求极限的13种方法
考研:求数列极限的十五种解法

求数列极限的十五种方法1.定义法;-N 定义:设{a .}为数列,a 为定数,若对任给的正数;,总存在正数 N ,使得当n . N 时,有a . -a | .;:「,则称数列{a .}收敛于a ;记作:l im a^a ,否则称{a .}为发散数列.例1 •求证: 1nim:a —1,其中a 0.证:当a =1时,结论显然成立.III当 a >1 时,记 a =a n_1,则 a >0 ,由 a =n+a $ K 1 +n a =1 + n(c^ _1),得_1 兰王,v‘ n彳 1 1 1任给E >0,则当n >口 =N 时,就有—1 ,即a 下一1 c 呂,即lim=1 .1综上, lim a n =1,其中 a >0 .例2 .求: 7nlim—.M^n!解: 变式: 7n_7 77 7 77 7 .7 7 771 .. n7--0 7丄丄n! 1 27 8 9 n —1 n 7! n 6! nn! 6! n2•利用柯西收敛准则由柯西收敛准则,数列 {x,}收敛.1丄当—时,令b 蔦,则b 1,由上易知:”呻1lim a nn丄-11 —1lim b 下n ::0,N 丄6!则当n . N 时, •••lim 7=0.f n!柯西收敛准则:数列{a n }收敛的充要条件是: 一;・0 , T 正整数N ,使得当n 、m • N 时,总有:|a n -a m I ■:"'成立.例3 •证明:数列x n 八§n当(n 才,2, 3,)为收敛数列. k 2±2证:X n -X m =sin(m 勺)-2m +当n • m • N 时,有有二丄「;6! n例4 .(有界变差数列收敛定理 )若数列{x }满足条件:(n =1, 2,),则称{人}为有界变差数列,试证:有界变差数列一定收敛.=0, y n 二 X n —X nJ —%1—X n 』"| X ? - X ’那么{y n }单调递增,由已知可知: {y n }有界,故{%}收敛, 从而0, -I 正整数N ,使得当n .m . N 时,有y n -y m :::;; 此即X n -X m _X n -X n 』"|X n 丄^/"| X m 1 - X m |八;由柯西收敛准则,数列{ X,}收敛.注:柯西收敛准则把 ;—N 定义中的a n 与a 的关系换成了 a n 与a m 的关系,其优点在于无需借用数列以外的数a ,只需根据数列本身的特征就可鉴别其敛散性.3 •运用单调有界定理单调有界定理:在实数系中,有界的单调数列必有极限.例5 •证明:数列 x n = J a +J a +''描 (n 个根式,a >0,n =1, 2, 11|)极限存在,并求l i ^X n • 证:由假设知X n = a • X n1 ;①用数学归纳法可证: X n 1 X, , ^ N :② 此即证{X,}是单调递增的.事实上,0 ::: Xn 1 • ..=a • Xn •;: J a • a • 1 :::、'( :a • 1)2二 a 1 ;由①②可知: {X n }单调递增有上界,从而 lim X^ =1存在,对①式两边取极限得:1二JFR ,解得: 1」1如和|/-1 4a(舍负);.・.limX 」1如.22F 24.利用迫敛性准则(即两边夹法)迫敛性:设数列{a n }、{b n }都以a 为极限,数列{C n }满足:存在正数 N ,当n • N 时,有:1*2 n "郭 n 2 +n 勺 n 2+2n 2+n +n)卫j <X ^n (n 1);从而lim 単』亠m 吵"2(n ②) 2(n 5 1) "一斗2 (n 2n) 2 r :2( n n 1)•••由迫敛性,得:朝人+冷…冷弓.注:迫敛性在求数列极限中应用广泛,常与其他各种方法综合使用,起着基础性的作用.证:令力 a^lC n 乞b ,则数列{C n }收敛,且l nim Cn =a .例6 .求:解:记:X n备?■生,则:....1 2 小“丘 n ; 21 n 2n 1亠 % - x ,| M5•利用定积分的定义计算极限黎曼积分定义:设为f(x)定义在[a, b ]上的一个函数,J 为一个确定的数,若对任给的正数g >0 ,总存在某一正数 5,使得对[a, b ]的任意分割T ,在其上任意选取的点集 {©},1X 」,x ],n只要—就有送f(©)织—J £ ■则称函数f(x)在[a, b ]上(黎曼)可积,数J 为f(x)在[a, b ]i J_.兀 .2兀 sin — sin —— lim------ + ---- - +"f 1n 1< 22n2n2n .sin — sinsin sin — sinsin si n — sin sin-n nn ____ n . ___ 亠 亠 n ... n nnnn注:数列极限为“有无穷多项无穷小的和的数列极限,且每项的形式很规范”这一类型问题时, 可以考虑能否将极限看作是一个特殊的函数定积分的定义;部分相关的数列极限直接利用积 分定义可能比较困难,这上的定积分,记作 bJ f (x)dx •=exp "li 琴瓦 ^In(1 +丄)卜exp(』ln(1 +x)dx )=exp(2ln2 —1例8.求: 解:因为:又:.兀亠• 2兀亠亠.n 兀sin — sin sin -n n nn +1 n 1 =lim — ■- y :n 1 二二 二 2 二 n 二 -—(sin — sin — ■ ■■-sin —) •兀丄• 2兀丄亠• nn sin sin sin 一 •- lim n nJnY :n -1■nsin同理:sin — si n — s in 」由迫敛性,得:例7.