第22届华杯赛小学中年级组初赛试题及答案解析

合集下载

华杯赛公开题答案解析

华杯赛公开题答案解析

(初二组) 【 题 目 】 已 知 a, b, c 是 三 角 形 ABC 的 三 边 的 长 , 则 算 式
a b c
c a( ) C、 3b a c D、 3b a c
A、 a b c 【答案】 :A
B、 2b a c
第 22 届“华杯赛”初赛就要开始啦,按惯例,在 12 月 10 日正式比赛前, 我们将公开各年级组 1 道题,有兴趣的同学可做做看。 第二十二届华罗庚金杯少年数学邀请赛初赛公开题
(小学中年级组) 【题目】 《火星救援》中,马克不幸没有跟上其他 5 名航天员飞回地球,独自留在了火 星,马克必须想办法生存,等待救援.马克的居住舱内留有每名航天员的 5 天食品和 50 千 克非饮用水,还有一个足够大的菜园,马克计划用来种植土豆,30 天后每平方米可以收获 2.5 千克,但是需要浇灌 4 千克的水马克每天需要吃 1.875 千克土豆,才可以维持生存,则 食品和土豆可供马克最多可以支撑多少天? 【答案】 :130 【解析】 : 食品总量: 5 6 30 天 50 6 300 千克 水总量: 可浇灌面积: 300 4 75 平方米 土豆总量: 75 2.5 187.5 千克 187.5 1.875 30 130 天 总天数: (小学高年级组) 【题目】小明从家出发,乘地铁到学校需要 30 分钟,乘公交车到学校需要 50 分钟.某 天小明因故先乘地铁,再换乘公交车,用了 40 分钟到达学校,其中换乘过程用了 6 分钟, 那么这天小明乘坐公交车用了( )分钟. (A)6 (B)8 (C)10 (D)12 【答案】 :C 【解析】 :
【解析】 :根据三角形两边之和大于第三边, a<b c 则 a b c b c a ,同理,

华杯赛初赛备考讲义含解析(小学中年级组)

华杯赛初赛备考讲义含解析(小学中年级组)

