化,与实际情况有较大差异。
第四章铁碳合金第一节铁碳合金系相图
第四章铁碳合金第一节铁碳合金系相图一、铁碳合金系组元的特性1、纯铁纯铁的同素异构转变金属在固态下,晶格类型随温度变化的现象。
重结晶δ-Fe。
α-Fe,γ-Fe2、碳石墨:六棱柱体0.142纳米0.34纳米耐高温导电润滑强度、硬度、塑性、韧性极低金刚石:正四面体共价键巴基球:60个碳原子12个五边形和20个六边形球面结构三维超导体非线性光学材料二、铁碳双重相图碳在铁碳合金中的存在形式固溶体渗碳体石墨Fe3C Fe2C FeCFe-Fe3C与Fe-G三、Fe-Fe3C相图的特征1、图中的基本相(1)铁素体:碳溶于α-Fe中形成的间隙固溶体。
Fα强度、硬度低,塑性、韧性高2、奥氏体:碳溶于γ-Fe中形成的固溶体。
Aγ强度、硬度不高,塑性很好3、渗碳体:铁和碳形成的金属化合物。
Fe3C4、δ固溶体:碳溶于δ -Fe中形成的间隙固溶体。
5、液相L第二节铁碳合金平衡结晶过程分析一、铁碳合金的分类(一)工业纯铁:C<0.0218%(二)钢共析钢:C=0.77%亚共析钢:0.0218%<C<0.77%过共析钢:0.77%<C<2.11%(三)白口铸铁共晶白口铸铁:C=4.3%亚晶白口铸铁:2.11%<C<4.3%过共晶白口铸铁:4.3%<C<6.69%第四节碳钢一、钢铁材料的生产过程1、碳钢中的常存元素碳钢中的常存元素是指除Fe、C外,因冶金必然带来的、且对性能有一定影响其它元素,在碳钢中一般指:Si、Mn 冶金时自然存在对性能无不利影响而保留S、P 冶金时难以彻底清除而存在于钢中一般钢中大致含量:Si 0.25~0.30%Mn 0.25~0.50%S <0.05% P <=0.045 三、碳钢的分类、牌号及应用第四节碳钢1、碳钢的分类:按含碳量分:低碳钢WC 0.25%中碳钢0.25%< WC 0.6%高碳钢WC>0.6%按质量分:普通碳素钢WP 0.045%WS 0.055%优质碳素钢WP 0.040%WS 0.040%高级优质碳素钢WP 0.035%WS 0.030%2、碳钢的牌号及应用(1)普通碳素结构钢:五类20种。
工程材料4-1铁碳相图
工程材料4-1铁碳相图ENGINEERINGMATERIALS工程材料及应用多媒体教案五邑大学机电工程学院第四章工程材料课件ppt第四章铁碳合金第一节铁碳合金系相图一、铁碳合金系组元的特性组元:纯铁碳1、纯铁纯铁的同素异构转变工程材料课件ppt工程材料课件ppt2.1.2同素异构转变许多金属在固态下只有一种晶体结构。
●许多金属在固态下只有一种晶体结构。
如铝、银等金属在固态时无论温度高低,如铝、铜、银等金属在固态时无论温度高低,均为面心立方晶格。
均为面心立方晶格。
钒等金属为体心立方晶格。
钨、钼、钒等金属为体心立方晶格。
有些金属在固态下,●有些金属在固态下,存在两种或两种以上的晶格形式。
的晶格形式。
如铁、钛等,在冷却或加热过程中,如铁、钴、钛等,在冷却或加热过程中,晶格形式会发生变化。
格形式会发生变化。
金属在固态下随温度的改变,金属在固态下随温度的改变,由一种晶格转变为另一种晶格的现象,称为同素异构转变同素异构转变。
为另一种晶格的现象,称为同素异构转变。
工程材料课件ppt工程材料课件ppt同素异晶体:同素异晶体:以不同晶体结构存在的同一种金属的晶体。
一种金属的晶体。
Fe、Fe、Fe都是纯铁的同素异δ-Fe、γ-Fe、α-Fe都是纯铁的同素异晶体。
晶体。
金属从一种固体晶态转变为另一种固体晶态的过程称为二次结晶重结晶。
二次结晶或晶态的过程称为二次结晶或重结晶。
金属的同素异构转变即是二次结晶或重结晶。
结晶。
工程材料课件ppt同素异构转变特点同素异构转变时也有过冷现象,●同素异构转变时也有过冷现象,放出潜热,有固定的转变温度。
潜热,有固定的转变温度。
新同素异构晶体也有形核和长大两个过程。
也有形核和长大两个过程。
导致金属体积发生变化,●导致金属体积发生变化,产生较大内应力。
例如γFe转变为转变为αFe时应力。
例如γ-Fe转变为α-Fe时,铁的体积会膨胀约1%。
可引起钢淬火时产生应力,会膨胀约1%。
可引起钢淬火时产生应力,可引起钢淬火时产生应力严重时会导致工件变形和开裂。
第4章 铁碳合金相图和碳钢
结合不易分辨。室温组织
为P。
珠光体
2、共析钢的结晶过程
室温下,珠光体中两相的 相对质量百分比是多少?