求:1112 n n+評+廿1+討2兀时需要综合运用迫敛性准则等方法进行讨论.6•利用(海涅)归结原则求数列极限(x )=A=对任何人必(n 宀),有 ”叮(Xn )=A •2=[im(1 •啤)]im(1 ^^1)^ ^lim(1 n^)^^lim(1 」)x =e ; lim(1 -1 -4)n=e • i : n n注:数列是一种特殊的函数,而函数又具有连续、可导、可微、可积等优良性质,有时我们可以借助函数的这些优良性质将数列极限转化为函数极限,从而使问题得到简化和解决. 7•利用施托尔茨(Stolz )定理求数列极限stolz 定理1: (__)型:若{y n }是严格递增的正无穷大数列,它与数列 {X n }一起满足:□0"m :x 二辭1,则有卩叹辭1,其中l为有限数,或;,或一stolz 定理2: (0)型:若{yn }是严格递减的趋向于零的数列, n —「::时,Xn —;0且lim X 1 Xn=],则有lim Xn=l ,其中I 为有限数,或•::,或-. n「y n1. -y n7%例11 .求:乍 2P 加:小n p愠 np+ (P^N) •解:令X n =1p ,2p 爲…圧-P , y n =n p1, n • N ,则由定理1,得:lim 1P 2P1 nP Rim (n P11)P P1,lim心 「 rn p1":( n1)p_ n p n]p1) n p_(P ⑴卩P 1注:本题亦可由 方法五(即定积分定义)求得,也较为简便,此处略.例9•求:lim n-<-.: 1e n-1 1 解:lim■n-s : 1-1 1例10 •计算: 解:一方面, 另一方面, 1= lim 学n T_on( lim 1 n 扛 (1 - n由归结原则: 1、n “ 1、n 2):::(1 ) > n(nr ');1 1(1 ——1)n (取 X n=(1 2丄_2_ 丁 )心丄—(1—)5-; nn2n n—1 ,n = 2, 3,…), 归结原则:lim f X十2n2由迫敛性,得:n'TnC :S n,求:Hm S n •n8.利用级数求和求数列极限由于数列与级数在形式上的统一性,有时数列极限的计算可以转化为级数求和,从而通过级 数求和的知识使问题得到解决.1 2n例13 .求:lim( 21) , (a >1). n: - a aa n1od解:令x =—,则|x | .;:1,考虑级数:V nx nan 1x而S(x)二x f (x)2;因此,原式(1—X)9.利用级数收敛性判断极限存在由于级数与数列在形式上可以相互转化,使得级数与数列的性质有了内在的密切联系,因此 数列极限的存在性及极限值问题,可转化为研究级数收敛性问题.例14.设焉0,X :^^ ^(n r O, 1, 2,),证明:数列{X :}收敛,并求极限2 +X :证:由x 0・0 ,可得: x:0(:巾 1 2, ),令 f(x ^22 x C),(x 0),例12 •设 解:令y =n 2,则{y n }单调递增数列,于是由定理2得:nE ln C ;lim S n = lim k~ 2—— j nY :2n 1n7 ln C n k1 -7 ln C := lim - n二 k 纟 k 土 2 2" (n 1) —nn” ln^^ k_on —k +1=lim n:■: 2n -1n +(n - 1)ln(n y ln kk -1=lim — n二2n 1(n 七)ln( n +1) — n In n -ln(n +1) = lim n:2n 1 .z n 1 nln( ) 1= lim :-n注:Stolz 定理是一种简便的求极限方法,特别对分子、分母为求和型,利用Stolz 定理有很大的优越性,它可以说是求数列极限的洛必达(L'Hospita )法则.lim an = lim =1,•••此级数是收敛的.令Q QS(x) nx n士二八'nx n1,再令n —f (x) =7 nx n」,x:: x::o f(t)dt ■ 0nt n1dt ■ x nn ±n 1f (x)二(产)二1 -x1 (1 -==S(a 」)=a(1-a 于2(1 亠x )=x :1,x : 0, (n =0,1,2,),oo考虑级数:.J |X : 1 -人; n 倉则 0 . f '(x)2(2 x)2由于X n 牛一X f (X n ) f (X nJf '(©(X n -X n£1X n —人iXn—人 1人一X n 1J?2所以, 级数"_人收敛,从而n£Q0壬(X n 牛-X n )收敛.n_0_令Sn=E (x kk_0_%牛一X k ) = X n 牛一人,叮臂^存在,二 n ^X n 丰 M^+U^S nJ (存在);对式子:X 」= 2(1+X),两边同时取极限:| =2(1知),2 *2 +I\ =^J 2或 I =―J2 (舍负);二 lim 人=J2 .n与、 1 1 i例15 .证明:lim (1In n )存在.(此极限值称为 Euler 常数)ii i i证:设 a n =i +— +—…+— —In n ,贝U a * —a*丄=—[in n —ln (n —i )];2 3 n n对函数y =1 n n 在[n -i, n ]上应用拉格朗日中值定理,可得:Inn —ln(n —1) - (0:::小1),10 •利用幕级数求极限例 16•设 sin x =sinx, sin x 二sin(sin n ±x) (n =2, 3, ■■- ),若 sinx 0 ,求:— i解:对于固定的x ,当n —•:时,单调趋于无穷,由stolz 公式,有:sin n x2nn ,1-1 lim nsin n x =lim lim — n 二 nn :”: 1n 1 [2 2 2sin n x sin n 1 x sin n x所以 a n —a “ 丄=一1 .n(n -1+0) In -1)2 'OC A因为J 收敛,由比较判别法知: n三(n -1)2心a n -a ni 也收敛,n士1 1所以l j m® 存在,即lim^Vi*1iln n)存在. n利用基本初等函数的麦克劳林展开式, 常常易求岀一些特殊形式的数列极限... 