脱氮工艺流程图

合集下载

生物脱氮除磷工艺演示过程

生物脱氮除磷工艺演示过程

生物脱氮除磷工艺演示过程氮和磷是用于废水处理的重要的微生物增长要素。

因此,在所有的生物处理过程中在一定程度上都会出现脱氮除磷。

细胞中含有约百分之十二的氮和百分之二的磷。

处理系统以营养代谢为目的,所谓的生物脱氮除磷,从本质上说组成的两个进程为:生物脱氮和强化生物除磷(EBPR )。

生物脱氮生物脱氮反应的关键过程是硝化和反硝化作用,如(图1 )。

其他相关的反应,包括氨化(有机转换氮氨)和氮素吸收的细胞生长。

硝化硝化是氨氧化成硝酸盐和亚硝酸盐。

参与反应的关键生物体是硝化和亚硝化细菌。

自养微生物通过氧化无机氮化合物获得能源:细胞生长的主要碳源是二氧化碳。

因此,有机质(BOD)是硝化反应的一个先决条件。

亚硝酸盐的积累通常不会在一个完全硝化系统中遇到,因为硝化是越来越慢,但有一些迹象表明,操作无法进行,亚硝酸盐对硝酸的转换可能成为限制因在废水的温度超过25温度到30C素,导致需要增加氯气进行消毒。

据了解,生物体可以通过硝化和反硝化调解硝化过程,因此,氨氧化细菌长期提供基板在BNR系统,硝化过程的控制因素有两个:(1 )AOBs缺乏功能多样性。

他们约占2%的微生物质量。

(2 )AOBs的敏感性要求严格的环境条件。

硝化的影响因素如下:与异养微生物相比,硝化细菌增长速度缓慢(BOD—异养微生物),可靠的硝化作用需要更长的固体停留时间。

硝化与废水温度直接相关。

•温度:硝化反应的速率随温度上升到一定点(30℃至35℃),然后下降。

具体地说,温度由20℃降至10℃,硝化反应将减少约百分之三十,只有提供三倍的MLSS,才能达到正常的出水氨氮浓度,设计系统的硝化作用通常可以应付对氨氮限制。

•溶解氧(DO ):硝化需氧量约4.6mgO2\mg NH4-N。

当溶解氧下降到远低于2 mg / L的延长时间,硝化作用将受到抑制。

•碱度和pH值:硝化作用每氧化1毫克的NH4 – N需要7.1毫克的碱(碳酸钙)。

如果进水碱度不足,硝化作用将受到抑制。

生物脱氮除磷工艺共183页PPT

生物脱氮除磷工艺共183页PPT
含有机氮的农药有:氢基甲酸酯类、酰胺类、脲类等。 在土壤里,会随雨水冲淋、农业排水和地表径流排入水体 中。
此外农村的家畜养殖场、牧场中的家畜废弃物、排泄物 也是农业污水中氮的来源。
生物脱氮除磷工艺
本章目录
第1节 水体中的氮、磷
二.水体中的磷 1. 水体中磷的形态
主要以游离磷和磷酸盐形式存在于污水中。 2.水体中磷的危害
3.水体中氮的来源
水体中的氮其来源是多方面的,主要由城市生活污水、工 业废水和农溉污水三方面。此外自然界的天然固氮也是一 个方面,通过雷电固定大气中的氮就占天然固氮的15%。 大气中的氮通过下雨会降解到水体,水体本身尚有许多能 固氮的微生物,如某些固氮菌和蓝绿藻,在光照充足的情 况下能将大气中的氮固定下来并进人水体。
足量氯气将废水中的有机物及其它易氧化的物质氧化后, 氯与氨离子产生反应最终形成氮气。
N 4 H O N 2 C C H H l lH 2 O
2 N 2 C H H l O N 2 3 C C H 2 l O l3 H
每mgNH4+-N被氧化为氮气,至少需要7.5mg的氯, 实际上为保证反应的完全进行,加氯应略过量,折点的 CL2与NH4+-N的重量比在8:1~10:1。由于加氯略过量, 所以常用SO2或活性炭来脱除余氯:
氨氮的吹脱过程包括将废水的PH调整到10.5~11.5,然
后再提供足够的空气并使气水接触从溶液中将氨气吹出,
通常利用苛性碱或石灰来调整PH。
进水
石灰或 石灰乳
调节pH值
沉淀池 排泥