华杯赛初赛备考讲义含解析(小学中年级组)第一节几何精讲考点概述几何考点一、基本面积公式;(长方形、正方形、三角形、平行四边形、梯形、圆、扇形)二、割补法计算面积;三、等积变换;四、周长的计算;(基本公式、平移法、标向法)五、角度的计算;(多边形内角和、外角和、角度的综合计算)六、勾股定理与弦图;七、立体几何认知.(展开图、三视图)真题精讲例题1. 如右图,一张长方形的纸片,长20 厘米,宽16 厘米.如果从这张纸上剪下一个长10 厘米,宽5 厘米的小长方形,而且至少有一条边在原长方形的边上,那么剩下纸片的周长最大是()厘米(2010 年15 届)(A)72 (B)82 (C)92 (D)102【答案】C.【解答】因为要求剪下的这个长方形至少有一条边在原长方形的边上,所以可以分以下三种情况讨论:(1)小长方形的两条边都在原长方形的边上,如下图:此时,剩下纸片的周长为:(20+16) ×2 = 72(厘米).(2)只有小长方形的长边在原长方形的边上,如下图:此时,剩下纸片的周长为:(20+16)×2 + 5×2 = 82(厘米).(3)只有小长方形的短边在原长方形的边上,如下图:、此时,剩下纸片的周长为:(20+16) ×2 + 10×2 = 92(厘米).所以剩下图形的周长最大是92 厘米.故选C.例题2. 九个同样的直角三角形卡片,拼成了如右图所示的平面图形.这种三角形卡片中的两个锐角较大的一个是度.(2013 年18 届)【答案】54.【解答】图中每个直角三角形,除直角外,还有两个锐角,一大一小,汇集在中心的是7 个小角和2 个大角.注意:大角+小角= 90︒,而在中心的9 个角之和为360︒,即7 个小角+2 个大角= 360︒,即:5 个小角+(2 个大角+2 个小角)= 360︒.所以:5 个小角+ 180︒= 360︒,即:5 个小角= 180︒,一个小角= 36︒,较大锐角= 90︒- 36︒= 54︒.练习1. 北京时间16 时,小龙从镜子里看到挂在身后墙上的4 个钟表(如下图),其中最接近16 时的是().(2012 年17 届)(A)(B)(C)(D)【答案】D.【解答】注意镜子里面和实际情况是左右对称的,因此A 实际是20 点5 分,B 实际是19 点50 分,C 实际是16 点10 分,D 实际是15 点55 分,因此选D.练习2. 把一块长90 厘米,宽42 厘米的长方形纸板恰无剩余地剪成边长都是整数厘米、面积都相等的小正方形纸片,最少能剪出块,这种剪法剪成的所有正方形纸片的周长之和是厘米.(2012 年17 届)【答案】105;2520.【解答】要想全部剪成正方形,那么正方形的边长必须满足:是90 和42 的公约数(中年级表述:90 和42 除以边长能够除尽).那么满足条件的边长有1、2、3、6,要让正方形尽量少,那么边长尽量大,为6,这个时候长被分成了90÷6=15 格,宽被分成了42÷6=7 格,所以最少能剪出15×7=105 块.每块正方形的周长是6×4=24 厘米,所以所有正方形周长和为24×105=2520 厘米.练习3. 如右图,一个正方形被分成了4 个相同的长方形,每个长方形的周长都是20 厘米.则这个正方形的面积是()平方厘米.(2013 年18 届)【答案】64.【解答】设每个长方形的宽为a,则长为4a,得到等式:(4a+a)⨯ 2 =20 .可知:a =2,4a = 8.所以,正方形的面积为8×8=64(平方厘米).练习4. 如下图,将长度为9 的线段AB 九等分,那么图中所有线段的长度的总和是.(2013 年18 届)【答案】165.【解答】以A 点为线段左端点的线段长之和为:S1=1+ 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 ;从A 点算起第二个点为线段左端点的线段长之和为:S2=1+ 2 + 3 + 4 + 5 + 6 + 7 + 8 ;……从A 点算起第八个点为线段左端点的线段长之和为:S8=1+ 2 ;从A 点算起第九个点为线段左端点的线段长之和为S9=1 .于是:S =S1 +S2+S3+ +S9= 9 ⨯1 + 8 ⨯ 2 + 7 ⨯3 + 6 ⨯ 4 + 5 ⨯5 + 4 ⨯ 6 + 3 ⨯ 7 + 2 ⨯8+1⨯9 =165例题3. 现有一个正方形和一个长方形,长方形的周长比正方形的周长多4 厘米,宽比正方形的边长少2厘米,那么长比正方形的边长多()厘米.(2014 年19 届)(A)2(B)8(C)12(D)4【答案】D.【解答】根据题意,长方形的周长比正方形的周长多4 厘米,宽比正方形的边长少2 厘米,那么,就要求长方形的两条长总长增加8 厘米,也就是每一条长比正方形的边长多4 厘米.例题4. 右图中的正方形的边长为10,则阴影部分的面积为()(A)56 (B)44 (C)32 (D)78(2014 年19 届)【答案】A.【解答】用竖直线和水平线将正方形分割为如左图所示的多个长方形,中间长方形的面积是4 ⨯ 3 = 12 ,所以,阴影部分的面积为(10 ⨯10 -12) ÷ 2 +12 = 56 .所以,选A.练习5. 如图1 所示,将一张正方形纸片先由下向上对折压平,再由右翻起向左对折压平,得到小正方形ABCD.取AB 的中点M 和BC 的中点N,减掉△MBN 得五边形AMNCD.则将折叠的五边形AMNCD纸片展开铺平后的图形是.(2006 年11 届)DNA【答案】D.【解答】注意对折方向,可以判断B 点是原正方形中心,因此是中心被掏空的形状,再注意减掉的形状是三角形,也就是展开后,横竖四等分以后,每一部分缺的都是三角形,结合这两点,答案为D.1 AB C 2 D练习6. 正方形 ABCD 与正方形 CEFG 水平放置组成如图所示的组合图形,已知该组合图形的周长是 56厘米,DG 长 2 厘米,那么,图中阴影三角形的面积是平方厘米.AD GFBC E【答案】8.【解答一】如下图所示, AI = AH = BJ = DG = 2 厘米,而六条小正方形的边长之和是:32 - ( A I + AH + BJ + DG ) = 24 ,每条小正方形的边长是 24 ÷ 6 = 4 厘米,那么,小正方形的面积是4 ⨯ 4 = 16 平方厘米,根据三角形的等积变换可知,阴影三角形的面积是小正方形面积的一半,即 16 ÷ 2 = 8 平方厘米.A IDHGFBJ C E【解答二】将大正方形的一条边(▲)与小正方形的一条边(△)看成一组,那么,每组的长是(32 - 2) ÷ 3 = 10 厘米,而大小正方形的边长之差是 2 厘米,根据和差公式可得,大正方形的边长是 6厘米,小正方形的边长是 4 厘米,进而可求,阴影三角形的面积是 8 平方厘米.A▲DG△F▲△B▲ C △ E练习7. 如图,在一个正方体的表面上写着 1 至 6 这 6 个自然数,并且 13 对着 4,2 对着 5,3 对着 6.现在将正方体的一些棱剪开,使它的表面12展开图如下右图所示.如果只知道 1 和 2 所在的面,那么 6 写在字母的位置上.【答案】A .【解答】注意到,展开图中的形状,黑色两个面在合上后是相对的,展开图中的形状,黑色两个面在合上后也是相对的,所以1 和C 相对,C=4,B 和2 相对,B=5,那么A 要么是3 要么是6,现在观察1、A、B 这三个面,它们折叠时,如果把1 放正面,A 放上面,那么B 就在右侧,为2,矛盾,因此当1 放正面时,A 应该在下面,为6.练习8. 如图一个小正方形和4 个周长为32 cm 的相同的长方形拼成一个大正方形,那么大正方形的面积是cm2 .【答案】256.【解答】注意到,大正方形的边长刚好是长方形的长+宽,为16,所以面积等于16×16=256 平方厘米.第二节应用题精讲考点概述应用题考点一、常考应用题类型1. 画线段图帮助解题2. 列方程解应用题二、行程问题:1. 行程问题常见类型(相遇问题,追及问题,火车问题,流水行船问题,环形路线问题,多次相遇与追及问题等)2. 画线段图(形象直观地呈现题意,便于对题目条件进行分解与组合,挖掘隐含条件)3. 方程与比例解行程问题真题精讲例1.小虎在19×19 的围棋盘的格点上摆棋子,先摆成了一个长方形的实心点阵.然后再加上45 枚棋子,就正好摆成一边不变的较大的长方形的实心点阵.那么小虎最多用了()枚棋子.(2012 年17 届)(A)285 (B)171 (C)95 (D)57【答案】A【解析】加上45 枚棋子之后,还能摆成一边不变的较大的长方形的实心点阵,说明不变的这条边上的棋子数能整除45,要使总棋子数尽量多,则这条边要尽量大,最大为15,所以最多用了15 19=285 枚棋子.例2.幼儿园的老师给班里的小朋友送来55 个苹果,114 块饼干, 83 块巧克力.每样都平均分发完毕后,还剩3 个苹果,10 块饼干,5 块巧克力.这个班最多有位小朋友.(2013 年18 届)【答案】26【解析】可以列出除55 余3 的自然数:55÷4=13……3;55÷13=4……3;55÷26=2……3;55÷52=1……3;然后列出除114 余10 的自然数:114÷13=8……10;114÷26=4……10;114÷52=2……10;114÷104=1……10;再列出除83 余5 的自然数:83÷13=6……5;83÷26=3……5;83÷39=2……5;83÷78=1……5;其中,符合条件的最大的除数是26,所以,这个班最多有26 位小朋友.练习1.两个正整数的和小于100,其中一个是另一个的两倍,则这两个正整数的和的最大值().(2014 年19 届)(A)83 (B)99 (C)96 (D)98【答案】B【解析】由条件“其中一个是另一个的两倍”可知:所求的和是某个正整数的3 倍,要求小于100,故这两个正整数的和是99.