1= lim ——y : 1 ___ 1 sin 2(sin x) s in 2sin . x .2 2丄1 t sin t= lim lim 2 2 lim -“士一* t0 t -int(0 t^(t2-1t4 o(t4))sin t t 3t 4 -- t 6 o (t 6) 1 -- t 2 o (t 2) = lim 3 lim 33 .3t o (t )3 o (i )ii •利用微分中值定理求极限拉格朗日中值定理是微分学重要的基本定理,它利用函数的局部性质来研究函数的整体性质,其应用十分广泛•下面我们来看一下拉格朗日中值定理在求数列极限中的应用. 、 a a 例仃•求:limn 2(arctan arctan ) , (a =0).n二 n n 1解:设f (x ) =arctanx ,在[—a, a]上应用拉格朗日中值定理, n +1 n得:吩…(洽)="吟话),启,故当2知,J 。
极限计算的13种方法示例

极限计算的13种方法示例极限是微积分中的重要概念,它描述了函数在某一点附近的行为。
在计算极限时,我们可以利用一些常见的方法来求解。
下面将介绍13种常见的极限计算方法。
一、代入法代入法是极限计算中最简单的方法之一。
当我们需要计算一个函数在某一点的极限时,只需要将该点的横坐标代入函数中,求得纵坐标即可。
二、夹逼定理夹逼定理是一种常用的极限计算方法,它适用于那些难以直接计算的函数。
夹逼定理的核心思想是通过找到两个函数,它们在极限点附近夹住我们要求的函数,从而求得该函数的极限值。
三、无穷小量法无穷小量法是极限计算中常用的方法之一。
它利用了无穷小量的性质,将函数中的高阶无穷小量忽略不计,只考虑最高阶的无穷小量来计算极限。
四、洛必达法则洛必达法则是一种常用的极限计算方法,它适用于求解0/0型和∞/∞型的极限。
该法则的核心思想是将函数的极限转化为两个函数的导数的极限,然后通过求导计算得到极限值。
五、泰勒展开法泰勒展开法是一种常用的近似计算极限的方法。
它利用了泰勒级数展开的性质,将函数在某一点附近进行泰勒展开,然后通过截断级数来计算函数的极限。
六、换元法换元法是一种常用的极限计算方法,它适用于那些存在复杂变量关系的函数。
通过引入新的变量来替代原来的变量,可以简化函数的形式,从而更容易计算极限。
七、分子有理化分子有理化是一种常用的极限计算方法,它适用于那些含有根式的函数。
通过将根式的分子有理化,可以将原函数转化为一个分式,从而更容易计算极限。
八、分部积分法分部积分法是一种常用的极限计算方法,它适用于那些含有积分的函数。
通过将原函数进行分部积分,可以将原函数转化为一个更简单的函数,从而更容易计算极限。
九、换元积分法换元积分法是一种常用的极限计算方法,它适用于那些含有复杂变量关系的函数。
通过引入新的变量来替代原来的变量,可以简化函数的形式,从而更容易计算极限。
十、二重极限法二重极限法是一种常用的极限计算方法,它适用于那些含有多个变量的函数。
高等数学求极限的14种方法(完整资料).doc

【最新整理,下载后即可编辑】高等数学求极限的14种方法一、极限的定义1.极限的保号性很重要:设A x f x x =→)(lim 0,(1)若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (2)若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。
2. 极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。
要特别注意判定极限是否存在在:(1)数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。
常用的是其推论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ”(2)A x x f x A x f x =+∞→=-∞→⇔=∞→lim lim lim )()((3) A x x x x A x f x x =→=→⇔=→+-lim lim lim 0)((4) 单调有界准则(5)两边夹挤准 (夹逼定理/夹逼原理)(6) 柯西收敛准则(不需要掌握)。
极限)(lim 0x f x x →存在的充分必要条件。
是:εδεδ<-∈>∃>∀|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当二.解决极限的方法如下: 1.等价无穷小代换。
只能在乘除..时候使用。
例题略。
2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法)它的使用有严格的使用前提。
首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。
其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。
另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。
洛必达法则分为3种情况: (1)“00”“∞∞”时候直接用(2)“∞•0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。
例说中学数学极限问题解题常用十法