出水

吹脱法脱氨处理流程
生物脱氮除磷工艺
本章目录
第2节 氮磷的物化处理法
2、折点加氯法去除氨氮 通过投加足量氯气于废水中使氨氮氧化成氮气。在投加

一、同步脱氮除磷的bardenpho工艺流程图各段的作用(精)

一、同步脱氮除磷的bardenpho工艺流程图各段的作用(精)

一、同步脱氮除磷的bardenpho工艺流程图?各段的作用?这个是四段的,五段的是在前面再加一个厌氧池,加强除磷能力。

(1)缺氧池1:首先是脱氮,通过好氧1的内循环去除含硝酸盐的氮;其次是回流剩余污泥释放磷;(2)好氧池1:首先去除BOD5,其次是硝化,但是由于BOD浓度还比较高,产生的硝酸盐很少;然后是聚磷菌对磷的吸收,但是由于硝酸盐的存在,吸收磷的效果也不好;(3)缺氧池2:脱氮和释磷,以脱氮为主;(4)好氧池2:吸收磷;进一步硝化;进一步去除BOD5;(5)二沉池:泥水分离,污泥回流缺点:工艺复杂,反应器单元多,运行繁琐且成本高。

参考文献:排水工程.张自杰二、生物除磷机理?厌氧:PAOs利用体内聚磷酸盐为能源快速吸收乙酸,并以PHB和其它聚羟基羧酸(PHAs)的形式储存起来,同时将聚磷酸盐分解产生的溶解性无机磷酸盐释放出来;好氧:PAOs以PHAs为能源用于生长,并摄取废水中的溶解性无机磷酸盐,以聚磷酸盐的形式储存起来。

好氧和厌氧能量动力学的区别:摄取的磷比释放的磷多。

活性污泥典型的含磷量:P/VSS=1.5%-2.0%;当PAOs存在时,P/VSS增至5%-7%,有时高达12%-15%参考文献:废水生物处理.化学工业出版社三、asm1,asm2适合的工艺?asm1里面各个参数的意义?1986年推出活性污泥1号模型(ASM1):包括去除污水中有机碳以及硝化和反硝化等过程。

1995年推出活性污泥2号模型(ASM2):包含了脱氮和生物除磷处理过程。

1999年ASM2被拓展为ASM2d,将反硝化聚磷菌包含在内。

1998年推出了活性污泥3号模型(ASM3):所包含的主要反应过程和ASM1相同。

是对ASM1的改进,更适合于实际应用。

模型的组分1.可溶性惰性有机物S I2.易生物降解有机底物S S3.颗粒性惰性有机物X I4.慢速可生物降解有机底物X S5.活性异养菌生物量X B.H6.活性自养菌生物量X B.A7.微生物衰减产生的颗粒性产物X P8.溶解氧S O9.硝态氮S NO10氨氮S NH11.溶解性可生物降解有机氮S ND12.颗粒性可生物降解有机氮X ND13碱度S alk参考文献:李咏梅的ppt。

A2O工艺的概述及原理

A2O工艺的概述及原理

A20工艺的概述及原理Ao 是Anaeroxic-Anoxic-Oxic 的英文缩写,Ao 生物脱氮除磷工艺是传统活性污泥工艺、 生 物硝化及反硝化工艺和生物除磷工艺的综合。

工作原理其工艺流程图如下图, 生物池通过曝气装置、 推进器(厌氧段和缺氧段)及回流渠道的布置分 成厌氧段、缺氧段、好氧段。

A2O 工艺流程图 在该工艺流程内,BOD SS 和以各种形式存在的氮和磷将一一被去除。

A 2。

生物脱氮除磷系 统的活性污泥中,菌群主要由硝化菌和反硝化菌、 聚磷菌组成。

在好氧段, 硝化细菌将入流中的氨氮及有机氮氨化成的氨氮,通过生物硝化作用,转化成硝酸盐;在缺氧段,反硝化细 菌将内回流带入的硝酸盐通过生物反硝化作用, 转化成氮气逸入到大气中, 从而达到脱氮的目的;在厌氧段,聚磷菌释放磷,并吸收低级脂肪酸等易降解的有机物;而在好氧段,聚磷 菌超量吸收磷,并通过剩余污泥的排放,将磷除去。