练习2.三堆小球共有2012 颗,如果从每堆取走相同数目的小球以后,第二堆还剩下17 颗小球,并且第一堆剩下的小球数是第三堆剩下的2 倍,那么第三堆原有颗小球.(2012 年17 届)【答案】665【解析】设此时第三堆有1 份小球,则如果一开始就从第一堆放1 份小球到第三堆,并且从第二堆扔掉17 个小球,那么此时三堆小球的个数相同,都是(2012 -17)÷ 3=665 个,而在上述过程中,第三堆小球数目并未发生变化,所以第三堆原有665 个小球.例3.张老师每周的周一、周六和周日都跑步锻炼20 分钟,而其余日期每日都跳绳20 分钟.某月他总共跑步5 小时,那么这个月的第10 天是().(2013 年18 届)(A)周日(B)周六(C)周二(D)周一【答案】D【解析】每周张老师跑步1 小时,所以这个月的后28 天总共跑步了4 小时,说明这个月共有31 天,并且前3 天跑了1 个小时,所以前3 天只能是周六、周日、周一,所以这个月第10 天是周一,选D.例4.新生开学后去远郊步行拉练,到达A 地时比原计划时间10 点10 分晚了6 分钟,到达C 地时比原计划时间13 点10 分早了6 分钟,A、C 之间恰有一点B 是按照原计划时间到达的,那么到达B 点的时间是().(2014 年19 届)(A)11 点35 分(B)12 点5 分(C)11 点40 分(D)12 点20 分【答案】C【解析】从10 点10 分到13 点10 分共有3 个小时,误差时间共有12 分钟,即每小时要调整4 分钟,调整6 分钟的时候即是到达B 点的时间.调整6 分钟需要1 个半小时,即1 小时30 分钟,所以到达B 点的时间是11 点40 分.练习5.体育馆正在进行乒乓球单打、双打比赛,双打比赛的运动员比单打的运动员多4 名,比赛的乒乓球台共有13 张,那么双打比赛的运动员有名.(2012 年17 届)【答案】20【解析】因为一张球台可供2 名单打运动员、或4 名双打运动员进行比赛,所以由‘双打比赛的运动员比单打的运动员多4 名’可知,双打比赛用了1 份多一个1 个球台,单打比赛用了2 份球台,从而双打比赛用了5 个球台,单打比赛用了8 个球台,故双打比赛有20 名运动员.练习6.麦当劳的某种汉堡每个10 元,这种汉堡最近推出了“买二送一”的优惠活动,即花钱买两个汉堡,就可以免费获得一个汉堡.已知东东和朋友需要买9 个汉堡,那么他们至少需要花元钱.【答案】60【解析】20 元可以买3 个,买9 个需要花60 元.练习7.小张早晨8 点整从甲地出发去乙地,速度是每小时60 千米.早晨9 点整小王从乙地出发去甲地.小张到达乙地后立即沿原路返回,恰好在12 点整与小王同时到达甲地.那么两人相遇时距离甲地千米.【答案】96【解析】小张4 小时走了一个来回,所以单程需要2 小时,所以甲乙相距120 千米,这段路小王花了3 小时,所以小王的速度为40 千米/小时.9 点时,两人相距60 千米,在60 ÷(60+40)=0.6 小时后两人相遇,此时距离甲地1.6 ⨯ 60=96 千米.课后练习1. 魔法学校运来很多魔法球,总重量多达5 吨,一颗魔法球重4 千克,现在有10 名学员使用魔法给这些魔法球涂色,每人每6 分钟可以给5 颗魔法球涂色,那么他们涂完所有魔法球最少要用分钟.【答案】150【解析】总共有5000 ÷4=1250 个魔法球,所以总共需要1250 ⨯ 6 ÷ 5 ÷10=150 分钟.2. 某校三年级和四年级各有两个班.三年级一班比三年级二班多4 人,四年级一班比四年级二班少5 人,三年级比四年级少17 人,那么三年级一班比四年级二班少人.【答案】9【解析】让三年级二班增加4 人,四年级一班增加5 人,则相同的两个年级的两个班人数相同了,且此时三年级比四年级少17 + 5 - 4=18 人,平均每个班少9 人,而三年级一班和四年级二班人数均未发生变化,所以三年级一班比四年级二班少9 人.3. 2010 名学生从前往后排成一列,按下面的规则报数:如果某个同学报的数是一位数,后面的同学就要报出这个数与8 的和;如果某个同学报的数是两位数,后面的同学就要报出这个数的个位数与7 的和.现在让第一个同学报1,那么最后一个同学报的数是.【答案】13【解析】从第一名同学开始,依次报数为:1、9、17、14、11、8、16、13、10、7、15、12、9、17、……,从而从第二名同学开始,报数以11 为周期,而2009 ÷11=182 7 ,所以最后一个同学报的数为13.4. 骆驼有两种:背上只有一个驼峰的单峰骆驼和背上有两个驼峰的双峰骆驼.单峰骆驼比较高大,四肢较长,在沙漠中能走能跑;双峰骆驼四肢粗短,更适合在沙砾和雪地上行走.有一群骆驼有23 个驼峰,60 只脚,那么双峰驼有匹.【答案】8【解析】共有60 ÷ 4=15 匹骆驼,23 个驼峰,而多出的驼峰都是双峰驼多的,所以有23 -15=8 匹双峰驼.6. 红星小学组织学生参加队列演练,一开始只有40 个男生参加,后来调整队伍,每次调整减少3 个男生,增加2 个女生,那么调整次后男生女生人数就相等了.【答案】8【解析】最开始男女人数相差40 个,每次调整可以让人数差减少5 个,所以8 次调整后,男女人数就相等了.7. 甲,乙,丙三人锯同样粗细的木棍,分别领取8 米、10 米、6 米长的木棍,要求都按2 米的规格锯开.劳动结束后,甲、乙、丙分别锯了24、25、27 段,那么锯木棍次数最多的比次数最少的多锯次.【答案】2【解析】8 米、10 米、6 米长的木棍分别可以被锯成4、5、3 段,并且分别需要锯3、4、2 次,甲、乙、丙分别锯了6、5、9 根木棍,所以分别锯了18、20、18 次,最多比最少的多锯2 次.8. 一堆糖果有50 块,小明和小亮玩游戏.小明每赢一次拿5 块糖,然后吃掉4 块,将剩下的1 块放到自己的口袋里;小亮每赢一次也拿5 块糖,然后吃掉3 块,将剩下的2 块放到自己的口袋里.游戏结束时,糖刚好被拿完,这时小亮口袋里的糖数恰好是小明口袋里的糖数的3 倍,那么两人一共吃掉了块糖.【答案】34【解析】两人都是一次拿5 块,所以总共进行了10 次游戏,而小亮的糖数是小明的3 倍,说明小明每赢2 次,小亮就要赢3 次,所以说明小明总共赢了4 次,小亮赢了6 次,总吃掉了4 ⨯ 4+6 ⨯ 3=34 块糖.第三节数字谜、计数、组合精讲考点概述数字谜考点:1. 填竖式问题的一些方法:(1)加数相加时每进1 位,和的数字和将比加数的数字和减少9.(2)与各个数位上的数字有关的问题,往往需要多次尝试才能得到结果.2. 填横式问题:横式中的填空格和字母破译问题;熟练应用尾数分折、首位估算、分情况试算等方法;对于较复杂的题目,从约束条件较多、可能性较少的算式入手;某些横式问题,可以转化为竖式问题再求解.3. 幻方与数阵图、数独问题:掌握幻方的概念,了解三、四阶幻方的构造;解决具有与幻方类似性质的数阵图问题;进一步掌握重数的运用,填充较复杂的数阵图;利用重数计算处理数阵图中的最值问题.计数考点:1. 枚举法(分类、有序)2. 加乘原理(加法,分类;乘法,分步)组合考点:1. 各种与数字计算有关的最值问题.在枚举试算的过程中,注意寻找出大小变化的规律,并尝试分析其内在原因;学会用比较、调整的方法寻找最值情况.2. 逻辑推理:(1)一句话不是真话,就是假话.这在逻辑学中被称为排中律.(2)在应用假设法分析问题时,要考虑全面.既要考虑到所假设的条件成立的情况,还要考虑到条件不成立的情况.(3)对于条件复杂的逻辑推理问题,通常状况下都可以通过列表法分析.真题精讲例1.右图的计数器三个档上各有10 个算珠,将每档算珠分成上下两部分,按数位得到两个三位数,要求上面的三位数的数字不同,且是下面三位数的倍数,那么满足题意的上面的三位数是.(2012 年17 届)【答案】925【解析】由题意,知这两个三位数的和为1110,而上面是下面的倍数,可能为1 倍、2 倍、……,最多为9 倍,从而和为下面三位数的最少2 倍,最多10 倍,而1110 只有除以2、3、5、6、10 能除得尽,得到下面三位数可能为555、370、222、185、111,经过检验,可知只有185 满足要求,此时上面的三位数为925.练习1.在右面的加法算式中,每个汉字代表一个非零数字,不同的汉字代表不同的数字.当算式成立时,贺+新+春=().(2012 年17 届)(A)24 (B)22 (C)20 (D)18【答案】D放鞭炮+ 迎龙年贺新春【解析】所填入的9 个数字为1、2、……、9,可知加数的数字和之和与和的数字和的总和为45,而最多进位两次(十位、个位),又两整数的和与差奇偶性相同,故加法恰好进位一次,所以可知,和的数字和为18.故选D.练习2.如图所示的两位数加法算式中,已知A +B +C +D = 22 ,则X +Y =().(2012 年17 届)(A)2 (B)4 (C)7 (D)13【答案】B【解析】由竖式可知,恰好进位一次(十位),故加数的数字和比和的数字和多9,从而X +Y = 22 - 9 - 9 = 4 ,故选B.例2.甲、乙、丙、丁、戊围坐在圆形桌子边玩扑克,甲有自己的固定座位.如果乙和丁的座位不能相邻,那么共有()种不同的围坐方法.(2014 年19 届)(A)10 (B)8 (C)12 (D)16【答案】C【解析】甲坐好后,乙共有4 种坐法,其中紧邻甲有2 种坐法,坐定后丁有两种坐法;乙另有2 种坐法不紧邻甲,乙坐定后,丁仅有 1 种坐法,而丙和戊在剩余的 2 个座位中,只有两种选法,故共有(2⨯ 2 +2⨯1) ⨯ 2 =12 不同的围坐方法.例3.在一个平面上,用若干个单位长度的木棍可以摆出由多个正方形相邻的图形,右图是一示例.