例说中学数学极限问题解题常用十法作者:韩勇来源:《中学教学参考·理科版》2012年第12期中学数学解决极限问题的基本思路是先通过恒等变形化归为极限的基本问题,然后用极限四则运算法则进行处理,其恒等变形是解决极限问题的最关键一步.本文将结合实例介绍解决极限问题常用恒等变形的十种方法.一、利用约分零因子法【例1】求极限(-4-1x-2 )解析:分母有零因式的,首先分子、分母约去零因子,化归为连续函数的极限问题去求解.(-4-1x-2 )(2--4 )-1x+2 =-14 .二、利用分子、分母同除以相同因子法【例2】求极限-解析:∞∞ 型且分子、分母都是以多项式给出的极限,可以通过分子、分母同除以相同因子再求极限.--三、利用分子或分母有理化法【例3】求极限(x-)-解析:求含根式的极限,其主要方法为分子或分母有理化化去无理式,再求极限.(x-)-()()-四、利用数列公式求和法【例4】求极限().解析:对于数列的和、差或积求极限,若项数有限时可以直接利用极限的四则运算求极限,若项数为无限项时,应先把无限项化成有限项,如先求出前n项的和(差)或积再求极限.()-(13 )n+11-13 ]=32 .五、利用组合公式法【例5】求极限-n.解析:∵,∴-1-(14 )-1 =-12 .六、利用函数连续性法【例6】求极限-解析:初等函数(一次函数、二次函数、指数函数、对数函数、三角函数)在其定义域内是连续的,即在定义域内每一点均连续.如果函数f(x)、g(x)在某一点处连续,那么函数f(x)±g(x)、f(x)·g (x)、f(x)g(x)(g(x)≠0)在点处连续,则在点处的极限等于处的函数值.因为x=0是函数f(x)-的一个连续点,所以--=0.七、利用配凑法【例7】已知(3x)=2 ,求极限(2x)x.解析:把问题结合已知条件,从整体考虑,通过恰当的拼凑、配凑,使问题的解决能用已知条件,从而达到比较容易解决的目的.因为(3x)=2 ,所以(3x)=6 ,则(2x)=6 ,即(2x)2x=16 ,所以(2x)x=13.八、利用换元法【例8】求极限-1x.解析:因为当x→0时,直接从101+x-1x 的分子、分母中约去x比较困难,而101+x-1x 中当x→0时也趋近于0,因而可以考虑整体换元法,即设y=101+x,则x=y10-1,所以当x→0时,等价于y→1.解析:--1y10-1 =九、利用讨论法【例9】求极限(a为常数且a>0).解析:当数列中含有不确定的参数时,需要对参数进行分类讨论求解,其依据是:(|q|1或q=-1);(q=1).(1)当0() =01+0=0;(2)当a>1时,;(3)当a=1时,十、利用特殊观察法【例10】求极限(1)!= ;(2)()= .解析:(1)利用n→∞时,n!变化比变多得多,即n!的变化速率比的变化速率快得多,故!相当于1∞=0 ,所以!=0.(2)利用三角函数性质-,得-,又因为(-|x|),所以()=0.求极限问题时恒等变形方法灵活多样,要对题目进行全面分析,合理、恰当地选择方法,整体思考,往往可以化繁为简,在解题中起到事半功倍的效果.。
极限的求法总结

a xn
=
a 0 xn
a
即 {xn} 有下界, 由此得
xn+1 −
xn
=
1 2
(
xn
+
a xn
)
−
xn
=
a − xn2 2 xn
0
既
xn 单调下降,因此
lim
x→+
xn
存在。
(2)设
lim
x→+
xn
=
,由(1)
a 0
对递推公式两端取极限,得 = 1 ( + 2 ) 2
解得 = a (舍去负值),所以 = a.
=
a0
(
lim
x→x0
x)n
+
a1
(
lim
x→x0
x) n−1
++
an
= a0 x0n + a1 x0n−1 + + an = Pn (x0 ).
2
极限的求法总结
例3. lim x2 + 5x − 6 x→−1 3x2 + 2
商的法则(代入法)
方法总结: 多项式函数与分式函数(分母不为0)用 代入法求极限;
极限的求法总结
极限的求法总结
简介:求极限方法举例,列举21种 求极限的方法和相关问题
1
1.代入法求极限
极限的求法总结
例1.lim(x2 + x − 2) x→2
例2.设有多项式Pn (x) = a0 xn + a1xn−1 + ... + an ,
求
lim
x → x0
Pn
(
求极限的13种方法

求极限的13种方法求极限的方法有很多种,以下列举了常见的13种方法和技巧,以帮助解决各种极限问题。
1.代入法:将极限中的变量代入表达式中,简化计算。
这通常适用于简单的多项式函数。
2.夹逼定理:当一个函数夹在两个趋向于相同极限的函数之间时,函数的极限也趋向于相同的值。
3.式子分解:通过将复杂的函数分解成更简单的部分,可以更容易地计算极限。
4.求导法则:使用导数的性质和规则来计算函数的极限。
这适用于涉及导数的函数。
5.递归关系:如果一个函数的递归关系式成立,可以使用递归关系来计算函数的极限。
6.级数展开:将函数展开成无穷级数的形式,可以使用级数的性质来计算函数的极限。
7.泰勒级数:对于可微的函数,可以通过使用泰勒级数来近似计算函数的极限。
8. 洛必达法则:如果一个函数的极限形式是$\frac{0}{0}$或$\frac{\infty}{\infty}$,可以使用洛必达法则来计算极限。
该法则涉及对分子分母同时求导的操作。
9.极限存在性证明:通过证明一个函数在一些点上的左极限和右极限存在且相等,可以证明函数在该点上的极限存在。
10.收敛性证明:对于一个序列极限,可以通过证明序列是有界且单调递增或单调递减的来证明其极限存在。
11.极限值的判断:根据函数的性质,可以判断函数在一些点上的极限是多少。
12.替换法:通过将变量替换为一个新的变量,可以使函数更容易计算极限。