工艺特点(1)厌氧、缺氧、好氧三种不同的环境条件和种类微生物菌群的有机配合,能同时具有去除 有机物、脱氮除磷的功能。

⑵在同时脱氧除磷去除有机物的工艺中,该工艺流程最为简单,总的水力停留时间也少于 同类其他工艺。

(3) 在厌氧一缺氧一好氧交替运行下, 丝状菌不会大量繁殖,SVI —般小于100,不会发生污■F泥膨胀。

(4)污泥中磷含量高,一般为2. 5%以上。

A2O工艺各反应池的单元功能及其存在的问题各反应器的功能1、厌氧反应器,原污水与从沉淀池排出的含磷回流污泥同步进入,本反应器主要功能是释放磷,同时部分有机物进行氨化;2、缺氧反应器,首要功能是脱氮,硝态氮是通过内循环由好氧反应器送来的,循环的混合液量较大,一般为2Q(Q为原污水流量);3、好氧反应器一一曝气池,这一反应单元是多功能的,去除BOD硝化和吸收磷等均在此处进行。

流量为2Q的混合液从这里回流到缺氧反应器。

4、沉淀池,功能是泥水分离,污泥一部分回流至厌氧反应器,上清液作为处理水排放。

生物脱氮PPT(精品)

生物脱氮PPT(精品)

---------------------------------------------------------------最新资料推荐------------------------------------------------------生物脱氮PPT(精品)生物脱氮 PPT生物脱氮原理氨化作用:有机物中的氮转化为氨气。

(不挑地方、厌氧和好氧均可实现、受 pH 变化影响小)硝化作用:氨氮转化为亚硝酸盐、硝酸盐的过程。

(三角转换图) 1、严格的好氧专性化自养菌 2、增殖较缓慢,需要较长的污泥龄 3、只是改变的氮的形态,没有改变水中氮的含量反硝化作用:硝态氮转化为氮气。

缺氧条件下,以有机物(碳源)为电子供体,硝酸盐为电子受体。

同化反硝化合成菌体的组成部分异化反硝化转化为氮气(占70%-75%)生物脱氮工艺 1 传统活性污泥法(三级活性污泥法)(工艺流程图)由 Barth 开创,以氨化、硝化和反硝化三级去除氮。

优点:各类菌种的生长条件适宜反应速度快转化彻底缺点:设备多、反硝化阶段需外加碳源一般工业应用不多传统活性污泥法的改进:1 / 3两级生物脱氮系统(工艺流程图) 2 缺氧-好氧活性污泥脱氮工艺(A/O 法)(工艺流程图)特点:反硝化反应器放于系统之首,应用广泛。

优点:流程简单、装置少、无需外加碳源,工艺建设费用和运行费用较低。

缺点:本工艺出水来自硝化反应器,出水中含有一定浓度的硝酸盐。

如果沉淀池运行不当,在沉淀池内会发生反硝化反应,使污泥上浮,处理水质变差。

工艺脱氮率很难达到 90%。

3SBR 工艺(序列间歇式活性污泥法 Sequencing Batch Reactor Activated Sludge Progress )(工艺流程图)五个阶段:进水期、反应期、沉淀期、排水期、闲置期特点:五个阶段在同一个设有曝气或搅拌装置内完成。

省去了污泥回流设施和沉淀池。

优点:1、工艺流程简单、运转灵活、基建费用低2、处理效果好,出水可靠3、具有较好的脱氮除磷效果4、污泥沉降性能好5、对水质水量变化适应性强缺点:1、反应容积利用率低2、水头损失大3、不连续出水,要求后续构筑物容积较大4、峰值需氧量高5、设备利用率低适合---------------------------------------------------------------最新资料推荐------------------------------------------------------ 小型污水处理厂,不适用大水厂(需要设多个 SBR 池并联运行)SBR 运行时以脱氮为主要目标:LS0. 05-0. 15kgBOD/(kgMLSS*d) 除磷时:LS0. 4-0. 7kgBOD/(kgMLSS*d) 同时脱氮除磷:LS0. 1-0. 2kgBOD/(kgMLSS*d) 4、氧化沟工艺(Oxidation Ditch)又称连续循环曝气池可分为连续工作式、交替工作式和半交替工作式生物脱氮实例3 / 3。

AO工艺生物脱氮工艺原理、设计与计算

AO工艺生物脱氮工艺原理、设计与计算

A/O工艺生物脱氮工艺原理、设计与计算(一)工艺流程A/O工艺以除氮为主时,基本工艺流程如下图1。

图1 缺氧/好氧工艺流程A/O工艺有分建式和合建式工艺两种,分别见图2、图3。

分建式即硝化、反硝化与BOD 的去除分别在两座不同的反应器内进行;合建式则在同一座反应器内进行。

合建式反应器节省了基建和运行费用以及容易满足处理工程对碳源和碱度等条件的要求,但受以下因数影响:溶解氧 (0.5~1.5mg/L)、污泥负荷[0.1~ 0.15kgBOD5/(kgMLVSS•d)]、C/N比(6~7)、pH值(7.5~8.0) ,而不易控制。