现在用20 根单位长的小木棍摆出一个图形,要求除第一行的方格外,下面几行方格构成一个长方形,那么这样的图形中最多有个单位边长的正方形.(2014 年19 届)【答案】7【解析】通过以下两步操作,总可以约定第1 行方格个数不大于第2 行方格个数.第一步:总可以左移第一行的方格,使其和第二行方格左端对齐,新的图形所用木棍数量不多于原图形所用木棍的数量,但是移动前后方格数相同,例如见下图.第二步:如果第一行的方格数比第二行的方格数多,可以将多的方格切下,移至第一行上面,增加一行,新的图形所用木棍数量不多于原图形所用木棍的数量,但是方格数相同,如此操作,直到第一行的方格数不大于第二行的方格数.例如见右图.因此,从题目条件可知,图形至少有 2 行方格.由前面的讨论,总可以约定第 1 行方格个数不大于第 2 行方格个数.(1)假设图形有 2 行方格第 1 行有 1 个方格,第 2 行有 6 个方格,所用木棍总数是 22; 第 1 行有 1 个方格,第 2 行有 5 个方格,所用木棍总数是 19; 第 1 行有 2 个方格,第 2 行有 5 个方格,所用木棍总数是 21; 第 1 行有 2 个方格,第 2 行有 4 个方格,所用木棍总数是 18; 第 1 行有 3 个方格,第 2 行有 4 个方格,所用木棍总数是 21; 第 1 行有 3 个方格,第 2 行有 4 个方格,所用木棍总数是 20; 第 1 行有 4 个方格,第 2 行有 4 个方格,所用木棍总数是 22. (2)假设图形有 3 行方格第 1 行有 1 个方格,第 2 行、第 3 行都各有 3 个方格,所用木棍总数是 20; 第 1 行有 2 个方格,第 2 行、第 3 行都各有 2 个方格,所用木棍总数是 17. (3)假设图形有 4 行方格第 1 行有 1 个方格,第 2 行、第 3 行、第 4 行都各有 2 个方格,所用 木棍总数是 20.根据以上判断,图形不可能有 5 行、6 行、7 行、8 行. 所用木棍总数 20,方格总数是 7.右图是摆出的图形.练习3. 用 8 个 3 和 1 个 0 组成的九位数有若干个,其中除以 4 余 1 的有()个.(2014 年 19 届)(A )5 (B )6 (C )7 (D )8 【答案】B【解析】用 8 个 3 排成一行,中间有 7 个间隔,加上最右边的一个位置,每个位置都可以放置 0,共 有 8 种放法.因为 100 能被 4 整除,故除以 4 余 1 的数的最右边的两位数只能是 33.所以,只有 6 个 位置可以放 0,共有 6 种放法.例4. 牧羊人用 15 段每段长 2 米的篱笆,一面靠墙围成一个正方形或长方形羊圈,则羊圈的最大面积是()平方米.(2012 年 17 届)(A )100 (B )108 (C )112 (D )122 【答案】C【解析】假设长有 a 段篱笆,宽有 b 段篱笆,由条件可知 a + 2b = 15 ,而希望面积越大,即 a ⨯ b 越大, 也就是 a ⨯ 2b 越大,由于两数和一定差小积大,那么可知 a = 7 , 2b = 8 时,面积最大,此时面积为 (7 ⨯ 2) ⨯ (4 ⨯ 2) = 112 .练习4. 小东、小西、小南、小北四个小朋友在一起做游戏时,捡到了一条红领巾,交给了老师.老师问是谁捡到的?小东说不是小西;小西说是小南;小南说小东说的不对;小北说小南说的也不对.他们之中只有一个人说对了,这个人是().(2013 年18 届)(A)小东(B)小西(C)小南(D)小北【答案】C【解析】若小东说的对,则其他三人都有不对,此时小北说小南说的不对,则是对的,矛盾.若小西说的对,则捡到红领巾的是小南,那么小东也就说对了,与只有一人说对矛盾.若小南说的对,则根据小东的话可以判断捡到红领巾的是小西,此时符合题意.若小北说的对,则小南说的不对,也就意味着小东说的对,矛盾.故选C.练习5.平面上有四个点,任意三个点都不在一条直线上.以这四个点为端点连接六条线段,在所组成的图形中,最少可以形成()个三角形.(2012 年17 届)(A)3 (B)4 (C)6 (D)8【答案】B【解析】(1)有一点在其他三点构成的三角形内,可以形成4 个三角形;(2)任意一点都在另三点构成的三角形外,那么可以形成8 个三角形.故最少可以形成4 个三角形,故选B.练习6.在10□10□10□10□10 的四个□中填入“+”、“-”、“×”、“÷”运算符号各一个,所成的算式的最大值是().(2012 年17 届)(A)104 (B)109 (C)114 (D)119【答案】B【解析】由于没有括号,故10 ⨯10 = 100 ,10 ÷10 =1,可以认为将100、10、1 由“+”、“-”连接,希望算式结果最大,最大为100 +10 -1 = 109 .原式为10 ⨯10 +10 -10 ÷10 = 109 .故选B.练习7.五个小朋友A、B、C、D 和E 参加“快乐读拼音”比赛,上场时五个人站成一排.他们胸前有每人的选手编号牌,5 个编号之和等于35.已知站在E、D、A、C 右边的选手的编号的和分别为13、31、21 和7.那么A、C、E 三名选手编号之和是.(2014 年19 届)【答案】24【解析】由于31>21>13>7,说明A 在D 的右边,E 在A 的右边,C 在E 的右边.由于,站在C 右边的选手的编号和为7,推出B 站在C 的右边.所以,B、C、E、D、A 分别是7、6、8、4、10.A、C、E 三名选手编号之和是24.练习8.用右图的四张含有4 个方格的纸板拼成了右图所示的图形.若在右下图的16 个方格分别填入1、3、5、7(每个方格填一个数),使得每行、每列的四个数都不重复,且每个纸板内四个格子里的数也不重复,那么A、B、C、D四个方格中数的平均数是.(2014 年19 届)【答案】4【解析】如图,用M,N,P,Q 标记16 个方格图最下面4 个方格,从而有A +B +M +N =C +D +P +Q =1+3+ 5 + 7 =16 ,又M+N+P+Q=16,所以A+B+C+D=16.右上图是一种满足要求的填法,且A, B,C, D 四个方格中数的平均数是4.课后练习1. 四位数中,数码0 出现次.【答案】2700【解析】分类,出现三个0 的四位数,有9 个,共9⨯3 = 27 个0;出现两个0 的四位数,0 可能出现在百、十;百、个和十个上,其他两位有9⨯9 =81种填法,有3⨯9⨯9 = 243 个,共243⨯ 2 = 486 个0;出现1 个0 的四位数,0 可能出现在百、十、个位上,有3⨯9⨯9⨯9 = 2187 个,共2187 个0;故共27 + 486 + 2187 = 2700 个.2. 从1,2,3,4,5,6,7 中选择若干个不同的数(所选数不计顺序),使得其中偶数之和等于奇数之和,则符合条件的选法共有种.【答案】7【解析】本题中,“和”必为偶数.按和的不同,分类枚举如下:(1)4 =1+ 3 ,1 组;(2)6 = 2 + 4 =1+ 5 ,2 组;(3)8 = 2 + 6 =1+ 7 = 3 + 5 ,2 组;(4)10 = 4 + 6 = 3 + 7 ,1 组;(5)12 = 2 + 4 + 6 = 5 + 7 ,1 组.共有:1+ 2 + 2 +1+1= 7 组.3. 将10,15,20,30,40 和60 填入右图的圆圈中,使A、B、C 三个小三角形顶点上的3 个数的积都相等.相等的积最大为.【答案】18000【解析】10 = 2 ⨯ 5 ,15 =3⨯ 5 ,20 = 2 ⨯ 2 ⨯ 5 ,30 = 2 ⨯3⨯ 5 ,40 = 2 ⨯ 2 ⨯ 2 ⨯ 5 ,60 = 2 ⨯ 2 ⨯ 3⨯ 5 ,这三个相等的乘积再相乘,等于原来6 个数的乘积再乘上中间三个数,结果是一个立方数,即2、3、5 在乘积中出现的次数是3 的倍数,这6 个数的乘积有9 个2、3 个3、6 个5 相乘,而多乘的三个数,5 一定出现3 次,3 最多出现3 次,只能为15、30、60,此时2 出现也为3 次,此时乘积最大,可以得到这3 个相等的积为3 个5、2 个3、4 个2 相乘,等于18000.而此时第一层、第二层、第三层依次填入40;15、30;20、60、10,满足要求.4. 用3、5、6、18、23 这五个数组成一个四则运算式,得到的非零自然数最小是.【答案】12 41433 2 2 2 2 3 2 1 1 2 3 24 1 4 3 2 4 1 4 33444前句 后句A 对 错B 错 错 C对对【解析】最小的非零自然数为 1,而 6 ÷ 3 - 5 ÷ (23 -18) = 1 ,可以取到 1,故所求最小值为 1.5. 小明在正方形的边上标出若干个点,每条边上恰有 3 个,那么所标出的点最少有()个.(A )12 (B )10 (C )8 (D )6【答案】C【解析】希望所标出的点最少,也就是所标的点被重复计数,那么 4 个顶点上都标上,然后每条边再 标 1 个即可,故最少标 8 个点.3126. 如图, 5 ⨯ 5 的表格中,每格填入一个数字,使得相同的数字所在的方格都连在一起(相连的两个方格必须有公共边),现在已经给出了 1,2,3,4 各两个,那么,表格中所有数的和是.【答案】66【解析】如图所示,本题只有唯一填法,相加可得和为 66.7. 甲、乙、丙、丁获得了学校创意大赛的前 4 名(无并列),他们说:甲:“我既不是第一,也不是第二”;乙:“我的名次和丙相邻”; 丙:“我既不是第二,也不是第三”;丁:“我的名次和乙相邻”. 现在知道,甲、乙、丙、丁分别获得第 A 、B 、C 、D 名,并且他们都是不说慌的好学生,那么四位数 ABCD = .【答案】4213【解析】甲是第 3、4 名之一;丙是第 1 名或 4 名.如果丙是第 4 名,则乙是第 3 名。