13.反证法:通过假设极限不存在或不等于一些特定值,来推导出矛盾的结论,从而证明极限存在或等于一些特定值。
这些方法并非完整的极限求解技巧列表,但是它们是最常见和基本的方法。
在实际问题中,可能需要结合使用多种方法来求解复杂的极限。
求极限的13种方法
求极限的13种方法案场各岗位服务流程销售大厅服务岗:1、销售大厅服务岗岗位职责:1)为来访客户提供全程的休息区域及饮品;2)保持销售区域台面整洁;3)及时补足销售大厅物资,如糖果或杂志等;4)收集客户意见、建议及现场问题点;2、销售大厅服务岗工作及服务流程阶段工作及服务流程班前阶段1)自检仪容仪表以饱满的精神面貌进入工作区域2)检查使用工具及销售大厅物资情况,异常情况及时登记并报告上级。
班中工作程序服务流程行为规范迎接指引递阅资料上饮品(糕点)添加茶水工作要求1)眼神关注客人,当客人距3米距离时,应主动跨出自己的位置迎宾,然后侯客迎询问客户送客户注意事项15度鞠躬微笑问候:“您好!欢迎光临!”2)在客人前方1-2米距离领位,指引请客人向休息区,在客人入座后问客人对座位是否满意:“您好!请问坐这儿可以吗?”得到同意后为客人拉椅入座“好的,请入座!”3)若客人无置业顾问陪同,可询问:请问您有专属的置业顾问吗?,为客人取阅项目资料,并礼貌的告知请客人稍等,置业顾问会很快过来介绍,同时请置业顾问关注该客人;4)问候的起始语应为“先生-小姐-女士早上好,这里是XX销售中心,这边请”5)问候时间段为8:30-11:30 早上好11:30-14:30 中午好 14:30-18:00下午好6)关注客人物品,如物品较多,则主动询问是否需要帮助(如拾到物品须两名人员在场方能打开,提示客人注意贵重物品);7)在满座位的情况下,须先向客人致歉,在请其到沙盘区进行观摩稍作等待;阶段工作及服务流程班中工作程序工作要求注意事项饮料(糕点服务)1)在所有饮料(糕点)服务中必须使用托盘;2)所有饮料服务均已“对不起,打扰一下,请问您需要什么饮品”为起始;3)服务方向:从客人的右面服务;4)当客人的饮料杯中只剩三分之一时,必须询问客人是否需要再添一杯,在二次服务中特别注意瓶口绝对不可以与客人使用的杯子接触;5)在客人再次需要饮料时必须更换杯子;下班程序1)检查使用的工具及销售案场物资情况,异常情况及时记录并报告上级领导;2)填写物资领用申请表并整理客户意见;3)参加班后总结会;4)积极配合销售人员的接待工作,如果下班时间已经到,必须待客人离开后下班;1.3.3.3吧台服务岗1.3.3.3.1吧台服务岗岗位职责1)为来访的客人提供全程的休息及饮品服务;2)保持吧台区域的整洁;3)饮品使用的器皿必须消毒;4)及时补充吧台物资;5)收集客户意见、建议及问题点;1.3.3.3.2吧台服务岗工作及流程阶段工作及服务流程班前阶段1)自检仪容仪表以饱满的精神面貌进入工作区域2)检查使用工具及销售大厅物资情况,异常情况及时登记并报告上级。
求极限的方法总结
求极限的方法总结1.约去零因子求极限例1:求极限11lim41--→x x x【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。
【解】4)1)(1(lim 1)1)(1)(1(lim2121=++=-++-→→x x x x x x x x 习题:233lim 9x x x →-- 22121lim 1x x x x →-+-2.分子分母同除求极限例2:求极限13lim 323+-∞→x x x x【说明】∞∞型且分子分母都以多项式给出的极限,可通过分子分母同除来求。
【解】3131lim 13lim 311323=+-=+-∞→∞→x xx x x x x【注】(1) 一般分子分母同除........x .的最高次方;......且一般...x .是趋于无穷的......⎪⎪⎩⎪⎪⎨⎧=<∞>=++++++----∞→nm b a n m n m b x b x b a x a x a nnm m m m n n n n x 0lim 011011习题 3232342lim 753x x x x x →∞+++-n 1+13lim 3n n n n n +→∞++(-5)(-5)nn nn n 323)1(lim++-∞→3.分子(母)有理化求极限例1:求极限)13(lim 22+-++∞→x x x【说明】分子或分母有理化求极限,是通过有理化化去无理式。
【解】13)13)(13(lim)13(lim 22222222+++++++-+=+-++∞→+∞→x x x x x x x x x x132lim22=+++=+∞→x x x例2:求极限30sin 1tan 1limx xx x +-+→【解】x x x xx x x x x x sin 1tan 1sin tan lim sin 1tan 1lim3030+-+-=+-+→→41sin tan lim 21sin tan limsin 1tan 11lim30300=-=-+++=→→→x x x x x x xx x x x 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子...........是解题的关键习题:lim1x x →∞+1213lim1--+→x x x4.用函数的连续求极限(当函数连续时,它的函数值就是它的极限值...................) 22034lim 2x x x x →+++ 【其实很简单的】5.利用无穷小与无穷大的关系求极限例题3x → 【给我最多的感觉,就是:当取极限时,分子不为0而分母为0时 就取倒数!】6. 有界函数与无穷小的乘积为无穷小例题sin limx x x →∞ , arctan limx xx →∞7.用等价无穷小量代换求极限【说明】(1)常见等价无穷小有:当0→x 时,~)1ln(~arctan ~arcsin ~tan ~sin ~x x x x x x +1e x-,()abx ax x x b~11,21~cos 12-+-;(2) 等价无穷小量代换,只能代换极限式中的因式..; (3)此方法在各种求极限的方法中应作为首选.....。