对于pH值,分建式A/O工艺中,硝化液一部分回流至反硝化池,池内的反硝化脱氮菌以原污水中的有机物作碳源,以硝化液中NOx-N中的氧作为电子受体,将NO3-N还原成N2,不需外加碳源。

反硝化池还原1gNOx-N产生3.57g碱度,可补偿硝化池中氧化1gNH3-N所需碱度(7.14g)的一半,所以对含N浓度不高的废水,不必另行投碱调pH值,反硝化池残留的有机物可在好氧硝化池中进一步去除。

一般来说分建式反应器(A/O工艺)硝化、反硝化的影响因素控制范围可以相应增大,更为有效地发挥和提高活性污泥中某些微生物(如硝化菌、反硝化菌等)所特有的处理能力,从而达到脱、处理难降解有机物的目的,减少了生化池的容积,提高了生化处理效率,同时也节省了环保投资及运行费用;而合建式A/O工艺便于对现有推流式曝气池进行改造。

图2 分建式缺氧一好氧活性污泥脱氮系统图3 合建式缺氧好氧活性污泥脱氮系统(二)A/O工艺生物脱氮工艺的特点1.优点①同时去除有机物和氮,流程简单,构筑物少,只有一个污泥回流系统和混合液回流系统,节省基建费用。

②反硝化缺氧池不需外加有机碳源,降低了运行费用。

③好氧池在缺氧池后,可使反硝化残留的有机物得到进一步去除,提高了出水水质。

④缺氧池中污水的有机物被反硝化菌所利用,减轻了好氧池的有机物负荷,同时缺氧池中反硝化产生的碱度可弥补好氧池中硝化需要碱度的一半。

4.3生物脱氮除磷技术


NO3-一类的化合态氧也不允许存在,但在聚磷菌吸氧的好氧反
应器内却应保持充足的氧 (2)污泥龄 生物除磷主要是通过排除剩余污泥而去除磷的,因此剩 余活泥多少将对脱磷效果产生影响,一般污泥龄短的系统产 生的剩余污泥量较多,可以取得较高的除磷效果。有报导称 :当污泥龄为30d时,除磷率为40%,污泥龄为17d时,除磷 率为50%,而当污泥龄降至5d时,除磷率高达87%。
(3) 后置缺氧-好氧生物脱氮工艺
可以补充外来碳源,也可以利用活性污泥的 内源呼吸提供电子供体还原硝酸盐,反硝化速率 仅是前置缺氧反硝化速率的1/3-1/8,需较长停留 时间。
进水 二沉池 出水
好氧/ 硝化
缺氧
回流污泥 污泥
二、生物除磷工艺
1.概述 来源:人体排泄物以及合成洗涤剂、牲畜饲养场 及含磷工业废水 危害:促进藻类等浮游生物的繁殖,破坏水体耗 氧和复氧平衡;水质恶化,危害水资源。 包括:有机磷(磷酸甘油酸、磷肌酸)和无机磷( 磷酸盐,聚合磷酸盐) 去除方法: 常规活性污泥法的微生物同化和吸附; 生物强化除磷; 投加化学药剂除磷。
二、生物除磷工艺
72年开创,生物除磷和化学 曝气池:含磷污水进入,还有由除 沉淀池(I):泥水分离, 4.生物除磷工艺 磷池回流的已经释放磷但含有聚磷 除磷相结合,除磷效果好. 含磷污泥沉淀,已除磷的 (2)弗斯特利普除磷工艺(Phostrip): 菌的污泥。使聚磷菌过量摄取磷, 上清液作为处理水排放。 去除有机物(BOD和COD), 可能还 有一定的硝化作用。
聚磷分解形成的无机磷释放回污水中—厌氧释磷。
好氧环境:进入好氧状态后,聚磷菌将贮存于体
内的PHB进行好氧分解并释放出大量能量供聚磷菌增
殖等生理活动,部分供其主动吸收污水中的磷酸盐,

6种常见脱氮工艺优缺点对比表!