(完整版)第二十二届华杯赛小高年级组决赛试题A解析

(完整版)第二十二届华杯赛小高年级组决赛试题A解析

(完整版)第⼆⼗⼆届华杯赛⼩⾼年级组决赛试题A解析第⼆⼗⼆届华杯赛⼩⾼年级组决赛试题A 解析1. ⽤[x]表⽰不超过x 的最⼤整数,例如[3.14]=3,则:201732017420175201762017720178[][][][][][]111111111111+++++的值为。

【考点】取整运算【专题】计算【难度】☆【解析】直接计算即可⽐较⿇烦的简算⽅法:先看第⼀项20173(200215)361001454545[][][][691]691[]1111111111++===+=+ 第⼆项:20173(200215)481001606060[][][][891]891[]1111111111++===+=+ 所以原式=45607590105120691[]891[]1091[]1291[]1491[]1691[]111111111111+++++++++++=(6810121416)914568910+++++++++++ =60482. 从4个整数中任意选出3个, 求出它们的平均值, 然后再求这个平均值和余下1个数的和, 这样可以得到4个数:8,12,2103和193, 则原来给定的4个整数的和为。

【考点】平均数与求和【专题】计算【难度】☆【解析】假设这四个数为,,,a b c d每三个数的平均值为:()3,()3,()3,()3a b c a b d a c d b c d ++÷++÷++÷++÷ 分别与余下的数的和为:21()38,()312,()310,()3933a b c d a b d c a c d b b c d d ++÷+=++÷+=++÷+=++÷+=将这四个式⼦左右两边分别相加得到:21()3()3()3()381210933a b c d a b d c a c d b b c d d ++÷++++÷++++÷++++÷+=+++()340a b c a b d a c d b c d a b c d +++++++++++÷++++=3()3()40a b c d a b c d ?+++÷++++=2()40a b c d ?+++=20a b c d +++=3. 在3×3的⽹格中(每个格⼦是个1×1的正⽅形)放两枚相同的棋⼦,每个格⼦最多放⼀枚棋⼦, 共有种不同的摆放⽅法.(如果两种放法能够由旋转⽽重合, 则把它们视为同⼀种摆放⽅法).【考点】【专题】杂题【难度】☆【解析】这种题⽬因为情况不多,所以⼀⼀列举就是⼀种很好的办法,但是要注意不能重复和遗漏。

18~22届华杯赛小高组初赛试题及参考答案

18~22届华杯赛小高组初赛试题及参考答案

第一章 计算篇
1、【第 18 届华杯赛初赛 A 第 1 题】
2012.25×2013.75-2010.25×2015.75=( )
(A)5
(B)6
(C)7
(D)8
2、【第 18 届华杯赛初赛 B 卷第 2 题】
2 2 3 2 3 3 2 3 3 3 2 33的个位数字是( )。
9个3
-4-
第三章 几何篇
1、【第 18 届华杯赛初赛 A 卷第 5 题】
右图 ABCD 是平行四边形,M 是 DC 的中点,E 和 F 分别位于 AB 和 AD 上,且 EF
平行于 BD。若三角形 MDF 的面积等于 5 平方厘米,则三角形 CEB 的面积等于( )
平方厘米。
(A)5
(B)10
(C)15
计算: 481 1 265 1 904 1 184 29 160 41 703 55 _____。
6
12
20
30
42
56
7、【第 20 届华杯赛初赛 C 卷第 1 题】
计算: 9 11 13 15 17 120 1 1 ( )
20 30 42 56 72
34
(A)42
(B)43
4、【第 19 届华杯赛初赛 A 卷第 9 题】 四个黑色 1×1×1 的正方体和四个白色 1×1×1 的正方体可以组成________种不 同的 2×2×2 的正方体(经过旋转得到相同的正方体视为同一种情况)。 5、【第 19 届华杯赛初赛 B 卷第 10 题】 从 1,2,3,…,2014 中取出 315 个不同的数(不计顺序)组成等差数列,其中组 成的等差数列中包含 1 的有________种取法;总共有________种取法。 6、【第 20 届华杯赛初赛 A 卷第 3 题】