(整理)几种求极限方法的总结
几种求极限方法的总结摘 要 极限是数学分析中的重要概念,也是数学分析中最基础最重要的内容.通过n s 对求极限的学习和深入研究,我总结出十二种求极限的方法.关键词 定义 夹逼定理 单调有界 无穷小 洛必达 泰勒公式 数列求和定积分 定积分 数列[]1根据极限的定义:数列{n x }收敛⇔∃a,ε∀〉0,∃N N ∈+,当n 〉N 时,有n x -a 〈ε. 例1 用定义证明11lim=+∞→n nn证明:0,ε∀>要使不等式11-+n n =11n ε<+成立:解得n 11ε>-,取N=⎥⎦⎤⎢⎣⎡-11ε,于是0,ε∀>∃ N=⎥⎦⎤⎢⎣⎡-11ε,n N ∀>,有1,1n n ε-<+即11lim =+∞→n n n2利用两边夹定理求极限[]1例2 求极限⎪⎪⎭⎫ ⎝⎛+++++++∞→n n n n n n 22221312111lim 解:设=n c nn n n +++++22212111则有:2n cn n>=+同时有:21nc n<=+,于是nc<<1nn <=+>=. 有11n nnc n n<<<<=+ 已知:11lim=+∞→n n n ∴⎪⎪⎭⎫ ⎝⎛+++++++∞→n n n n n n 22221312111lim =1 3利用函数的单调有界性求极限[]1实数的连续性定理:单调有界数列必有极限.例3 设a x =1,a a x +=2, a a a x n +++= (n=1,2, )(0a >),求n n x ∞→lim解:显然{}n x 是单调增加的。
我们来证明它是有界的.易见12x a x +=,23x a x += , 1-+=n n x a x ,从而 12-+=n n x a x ,显然n x 是单调增加的,所以2n n x a x <+两段除以n x ,得 1n nax x <+ 1+≤≤⇒a x a n 这就证明了{}n x 的有界性 设l x n →,对等式12-+=n n x a x 两边去极限,则有∞→-∞→+=n n n n x a x 12l i m l i m⇒a l l +=2解得214++=a l l 4利用无穷小的性质求极限[]2关于无穷小的性质有三个,但应用最多的性质是:若函数f(x)(x )a →是无穷小,函数g(x)在U (),ηa 有界,则函数f(x)*g(x)(x )a →是无穷小. 例 求极限)cos 1(cos lim x x x -++∞→解4 )221sin()221sin(2cos 1cos xx x x x x -+++-=-+ 2)221sin(2≤++-xx 而)1(21221)221sin(0x x x x xx ++=-+≤-+≤ 而,0)1(21lim=++∞→x x x 故 02_1lim=+∞→xx n 5 应用“两个重要极限”求极限[]2e xx x x x x =+=∞→→)11(lim ,1sin lim例5求)1cos 1(sin lim xx x +∞→解2sin 1222sin 211112(sin cos )(sin cos )(1sin )xx xx xx x x x x ⎡⎤+=+=+⎢⎥⎣⎦∴原式=e xxxxx =+∞→22sin 2sin 1)2sin 1(lim6利用洛必达法则求极限[]2例6求xx x 1sin arctan 2lim -∞→π()00 解: xx n 1sin arctan 2lim -∞→π=11cos111lim 22=-+-∞→x xx n 例7 求极限xx x 3tan tan lim2π→()∞∞解 xxx 3tan tan lim2π→= 3262cos 26cos 6lim 2sin 6sin lim sin cos 63sin 3cos 6lim )(cos 3)3(cos lim )3(tan )(tan lim 222232,,2=--===--==→→→→→x x x x x x x x x x x x x x x x x πππππ7利用泰勒公式求极限[]2例8:求极限 xx x x n cos sin 1lim2-+∞→解 ∵xx x x cos sin 12-+中分子为2x ,∴将各函数展开到含2x 项。
考研数学:求极限的16种方法1500字
考研数学:求极限的16种方法1500字极限是数学中的重要概念,是解析数学中很多问题的基础。
求极限的方法有很多种,下面就介绍一下求极限的16种常用方法。
1. 直接代入法:对于某个函数在某个点的极限,如果可以直接将极限点代入函数中计算出极限值,则可以使用直接代入法。
2. 连续性法则:如果一个函数在某个点处连续,那么该点的极限值就是函数在该点的函数值。
3. 无穷小量的性质:利用无穷小量的性质对极限进行求解,例如利用已知的极限,对函数进行分子分母的化简、展开等操作。
4. 夹逼法:当一个函数夹在两个函数之间时,利用两个函数的极限值可以求出该函数的极限值。
5. 单调有界原理:对于单调有界的函数,可以通过证明上下确界得到极限值。
6. 极限的四则运算法则:对于两个函数的极限,可以利用四则运算法则求出其和、差、积、商的极限。
7. 换元法:通过对函数进行变量替换,将原来的极限问题转化为更简单的问题求解。