6种常见脱氮工艺优缺点对比表!近20年来, 对氨氮污水处理方面开展了较多的研究。

其研究范围涉及生物法、物化法的各种处理工艺,目前氨氮处理实用性较好国内运用最多的技术为:传统生物脱氮法、氨吹脱汽提法、折点氯化法、化学沉淀法、离子交换法、膜法等。

1、常用脱氮工艺简介1、传统生物脱氮传统的生物脱氮技术始于上世纪30年代,真正应用于20世纪70年代。

自Barth三段生物脱氮工艺的开创,A/O工艺、序批式工艺等脱氮工艺相继被提出并应用于工程实际。

三段生物脱氮工艺三段生物脱氮工艺流程如图所示,该工艺是将有机物降解、硝化作用以及反硝化作用三个阶段独立开来,每一阶段后面都有各自独立的沉淀池和污泥回流系统。

第一段曝气池的主要作用是代谢分解有机物,并使有机氮氨化。

第二段硝化池主要进行硝化反应,将氨氮氧化,同时需投加碱度以维持一定的pH值。

第三段是反硝化反应器,硝态氮在缺氧条件下被还原为N2,安装搅拌装置使污泥混合液呈悬碳源以满足浮状态,并外加反硝化反应所需的碳源。

A/O生物脱氮工艺A/O 生物脱氮工艺如图所示,该工艺将缺氧段置于系统前端,其发生反硝化反应产生的碱度能够少量补充硝化反应之需。

另外,缺氧池中反硝化反应利用原废水中的有机物为碳源可以减少补充碳源的投加甚至不加。

通过内循环将硝化反应产生的硝态氮转移到缺氧池进行反硝化反应,硝态氮中氧作为电子受体,供给反硝化菌的呼吸作用和生命活动,并完成脱氮工序。

在 A/O 生物脱氮工艺中,硝化液回流比对系统的脱氮效果影响很大。

若回流比控制过低,则无法提供充足的硝态氮进行反应,使硝化作用不完全,进而影响脱氮效果;若控制过高,则导致硝化液与反硝化菌接触时间减短,从而降低脱氮效率。

因此,在实际的运行过程中需要控制适当的硝化液回流比,使系统脱氮效果达到最佳水平。

序批式脱氮工艺(例如CASS)序批式脱氮工艺与A/O工艺相比,其运行方式有所不同,但在脱氮反应机理上基本与A/O生物脱氮工艺一致。

污水脱氮工艺(全)ppt课件


城市污水 工业废水等
地表径流,养鱼投饵
降尘,降雨等
ppt精选版
4
水体中氮素的来源与危害
2. 氨氮废水的工业来源
有机氮废水的工业来源及其浓度
来源 粪肥 糖厂
有机氮浓度 (mg/L)
来源
有机氮浓度 (mg/L)
400~1000 纺织废水
8
制药废水
500
180
锅炉渣洗水 10~260
ppt精选版
5
水体中氮素的来源与危害
污水脱氮工艺介绍(全)
ppt精选版
1
内容提要
1. 水体中氮素的来源与危害 2. 氮素污染控制 3. 生物脱氮原理 4. 生物脱氮技术 5. 生物脱氮新工艺
ppt精选版
2
水体中氮素的来源与危害
1. 水体中氮素的来源
大 气 降 水 降 尘
非 市 区 径 流
生 物 固 氮
城 市 污 水
浸 滤 液



亚硝态氮(NO2- -N)
凯氏氮 (TKN) = 有机氮 + 氨氮
TN = TKN + NOx-N
ppt精选版
10
水体中氮素的来源与危害
4. 氮素污染的危害 造成水体的富营养化(eutrophication)现象;
水生植物 和
藻类 异常增殖
水华 赤潮
ppt精选版
11
1998年渤海湾赤潮
ppt精选版
ppt精选版
33
物化法脱氮的比较
常用物化法脱氮技术比较
处理 方法
处理范围及效果 进水(mg/L) 出水(mg/L)
缺点
费用估算 (元/kgNH3-N)
空气吹脱 <500

A2O工艺及脱氮除磷技术硝化反硝化厌氧氨氧化

A2O工艺及脱氮除磷技术(1)请画出A2O工艺的流程图并简述其工艺流程。

答:工艺流程图如下:A2/O工艺是流程最简单,应用最广泛的脱氮除磷工艺。

污水首先进入厌氧池,兼性厌氧菌将污水中的易降解有机物转化成VFAs。

回流污泥带入的聚磷菌将体内的聚磷分解,此为释磷,所释放的能量一部分可供好氧的聚磷菌在厌氧环境下维持生存,另一部分供聚磷菌主动吸收VFAs,并在体内储存PHB。

进入缺氧区,反硝化细菌就利用混合液回流带入的硝酸盐及进水中的有机物进行反硝化脱氮,接着进入好氧区,聚磷菌除了吸收利用污水中残留的易降解BOD外,主要分解体内储存的PHB产生能量供自身生长繁殖,并主动吸收环境中的溶解磷,此为吸磷,以聚磷的形式在体内储存。