1 2
4L Q QL 6.69 0.77 88.5% 6.69 0.0008 Q Fe 3C 100% 88.5% 11.5%
石墨(G): Fe-─C合金中游离存在的碳; 石墨的强度、塑性、硬度都很低。 由于碳在-Fe中的溶解度很 小,因而常温下碳在铁碳合金 中主要以Fe3C或石墨的形式存 在。
钢中的渗碳体
渗碳体组织金相图
铸铁中的石墨
4、珠光体(P)
1)共析转变:恒温下,一种固相同时析出两种不同成分固 相的机械混合物(共析体)。
三、典型成分铁碳合金的结晶过程
(一)铁碳合金的分类(P46) 1、工业纯铁 Wc≤0.0218% 2、碳素钢 0.0218%< Wc≤2.11%
1)共析钢 Wc=0.77% 2)亚共析钢 0.0218%< Wc<0.77% 3)过共析钢 0.77%< Wc≤2.11%
3、白口铸铁 2.11% < Wc <6.69%
第四章 铁碳合金相图和碳钢 (P42)
第一节 纯铁﹑铁碳合金的组织结构 及其性能
第二节 铁碳合金相图
第三节 碳钢
第一节 纯铁﹑铁碳合金的组织结 构及其性能(P42)
一、纯铁及其同素异构转变
同素异构转变:物质在固态下,晶 体结构随温度变化的现象。 同素异构转变属于相变之一—固态 相变。 1、铁的同素异构转变: 铁在固态冷却过程中有两次晶体 结构变化,其变化为:
都是体心立方间隙固溶体。铁素体的 溶碳能力很低,在727℃时最大为 0.0218%,室温下仅为0.0008%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
强度: 对组织形态很敏感。故不仅与相构成有
关,更主要的与组成相的形态、分布即组织 构成有极大关系。 亚共析钢:
F先+P构成,均为韧性组织,强度与硬度 一致。随碳含量增加,钢中强韧的P组织数量 增加,而强硬度很低的F先不断下降,故合金 强度随硬度增大而增大;
锻后缓冷。尤大型锻件。
钢材横断面低倍形貌: 又称 “发裂”
钢材纵断面低倍形貌: 也称“白点”
3、氧: 氧化物夹杂物,如FeO、A12O3、SiO2、
MnO、CaO、MgO等,对钢的塑性、韧性、 疲劳强度等影响很大。
有害元素的利用: S、P在易切钢中的应用 P在炮弹钢中的应用。
2 钢编号
反映:成分、用途 (1)普通碳素结构钢
α+Fe3C
1148℃
K
4.3% C
6.69 S点―共析点
0.0008 Q
Fe
C%
727℃
Fe3C
0.77%
E点―γ的最大溶碳量 2.11% C P点―α的最大溶碳量 0.0218% C
三 铁碳合金的平衡结晶过程及组织 1 铁碳合金分类
按照铁碳相图,
L+δ A 1495℃
根据碳含量不同H 分为三大类:
0.0218
Q
Fe
铁碳相图
L+γ
2.11 E
L L +Fe3C D
4.3 1148℃ F C
727γ℃SA1时γ 发+7F生(2eα73℃P共C+析F转e3C变6).6:=9KP
α+常Fe温3C下的组织构成:
P
C%
Fe3C
不同放大倍数 下P的显微组织
亚共析钢(0.4%C) L→δ L+δ→γ
L+δ
40、45 :
——调质件
50、60、65 :
强度高、弹性极限高 ——弹性元件
(3) 碳素工具钢(0.65%~1.35%)