8. 泰勒级数展开法:对于某些函数,可以利用泰勒级数展开的性质,将函数进行级数展开,然后求出极限值。
9. 符号常用极限法:对于一些特殊的函数,例如正弦函数、指数函数等,可以通过符号常用极限值来求出其极限。
10. 隐函数极限法:对于隐函数的极限问题,需要通过隐函数求导的方式来求出极限值。
11. 单调列法:对于一个递增(递减)且有上(下)界的序列,可以通过极限的单调列法求出极限。
12. Stolz定理:当一个数列为无穷大与无穷小的极限的商时,可以利用Stolz定理求出极限。
13. 递推法:对于递归定义的数列,可以通过递推的方式求出极限。
14. 分部积分法:对于一些函数的积分,可以通过分部积分法转化为极限问题求解。
15. L'Hospital法则:对于一些不定型的极限问题,可以通过L'Hospital法则来求出其极限。
16. 堪培拉法则:对于一些含有多个变量的函数,可以利用堪培拉法则求出其极限。
以上是求解极限的16种常用方法,掌握这些方法可以更好地应对极限求解问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求极限的13种方法(简叙)龘龖龍极限概念与求极限的运算贯穿了高等数学课程的始终,极限思想亦是高等数学的核心与基础,因此,全面掌握求极限的方法与技巧是高等数学的基本要求。
本篇较为全面地介绍了求数列极限与函数极限的各种方法,供同学参考。
一、利用恒等变形求极限利用恒等变形求极限是最基础的一种方法,但恒等变形灵活多变,令人难以琢磨。
常用的的恒等变形有:分式的分解、分子或分母有理化、三角函数的恒等变形、某些求和公式与求积公式的利用等。
例1、求极限 )1...()1)(1(22lim na a a n +++∞→ ,其中1<a分析 由于积的极限等于极限的积这一法则只对有限个因子成立,因此,应先对其进行恒等变形。
解 因为)1...()1)(1(22na a a +++ =)1...()1)(1)(1(1122na a a a a +++-- =)1...()1)(1(11222na a a a ++-- =)1(1112+--n a a当∞→n 时,,21∞→+n 而1<a ,故从而,012→+n a)1...()1)(1(22lim naa a n +++∞→=a-11 二、利用变量代换求极限利用变量代换求极限的主要目的是化简原表达式,从而减少运算量,提高运算效率。
常用的变量代换有倒代换、整体代换、三角代换等。
例2、求极限11lim 1--→nmx x x ,其中m,n 为正整数。
分析 这是含根式的(00)型未定式,应先将其利用变量代换进行化简,再进一步计算极限。
解 令11,1→→=t x x t mn时,则当原式=mnt t t t t t t t t t t t m m n n m m n n t m n t =++++++=+++-+++-=----------→→1...1...)1...)(1()1...)(1(lim 11lim 2121212111 三、利用对数转换求极限利用对数转换求极限主要是通过公式,ln v u v e u ⋅=进行恒等变形,特别的情形,在(∞1)型未定式时可直接运用v u v e u ⋅-=)1( 例3、求极限ox →lim xx 2csc )(cos解 原式=ox →lim 21sin sin 21lim csc )1(cos 2202---==→ee e xx xx x四、利用夹逼准则求极限利用夹逼准则求极限主要应用于表达式易于放缩的情形。
例4、求极限∞→n lim n nn !分析 当我们无法或不易把无穷多个因子的积变为有限时,可考虑使用夹逼准则。
解 因为n n n n n n n nn o n1121!≤⋅-⋅⋅=≤, 且不等式两端当趋于无穷时都以0为极限,所以∞→n lim n nn !=0 五、利用单调有界准则求极限利用单调有界准则求极限主要应用于给定初始项与递推公式)(1n n x f x =+的数列极限。
在确定∞→n lim n x 存在的前提下,可由方程A=f(A)解出A ,则∞→n lim nx =A 。
例5、设)3(41,0,0311nn n x ax x x a +=>>+,(n=1,2,…),求极限∞→n limn x 。
分析 由于题中并未给出表达式,也无法求出,故考虑利用单调有界准则。
解 由)3(41,0,0311nn n x ax x x a +=>>+易知n x >0。
根据算术平均数与几何平均数的关系,有44331)(41a x a x x x x a x x x x nn n n n n n n n =≥+++=+所以,数列n x 有下界4a ,即对一切n >1,有n x ≥4a又 1)3(41)3(4141=+≤+=+aax a x x n n n 所以,1n n x x ≤+即数列单调减少。
由单调有界准则知数列n x 有极限。
现设∞→n lim n x =A,则由极限的保号性知A ≥4a >0. 对式子)3(4131n n n x a x x +=+两边同时取极限得)3(413AaA A += 解得 A=4a ,即∞→n lim n x =4a (已舍去负根) 六、利用等价无穷小求极限利用等价无穷小求极限是求极限极为重要的一种方法,也是最为简便、快捷的方法。
学习时不仅要熟记常用的等价无穷小,还应学会灵活应用。
同时应注意:只有在无穷小作为因式时,才能用其等价无穷小替换。
例6、求极限xx x ln )1sin(sin lim1-→分析 此题中sin(x-1),sinsin(x-1),lnx 均为无穷小,而均作为因式,故可以利用等价无穷小快速求出极限。