污水经厌氧、缺氧区,有机物分别被聚磷菌和反硝化细菌利用后浓度已很低,有利于自养的硝化菌的生长繁殖。

最后,混合液进入沉淀池,进行泥水分离,上清液作为处理水排放,沉淀污泥的一部风回流厌氧池,另一部分作为剩余污泥排放。

(2)倒置A2O和改良A2O工艺与A2O工艺相比分别具有哪些特点?答:①改良A2O工艺:在A2O前增设厌氧/缺氧调节池。

此种改进A2O工艺是在厌氧段之前设置厌氧/缺氧调节池。

在调节池中,微生物利用10%进水中的有机物去除回流污泥带来的硝酸盐,停留时间为20~30min。

回流污泥与进水在调节池迅速混合产生高的基质浓度梯度,从而加快聚磷菌对有机物摄取的速度,使之在胞内贮存更多的PHB,这将有利于其在随后好氧段中对磷的过量吸收。

②倒置A2O工艺:缺氧/厌氧-厌氧-好氧工艺(回流污泥反硝化生物除磷工艺)。

在倒置A2O工艺中,为了保证除磷效果,必须在倒置缺氧池中去掉回流污泥中的高浓度硝态氮,这需要有大量的碳源和相当大的缺氧池容积,这两个条件都很难满足。

倒置缺氧池带来的主要问题仍然是反硝化与释磷对碳源有机物的竞争。

原污水先进入缺氧池再进入厌氧池,污水中的易生物降解有机物将优先被反硝化菌利用,聚磷菌将得不到足够碳源,影响除磷效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

脱氮工艺流程图
脱氮是指将氨氮转化为无害的氮气排放,是处理废水和废气中氨氮的重要工艺。

下面是一份脱氮工艺的流程图:
脱氮工艺流程图:
1. 初步处理:首先,将废水或废气通过反应槽进行初步处理。

废水中的悬浮物和固体颗粒将通过沉淀或过滤去除,废气中的杂质将被抽取或范围进行处理。

2. 氨氮提取:接下来,从初步处理后的废水或废气中提取氨氮。

一种常用的方法是采用吸收器,将废水或废气中的氨氮与吸收液进行反应,形成氨合物,然后再从吸收液中提取氨氮。

3. 反应器处理:将提取的氨氮转移到反应器中进行处理。

在反应器中,氨氮将与其他物质进行反应,以形成无害的氮化物。

常用的反应器处理方法包括生物法、化学法和物理法。

4. 生物法:生物法是利用微生物对氨氮进行降解的方法。

在反应器中,添加适当的微生物菌种,并提供适宜的环境条件(如适宜的pH、温度、DO等),使微生物能够有效地将氨氮转
化为氮气。

5. 化学法:化学法是利用化学反应将氨氮转化为无害的氮化物的方法。

在反应器中,添加适当的化学试剂,并调节适宜的反应条件,使反应物能够发生反应,将氨氮转化为氮化物。

6. 物理法:物理法是利用物理作用将氨氮转化为无害的氮化物的方法。

常用的物理法包括吸附、膜分离、蒸发等。

在反应器中,将废水或废气与适当的物理设备进行接触和处理,使氨氮转化为氮化物。

7. 产物处理:经过反应器处理后,产生的无害的氮化物将进行进一步处理。

通常,可以采用沉淀、过滤、蒸发等方法将产物进行提取和处理,使其达到无害排放标准。

8. 尾水处理:处理后的尾水将通过尾水处理设备进行进一步处理,以达到排放标准。

尾水处理设备可以包括各种沉淀、过滤、气浮、生物处理等设备,以确保废水排放符合环保要求。

9. 脱氮后的废气处理:如果是废气处理的脱氮工艺,脱氮后的废气将通过废气处理系统进行进一步处理。

常用的废气处理系统包括吸附、灭菌、过滤等设备,以确保废气排放符合环保要求。

脱氮工艺流程图中,各个步骤之间可以有交叉和并行的关系,具体的操作方式和设备选择可以根据实际情况进行调整。

此外,在整个脱氮工艺中,还需要注意使用环保设备和材料,严格控制各种污染物的排放和对环境的影响。

相关文档
最新文档