第22届华杯赛总决赛全部四组题目

第22届华杯赛总决赛全部四组题目

总决赛试题 小中组一试一、填空题(共3题,每题10分)1. 计算:2017201820192020220182019⨯+⨯-⨯⨯=_________.2. 若干枚白色棋子成直线摆放,将其中一些棋子染成红色,使未染成的白色棋子被隔成9部分,其中有2部分棋子数量相同,而同样被白色棋子隔开的各部分的红色棋子数均不相同,则棋子总数的最小值为_________.3. 把1,2,3,4,5,6,7,8,9分别填入33⨯的九宫格中,使得每行、每列的三个数的和都相等,中心位置可能填的数共有_________个.二、解答题(共3题,每题10分,写出解答过程)4. 如图,大、小正方形的边长分别为4和1,且各边均水平或竖直放置,求四边形ADFG和BHEC 的面积之和.5. 将一个数的各位数字倒序后所得的数称为原数的倒序数.2017具有这样的性质:将2017及其倒序数7102相加,所得和9119的各位数字都是奇数.能否找到这样的五位数,使它与其倒序数的和的各位数字都是奇数?若能,请给出一个例子;若不能,请说明理由.6. 一副扑克牌去掉大小王后还有52张,如果把J ,Q ,K ,A 分别当作11,12,13,1点,问最多取出多少张牌,可使得取出的牌中任意两张牌的点数之和是合数?BA总决赛试题 小中组二试一、填空题(共3题,每题10分)1. 2017的倍数中,各个数字不同的五位数最大为_________.2. 长方形甲与乙的边长都是大于1的自然数,如图拼成一个“L 形”.已知“L 形”的面积是432,甲的面积为133,那么“L 形”的周长为_________.3. 同时满足下列两个条件的四位数共有_________个.(1)该数的各位数字只能是2,3,4,5中的数,数字允许重复; (2)该数能被组成它的各位数字整除.二、解答题(共3题,每题10分,写出解答过程)4. 将1,2,3,4,5,6,7,8分成两组,若第一组数的乘积恰为第二组数的乘积的整数倍,则最小为多少倍?5. 能否将1个正方形恰好分割成2017个互不重叠的小正方形,使得这2017个小正方形一共只有2种不同的大小?若能,请给出一个例子;若不能,请说明理由.bc6.下图是用9个相同的小正三角形拼成的图案,小正三角形的顶点称为格点.以格点为顶点,一组对边平行但不相等,另一组对边相等的四边形,称为“贝贝梯形”.(1)图中共有多少个“贝贝梯形”?(2)在格点处写下自然数1,2,3,4,…,8,9,10,每个格点写1个数字,不同格点所写的数字不同,将每一个“贝贝梯形”的四个顶点处的数字求和,再将这些和相加,结果最大是多少?总决赛试题 小高组一试一、填空题(共3题,每题10分)1. 计算:()422201720162017220173-⨯+⨯+=_________.2. 不超过100的所有质数的乘积,减去不超过100的所有个位数字为3和7的质数的乘积,所得差的个位数字为_________.3. 运动会上,有6名选手参加100米比赛,观众甲猜测:4道或5道的选手得第一名;观众乙猜测:3道的选手不可能得第一名;观众丙猜测:1,2,6道选手中的一位获得第一名;观众丁猜测:4,5,6道的选手都不可能得第一名;比赛后发现没有并列名次,且甲、乙、丙、丁中只有1人猜对比赛结果,此人是_________.二、解答题(共3题,每题10分,写出解答过程)4. 能够将1到2017这2017个自然数分为若干组,使得每组中的最大数都等于该组其余数的和吗?如果能,请举一例;如果不能,请说明理由. 5. 把20172016表示成两个形式均为1n n+的分数相乘(其中n 是不为零的自然数),问有多少种不同的方法?(b d a c ⨯与d bc a⨯视为相同方法)6. 甲、乙锻炼身体,从山脚爬到山顶,再从山顶跑回山脚,来回往返不断运动.已知甲、乙下山速度都是上山速度的1.5倍,甲的速度与乙的速度之比是6:5.两人同时从山脚开始爬山,经过一段时间后,甲第10次到达山顶.问:在此之前,甲在山顶上有多少次看到乙正爬向山顶,且此时乙距离山顶尚有多于从山脚到山顶路程的三分之二?总决赛试题 小高组二试一、填空题(共3题,每题10分)1. 某小镇上有若干辆共享单车,如果小镇人口少1人,则平均200人共享一辆单车,如果单车减少2俩,小镇共享一辆单车的平均人数仍为整数,则小镇最多有_________人.2. 恰有1513个不超过m 的正整数n 使得1234n n n n +++的个位数字为0,则自然数m =_________.3. 下图中的L 型立体称为“构件”,可切割成为4个单位正方体.用4个“构件”连结组合成一个长方体,如果经旋转及翻转后,连结成的两个长方体宽、长、高相同,并且连结方式相同,可视为相同的长方体,否则是不同的长方体,则可连结出_______种一条棱长为1的不同的长方体,总共可以连结出_______种不同的长方体.二、解答题(共3题,每题10分,写出解答过程)4. 从1,2,3,4,…,2017中,最多能选出多少个数,在这些数中,不存在三个数a ,b ,c 满足a b c +=?5. 下图中,ABCD 是长为3,宽为1的长方形,BE EG GC ==,2AH HD =,AC 、AG 、BH 、EH 交成阴影四边形PNQM .求四边形PNQM 的面积.6. 在等差数列1,4,7,10,13,16,…的前500项中,有多少个是完全平方数?总决赛试题 初一组一试一、填空题(共3题,每题10分)1. 计算:22222222221223344520162017---+---+--=_________.2. 某班30名同学在旅游途中看到一个商店的广告:酸奶一瓶5元,两瓶9元;冰激凌一支6元,两只10元.每人选择酸奶或者冰激凌中的一种,用最省钱的方式购买,一共花了140元.那么,他们一共至多买了_____瓶酸奶,至少买了_____瓶酸奶.3. 如图,在三角形ABC 中,D 、E 分别在边BC 、AC 上,AB AC =,AD AE =,18CDE ∠=︒,则BAD ∠=_________.二、解答题(共3题,每题10分,写出解答过程)4. 是否存在数c 满足:对任意的有理数a ,b ,都有a b +,a b -,1b -三个值中最大值大于等于c ?如果存在这样的c ,请给出一个具体数值,并求c 的最大值;如果不存在,请说明理由.5. 一个立方体是由27个棱长为1个单位的小正方体构成的.一只蚂蚁从A 沿着立方体表面的小正方体的边爬到B ,最短路径长是多少个单位?最短路径有多少种不同的走法? 6. []a 表示不超过a 的最大整数,求满足条件12235x x x x ++⎡⎤⎡⎤⎡⎤++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦的所有x 的值的和.AD总决赛试题 初一组二试一、填空题(共3题,每题10分)1. 一个四位数abcd 是完全平方数,并且满足()5104910c d a b ++=+,则这个四位数是_____或_____.2. 把500枚鸡蛋装到分别能装17枚和27枚两种规格的盒子中出售,刚好装完无剩余,则17枚规格的盒子装了_____盒,27枚规格的盒子装了_____盒.3. 在一条线段有n 个等分点,从n 个等分点中任选10个点,中间必有两个点,能把原线段分成3段,这3段能构成三角形,则n 的最大值是_________.二、解答题(共3题,每题10分,写出解答过程) 4. 求方程2432426760x y y y y -+-+-=的全部整数解.5. E 、F 分别是四边形ABCD 的对角线AC 、BD 的中点,EF 分别交边AD 、BC 于点P 和Q .已知7APPD=,求BQ QC 的值.6. 将1,2,3,4,5,6,7这7个数打乱次序排列成一行,1a ,2a , (7)并作部分和,11S a =,212S a a =+,…,1j j j S S a -=+,2,3,,7j =.使得7个部分和中至少有1个是3的倍数的排列方法有多少种?A总决赛试题 初二组一试一、填空题(共3题,每题10分) 1. 若正数a ,b ,c 满足1a b c ++=,则()()()111abca b c ---的最大值为_________.2. 将正数x 四舍五入到个位得到整数n ,若42017x n -=,那么x =_________.3.已知1p =+,那么23331p p p++=_________.二、解答题(共3题,每题10分,写出解答过程)4. 在边长为1的正方形中(含边上)至多放置多少个点,可使得这些点之间的所有距离都不小于0.5?5. 下图中,四边形ABCD 是矩形,()12ABr r BC=<<.四边形AEFG 是正方形,顶点G 在边CD 上,边EF 通过点B .求:BF EF .6. 早上8点,快、慢两车同时从A 站出发,慢车环行全程一次用43分钟,回到A 站休息5分钟;快车环行全程一次用37分钟,回到A 站休息4分钟.如此往返行驶.问:22点以前,两车同时到达A 站几次?快车在A 站休息时慢车达到的情况有几次?(8点整,两车出发时不计).FA总决赛试题 初二组二试二、填空题(共3题,每题10分)1. 设多项式()p x 的各项系数都是非负整数,且()16p =,()332p =,则()2p 的所有可能值为_________.2.已知a =105173a a a +-=+_________.3.()12k k +能被n 整除的最小正整数k 记为()F n ,例如,()54F =.若()9F x =,则x =_______.若()9F y =,则y =_______.二、解答题(共3题,每题10分,写出解答过程)4. 从1,2,…,50这50个数中任选n 个不同的数,其中一定有三个的比为2:3:7.求n的最小值.5. 如图,以长为4厘米的线段AB 的中点O 为圆心和2厘米为半径画圆,交AB 的中垂线于点E .再以A 、B 为圆心和4厘米为半径分别画圆弧交AE 于C ,交BE 于D .最后以E 为圆心和DE 为半径画圆弧DC .请确定“下弦月形”ADCBEA (图中阴影部分)的面积是多少平方厘米.(答案中圆周率用π表示)6. 将1,2,3,4,5,6,7这7个数打乱次序排列成一行,1a ,2a , (7)并作部分和,11S a =,212S a a =+,…,1j j j S S a -=+,2,3,,7j =.使得7个部分和中至少有1个是3的倍数的排列方法有多少种?。