解 当1→x 时,1~)11ln(ln ,1~)1sin(~)1sin(sin ,01--+=---→-x x x x x x x 则故原式=111lim1=--→x x x 七、利用导数定义求极限利用导数定义求极限适用于ba b x f a x f b a -+-+→-)()(lim000)(型极限,并且需要满足)('0x f 存在。
例7、求n n an a ]sin )1sin([lim +∞→,其中10<<a 。
分析 初步可判断此题为(∞1)型未定式,先通过公式,ln v u v e u ⋅=进行恒等变形,再进一步利用导数定义求得极限。
解 n n an a ]sin )1sin([lim +∞→=]sin )1sin(ln[lim an a n n e +⋅∞→而 n an a an a n n n 1sin ln )1sin(ln lim ]sin )1sin(ln[lim -+=+⋅∞→∞→由导数的定义知,nan a n 1sin ln )1sin(ln lim -+∞→表示函数lnsinx 在x=a 处的导数。
即a x an a n ax n cot ]'sin [ln ]sin )1sin(ln[lim ==+⋅=∞→。
八、利用洛必达法则求极限利用洛必达法则求极限适用于∞∙∞∞0,,00型未定式,其它类型未定式也可通过恒等变形转化为∞∙∞∞0,,00型。
洛必达法则使用十分方便,但使用时注意检查是否符合洛必达法则的使用条件。
例8、求极限203cos cos limx xx x -→解 原式=423cos 9cos lim 23sin 3sin lim 00=+-=+-→→xx x x x x x 注:连续两次使用洛必达法则九、利用微分中值定理求极限利用微分中值定理求极限的重点是学会灵活应用拉格朗日中值定理,即),),(')()(b a f ba b f a f (其中∈=--ξξ。
例9、求极限xx e e xx x sin lim sin 0--→ 分析 若对函数x x f e (=),在区间[]x x ,sin 上使用拉格朗日中值定理 则:),sin ,sin sin x x e xx e e xx (其中∈=--ξξ 解 由分析可知),sin ,sin sin x x e xx e e xx (其中∈=--ξξ 又 0,sin ,0sin 0→<<→→ξξ故时,有x x x x所以x x e e xx x sin lim sin 0--→=1lim 0=→ξe x 十、利用泰勒公式(麦克劳林公式展开式)求极限利用泰勒公式(麦克劳林公式展开式)求极限是求极限的又一极为重要的方法。
与其它方法相比,泰勒公式略显繁琐,但实用性非常强。
例10、求极限xx xx x sin tan arcsin arctan lim0--→分析 若使用洛必达法则,计算起来会相当麻烦;同时分子并非两因式之积,等价无穷小也不适用,此时可以考虑用泰勒公式。
解 )(6arcsin ),(3arctan 03333x o x x x x o x x x x +-=+-=→时,由于当321~)cos 1(tan sin tan x x x x x -=- 故 原式=121)(21lim 21)](6[)](3[lim 3330333330-=+-=+--+-→→x x o x x x o x x x o x x x x 十一、利用定积分的定义求极限由定积分的定义知,如果f(x)在[]b a ,上可积,那么,我们可以对[]b a ,用特殊的分割方法(如n 等分),并在每一个子区间特殊地取点(如取每个子区间的左端点或右端点),所得积分和的极限仍是f(x)在[]b a ,上的定积分。
所以,如果遇到某些求和式极限的问题,能够将其表示为某个可积函数的积分和,就能用定积分来求极限。
这里关键在于根据所给和式确定被积函数和积分区间。
例11、求极限))1(sin 2sin(sin 1lim nn n n nn πππ-+++∞→解 从和式))1(sin 2sin (sin 1n n n n n πππ-+++ 看,若选被积函数为x πsin ,则因分点[].101011,,故积分区间为与时分别趋于当与∞→-n nn n[]从而有等分,则有,将,110nx i =∆:原式=))1(sin 2sin (sin 1lim n n n n n n πππ-+++∞→ =[]ππππ2cos 1sin 110=-=⎰o x dx x 十二、利用级数收敛的必要条件求极限级数具有以下性质:若级数∑∞=1n u n 收敛,则0lim =∞→n n u 。
所以对于某些极限),(lim n f n ∞→可以将函数f(n)作为级数∑∞=1n f(n)的一般项,只需证明级数∑∞=1n f(n)收敛,便有),(lim n f n ∞→=0.例12、求极限2)!(lim n n nn ∞→解 令有对于正项级数,u ,)!(1n 2∑∞==n nn n n u 01lim 11)11(lim )1()1(lim )!())!1(()1(lim u u lim 2211=+=++=++=⋅++=∞→∞→∞→+∞→+∞→n e n n n n n n n n n n n n n n n n n n nn n 由比值审敛法知,级数,10u ulim 1<=+∞→nn n 收敛。
∑∞=1n u n 故2)!(lim n n n n ∞→=0 十三、利用幂级数的和函数求极限当数列本身就是某个级数的部分和数列时,求该数列的极限就成了求相应级数的和。
此时常常可以辅助性地构造一个函数在某点的值。
例13、求极限)333321(lim 12-∞→++++n n n 分析 若构造幂级数∑∞=-1n 1n nx ,则所求极限恰好是此级数的和函数在31=x 处的值。
解 考虑幂级数∑∞=-1n 1n nx ,由于 )时,该级数收敛。