T7、T8: 一定韧性 ——冲头、锤子、凿子
T9、T10:硬度高、韧性适中; 钻头、手锯条、刨刀
T12(A)、T13: 硬度高、韧性低 锉、刮刀、量具
塑韧性好(ψ:70 %~80 %; Ak=160J ) —— 与工业纯铁同
(2)奥氏体(γ或 A ) 定义:C在面心立方γ-Fe中的间隙固溶体 溶碳量较大: 0.77% (727℃) ~2.11% (1148℃) 性能: 强硬度较低; 塑性较好, 变形抗力较低, 易于锻压成形; 顺磁性。 ——热加工(塑性变形) 相 ——合金化后成为室温基体相(无磁性);
渗碳体相:硬脆相;
珠光体组织的性能介与两者之间: 强韧
F
σb(MN/m2) 230
δ (%)
50
P
Fe3C
750 30
20
0
a k (J/cm2) 160
HB
80
30
0
200 800
硬度: ——非组织敏感性能 主要取决于相构成,包括组成相的硬度和
相对数量,而受它们的形态的影响相对较小。 相构成: F+Fe3C
居里点(顺磁性与 铁磁性转变温度)
——具有固态相变是钢铁材料能够热处 理的前提与原因之一
2 纯铁的显微组织
单相的α-Fe 3 纯铁(工业纯铁)的性能
强度低(σb=180~230MPa); 硬度低(50HBS~80HBS)、软; 塑性好(δ:30%~50%;
ψ:70 %~80 % ) 铁磁性 4 应用: 仪器仪表用软磁铁芯
解度曲线 K GS: 先共析α 6.69 相析出线
0.0008Q
Fe
C%
Fe3C
L+δ
J点―包晶点
A 1495℃
δ
B
L
HN J
L+γ
L +Fe3C D
1495℃ 0.17% C
T
γ
2.1 1E
4.3 C
1148℃ F
C点―共晶点
G α+γ 0.77 PS
α 0.0218
γ +Fe3C
A1 727 ℃
脱氧剂。 有益元素,碳钢中不超过0.8%, (1)固溶强化; (2)形成MnS,消除硫的有害影响。
(二)硅的影响 脱氧剂,有益元素,碳钢中含量不超过
0.5%, 固溶强化。
(三)硫的影响 有害元素,矿石和燃料带入。
以FeS夹杂物形式存在晶界上→ “热脆”, 原因:形成Fe+FeS共晶,熔点为989℃,
(0.06%~0.4%)——力性要求 Q195、Q215、Q235、Q255、Q275; Q235-A·F
与旧标准的对比: Q235≈A3 -----构件用钢
(2) 优质碳素结构钢(0.06%~0.70%) ——反应成分
08F、10、20 : 塑韧性、焊接性好 ——冷冲、焊接、渗碳件
25、30、35、 调质后综合机性好
塑韧性:
Fe3C极脆相,无塑、韧性;合金塑性变 形完全由 F 提供,随C%增高, F不断减少, 故塑韧性不断下降。
(三) 对工艺性能的影响 1 切削加工性能 材料的硬度太软,容易粘刀,切削热
大,影响表面粗糙度; 材料的硬度太硬, 刀具磨损严重。
钢的硬度为HB170~250时,切 削加工性能较好。
§1 铁碳合金与铁碳相图
铁碳合金——应用最广泛的合金 一 铁碳合金中的基本相和基本组织 (一) 纯铁的晶体结构与性能
1 纯铁冷却中晶体结构的变化:
1538℃
1394℃
912℃
L → δ-Fe → γ-Fe → α-Fe
bcc
fcc
bcc