22届华杯赛决赛小学中年级组详解

22届华杯赛决赛小学中年级组详解
500 808 300 7 8 300 6 =72 米/分钟
8. 亚瑟王在王宫中召见6名骑士,这些骑士中每个骑士恰好 有2名朋友。他们围着一张圆桌坐下(骑士姓名与座位如右 图),结果发现这种坐法,任意相邻的两名骑士恰好都是朋 友。亚瑟王想重新安排座位,那么亚瑟王有种不同方法安排 座位,使得每一个骑士都不与他的朋友相邻(旋转以后相同 的,算同一种方法)。 【答案】6 【解析】 此题直接枚举即可,由于要求使得每一个骑士都不与他的朋友相邻,我们枚举时可以将 他们编号,而且可以转化为直线,如图:
3/6
转化为直线后即有:
1、相差为1的(包括首尾相接时)数不能放到一起;
1
2
2、虽然1和6相差为5,但是他们不能放在一起;
6
3
3、由于旋转后算作一种,我们只需要找一个“头”作为参
5
4
考即可,在此选择1作为头。
根据上述信息,枚举即可,数据如下: 135264, 136425 142635 146253 152463
11. 如右图,一个边长为3的正六边形被3组平行于其边的 直线分割成边长为1的54个小正三角形,那么以这些小正三 角形的顶点为顶点的正六边形共有多少个?
【答案】36 【解析】
1 2 32 =36
为什么可以这么做?具体详细的分析请将1至9这九个数字填入网格中,要求每个格 子填一个数字,不同格子填的数字不同,且每个格子周 围的格子(即与该格子有公共边的格子)所填数字之和 是该格子中所填数字的整数倍。已知左右格子已经填有 数字4和5,那么标有字母x的格子可以填的数字最大是多 少?
2017 11
8

=550+733+916+1100+1283+1466

小学组华杯赛试题及答案

小学组华杯赛试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项是最小的质数?A. 0B. 1C. 2D. 3答案:C2. 一个数的3倍加上4等于20,这个数是多少?A. 4B. 5C. 6D. 7答案:B3. 一个长方形的长是10厘米,宽是5厘米,它的面积是多少平方厘米?A. 30B. 50C. 60D. 70答案:B4. 一个数的5倍减去3等于12,这个数是多少?A. 3B. 2C. 1D. 0答案:A二、填空题(每题5分,共20分)5. 一个数加上10等于20,这个数是______。

答案:106. 一个数的4倍是24,这个数是______。

答案:67. 一个数的2倍加上3等于15,这个数是______。

答案:68. 一个数的3倍减去5等于10,这个数是______。

答案:5三、计算题(每题10分,共20分)9. 计算下列算式:(23 + 45) × (12 - 8)答案:68 × 4 = 27210. 计算下列算式:(36 ÷ 4) + (54 ÷ 6)答案:9 + 9 = 18四、解答题(每题15分,共30分)11. 一个班级有48名学生,如果每排坐8名学生,可以坐满几排?答案:48 ÷ 8 = 6(排)12. 一个长方形的长是15厘米,宽是9厘米,求它的周长。

答案:(15 + 9) × 2 = 24 × 2 = 48(厘米)五、应用题(每题20分,共20分)13. 小明有36个苹果,他打算每4个苹果装一袋,可以装几袋?答案:36 ÷ 4 = 9(袋)。

第22届“华杯赛”初赛试卷( 小中组四年级)参考答案

第二十二届华罗庚金杯少年数学邀请赛 初赛试卷(同文四年级组)参考答案 (时间: 2016年11月) 第一部分 一、填空题。

(每小题10分, 共80分.请将正确答案填入括号内.) 1. (1)44÷32×64 =( 88 ) (2)50×27×44÷(25×11×9)=( 24 ) 2.相同的汉字代表相同的数字,不同的汉字代表不同的数字,在下面加法竖式中,“卒”是代表( 0 )。

3.如右图,把A 、B 、C 、D 、E 这五部分分成4种不同的颜色涂色,且相邻的部分不能使用同一种颜色。

请问:这幅图共有( 96 )种不同的涂色方法。

4.甲、乙和丙三人报名参加运动会的跳绳、跳高和短跑这三个项目的比赛,每人只能参加一项比赛,不一定三项比赛都要有人参加,请问:报名的情况有( 27 )种。

5.在图中,从A 点沿线段走到B 点,每次只能向上或向右走一步,共有( 10 )种不同的走法。

总分 装订线6.如图,从甲地到乙地有3条路,从乙地到丙地有3条路,从甲地到丁地有2条路,从丁地到丙地有4条路,如果要求所走路线不能重复,那么从甲地到丙地共有(17 )条不同路线。

7. 如图所示,使得竖式成立,那么第二个乘数是(901 )。

×22 25 88. 如图,把A,B,C这三部分用4种不同的颜色涂,且相邻的部分不能使用同一种颜色,请问,这幅图一共有(24)种不同的涂色方法。

二、解答题。

(每小题10分, 共20分.请写出具体的解答过程.)1. 萱萱要从4幅水墨画、3幅油画和2幅水彩画中选取两幅不同类型的画布置客厅,有几种选法?4×3+3×2+4×2=26(种)2. 一个五位数,将它的各位数字顺序颠倒就可以得到一个新的五位数,而且这个五位数恰好是原数的4倍,那么原来的五位数是多少?21978×4=87912, 原来的五位数是21978。

22小学华杯赛试题及答案

22小学华杯赛试题及答案【正文】22小学华杯赛试题及答案一、语文试题1. 下列词语中哪一个是同义词?A. 喧嚣B. 宁静C. 兴奋D. 热闹【答案】B2. 将下列词语补充完整:一年四_______。

【答案】季节3. 请用五个字造一个成语:“一______压百______”。

【答案】统度,步4. 下面哪个词语是错误的?A. 蔬菜B. 橙色C. 香蕉D. 刚果【答案】D5. 请写出下列成语的正确解释:“一切顺利,没有问题。

”【答案】一帆风顺二、数学试题1. 请计算:30 ÷ 5 × (8 - 3) = ?【答案】302. 请将下列数字由小到大排列:12, 5, 9, 17, 3【答案】3, 5, 9, 12, 173. 两个相邻数的差是1,30个连续的自然数相加的和是多少?【答案】9004. 请计算:7 × 8 + 20 ÷ 5 = ?【答案】595. 下列数字中,最小的是?A. 2/3B. 3/5C. 4/7D. 1/2【答案】B三、英语试题1. Choose the correct word to complete the sentence: My sister is ________ than me.A. tallB. tallerC. tallestD. the tallest【答案】B2. Which word is the opposite of "near"?A. farB. awayC. closeD. beside【答案】A3. What is the plural form of "child"?【答案】children4. Fill in the blank with the correct preposition: The cat is ________ the table.A. onB. atC. inD. under【答案】A5. What is the correct translation of "早上好"?【答案】Good morning【文章结束】。