—— 纯铁在冷却中经历两次同素异构转变
A4
A2(770℃)
A3
相构成:F+ Fe3C 组织构成: Fe3CⅡ+P
L→γ
γ1.0 →γ0.77 +Fe3CⅡ
γ
P +Fe3CⅡ
Fe3CⅡ
P
合金⑤ 共晶白口铁
1148℃发生共晶转变 1148 LC γE+ Fe3C
萊氏体 —— Ld
727
室温组织:
变态萊氏体—Ld′(P+ Fe3C +Fe3CⅡ)
合金⑥ 亚共晶白口铁
1 对相构成的影响
2 对组织构成的影响
(二) 对机械性能的影响
对性能影响的原因分析
1 碳含量碳钢机械性能 的影响及分析 总体:
随碳含量增加,碳 素钢的硬度线性提高而 塑韧性下降;强度先随 硬度的提高而提高,但 大约当C%>0.9%后, 强度反而下降;
原因:
与构成相或组织的性能有关。
铁素体相: 软韧相,
Wc=0.77%
(3)亚共析钢 Wc=0.0218%~0.77%
(4)过共析钢 Wc=0.77%~2.11%
(5)共晶白口铁 Wc=4.3%
(6)亚共晶白口铁 Wc=2.11%~4.3%
(7)过共晶白口铁 Wc=4.30%~6.69%
L+δ
A
δ
HN
1495℃ JB
T
G
γ
α+γ
P
0.S77
α 0.0218
1495℃
δ
B
L
J
L +Fe3C ℃ F
γ
E
C
G
α+γ
α
0.77
P
S
0.0218
γ +Fe3C
A1 727℃
K 6.69
0.0008 Q
Fe
α+Fe3C 常温下的组织构成:
C%
F+FeF3eC3ⅢC
合金②:共析钢
L+δ
A δ
1495℃
B
J
N
Tγ
G
α+γ
α
0.77
P
S
2 可锻性:低碳钢塑性好,可锻性 好。随含碳量增加,可锻性变差。
3 铸造性: 共晶成分的铸铁流动性好,缩孔
集中,偏析小,铸造性好; 液相线和固相线距离越大,流动
性差,分散缩孔多,偏析大,铸造性 越差。所以,钢的铸造性差。
§2 碳钢 一 杂质元素对钢性能的影响
少量的锰、硅、硫、磷及微量的氧、氢、 氮等元素,它们会影响到钢的质量和性能。 (一)锰的影响
却时氮因来不及析出而过饱和固溶在铁素体中。 在随后放置中逐渐以Fe4N形式析出,降低钢 的韧性。 ——称为蓝脆(因300℃上下应变时最易产生) ——蓝脆是造成船舶、桥梁灾难性事故的原 因之一。
消除方法:加Al形成AlN
2、氢 高温下氢大量溶于钢中。随温度下降,
氢在钢中的溶解度急剧降低,但氢来不及逸 出表面,过饱和氢逐渐在晶界等缺陷处偏聚, 并逐渐形成氢气,体积膨胀引起大的内应力, 导致微裂纹,这种氢使钢变脆的现象称为氢 脆——严重的缺陷。 消除方法:
(四)磷的影响 —— 有害杂质元素, —— 矿石和生铁等炼钢原料带入。
磷在钢中固溶强化作用很强,但同时剧 烈地降低钢的韧性,尤其是低温韧性,使韧 脆转变温度升高,称为“冷脆”。
韧 脆
韧性降低体现在两方面:
转 变
(1) 冲击功Ak↓;
温 度
(2) 韧脆转变温度Tk↑
脆性区 韧性区
(五)氮、氢、氧等微量气体的影响 1、氮 炼钢时氮通过炉气进入钢中。钢件快速冷
0.0008 Q
Fe
铁碳相图
2L.1E1+γ
L L +Fe3C D
4.3 C
1148℃ F
A1 γ +7F2e73℃C
K 6.69
α+Fe3C