华杯赛初赛试题及答案

华杯赛初赛试题及答案华杯赛初赛试题及答案一、选择题1.下列选项中,哪个是所有外国歌曲?A.梅花香自苦寒来B.黄河之水天上来C.Let It GoD.没那么简单答案:C2.中国三大中心城市不包括以下哪个城市?A.北京B.上海C.深圳D.广州答案:D3."世界上最长的河流"指的是哪条河?A.长江B.亚马逊河C.尼罗河D.黄河答案:C4.下面哪个星座是水瓶座?A.1月20日-2月18日B.2月19日-3月20日C.3月21日-4月19日D.4月20日-5月20日答案:A5.以下哪个国家拥有最多的人口?A.印度B.巴西C.美国D.俄罗斯答案:A二、填空题1.请列举五大洲的名称。

答案:______、______、______、______、______。

2.请写出日本首都的名称。

答案:_________。

3.请填写下列成语:一日三秋。

答案:______。

4.下面哪个不是动物的名字?A.猫B.狗C.凳子D.鸟答案:C5.请写出中国古代四大发明中的任意一项。

答案:______。

三、问答题1.请简述中国的国旗和国徽的设计。

答案:中国的国旗背景为红色,中间有五颗黄色的星星,象征着中国共产主义革命的五类人民。

国徽上有天安门的图案以及麦穗和五星。

2.请写出任意一位中国的古代历史人物。

答案:_________。

3.请解释什么是环保。

答案:环保是指保护和改善环境,使人们的生活环境更加美好,并且不对地球造成不可逆转的伤害。

四、判断题判断下列句子的正误,正确的写“对”,错误的写“错”。

1.地球是宇宙中唯一有生命的行星。

答案:错2.北京是中国的首都。

答案:对3.《罗密欧与朱丽叶》是一部古希腊悲剧。

答案:错4."绿水青山就是金山银山"是习近平提出的口号。

答案:对5.手机可以用来打电话和上网。

答案:对五、作文题请根据自己的实际情况,写一篇关于节约用水的作文。

(文章正文内容,请根据个人实际情况进行书写,字数不限)答案:(以下为作文示例)在日常生活中,节约用水对我们每个人都非常重要。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第22届华罗庚金杯少年数学邀请赛初赛试卷(小学中年级组)
一、选择题(每小题10分,共60分。

以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内。


1、两个小三角形不重叠放置可以拼成一个大三角形,那么这个大三角形不可能由()拼成。

A、两个锐角三角形
B、两个直角三角形
C、两个钝角三角形
D、一个锐角三角形和一个钝角三角形
2、从1至10这10个整数中,至少取()个数,才能保证其中有两个数的和等于10。

A、4
B、5
C、6
D、7
3、小明行李箱锁的密码是由两个数字8与5构成的三位数。

某次旅行,小明忘记了密码,他最少要试()次,才能确保打开箱子。

A、9
B、8
C、7
D、6
4、猎豹跑一步长为2米,狐狸跑一步长为1米,猎豹跑2步的时间狐狸跑3步,猎豹距离狐狸30米,则猎豹跑()米可追上狐狸。

A、90
B、105
C、120
D、135
5、图1中的八边形是将大长方形纸片剪去一个小长方形得到的,则至少需要知道()条线段的长度,才可以算出这个八边形的周长。

A、4
B、3
C、5
D、10
6、一个数串219……,从第4个数字开始,每个数字都是前面3个数字和的个位数字,下面有4个四位数:1113,2226,2125,2215。

其中共有()个不出现在该数串中。

A、1
B、2
C、3
D、4
二、填空题(每小题10分,满分40分)
7、计算:1000—257—84—43—16=。

8、已知动车的时速是普快的两倍,动车的时速提高25%即达到高铁的时速。

高铁与普快的平均时速比特快快15千米/小时,动车与普快的平均时速比特快慢
10千米/小时,则高铁和普快的时速分别是千米小/时和千米//小时。

9、《火星救援》中,马克不幸没有跟上其他5名航天员飞回地球,独自留在了火星,马克必须想办法生存,等待求援。

马克的居住舱内留有每名航天员5天的食品和50千克的非饮用水,还有一个足够大的菜园,马克计划用来种植土豆,30天后每平方米可以收获2.5千克,但是需要灌溉4千克的水。

马克每天需要吃1.875千克的土豆,才可以维持生存,则食品和土豆可供马克最多可以支撑天。

10、下图五角星中,位于顶点处的“华”、“罗”、“庚”、“金”、“杯”5个汉字分别代表1至5的数字,不同的汉字代表不同的数字,每条线段两端点上的数字和恰为5个连续的自然数,如果“杯”代表数字“1”,则“华”代表的数字是或。

第22届华罗庚金杯少年数学邀请赛初赛答案解析(小学中年级组)
一、选择题。

1、答案:A
解析:【考查目标】有关三角形的基础知识。

两个三角形要想拼成一个大三角形,要让两边重合,还有两条边连成一条直线,那么要有两个内角相加是180°,很明显两个锐角三角形不满足此条件。

故答案是A。

2、答案:D
解析:【考查目标】抽屉原理。

将和是10的两个数作为一组,有(1,9)、(2,8)(3,7)、(4,6),从这4组中各取一个数字,再取5和10,不会有两个数的和是10,再在这4组这剩下的数字中任取一个,都会有两个数的和是10,所以至少要取7个数字。

故正确答案是D。

3、答案:D
解析:【考查目标】分类枚举。

由数字5和8组成的三位数有:558、585、855、588、858、885一共有6个,所以至少要试6次才能确保打开箱子。

故正确答案是D。

4、答案:C
解析:【考查目标】行程问题中的追及问题。

根据题意知:在相同的时间内,猎豹跑2步狐狸可以跑3步,即在相同的时间内
猎豹跑4米,狐狸跑3米。

所以V
猎豹:V
狐狸
=4:3,根据追及时间=路程差÷速
度差,追及时间=30÷(4—3)=30,则猎豹跑的路程是:30×4=120(米),故正确答案是C。

5、答案:B
解析:【考查目标】巧求周长。

如图,通过平移可以得知,八边形的周长等于原长形的周长+两段红色线段的长
度,要想求出原长方形的周长必须知道长和宽,再知道红色线段的长度即可,所以知道至少要知道3条线段的长度。

故正确答案是B 。

6、答案:C
解析:【考查目标】找规律
按照题目要求,写出数串为21922372215847906512811……,发现这个数串数字的奇偶性为“偶奇奇偶偶奇奇偶偶奇奇……”不可能出现选项A 中三个偶数相连,B 中三个奇数相连,及B 中奇偶奇偶的情况,且2215在数串中出现。

故正确答案是C 。

二、填空题。

7、答案:600
解析:【考查目标】减法的性质。

一个数连续减去几个数的差就等于减去这几个数的和。

1000—257—84—43—16=1000—(257+84+43+16)=1000—400=600
8、答案:250;100
解析:【考查目标】列方程解应用题及平均数问题。

设普快的时速是x 千米/小时,则动车的时速是2x 千米/小时,高铁的时速是2x (1+25%)=2.5x 千米/小时,根据题意有:
2.5x x 2x x 1022
++—15=+,解得x =100 则高铁的时速是:2.5×100=250千米/小时
9、答案:130
解析:【考查目标】最值问题。

马克拥有的食品可以支撑:5×6=30(天);除此之外,马克有水:50×6=300(千克),这些水可以种土豆:300÷4×2.5=187.5(千克),这些土豆又可以供马克吃:187.5÷1.875=100(天),所以马克一共可以支撑:30+100=130(天)。

10、答案:3;4
解析:【考查目标】方阵问题。

计算五角星上5条线段上10个端点的总和,相当于五角星上每个顶点都被算了2次,所以和为(1+2+3+4+5)×2=30,又知这5条线的和是5个连续的自然数,那么中间数是:30÷5=6,即这5条线的和分别是4、5、6、7、8,其中
4必须是1+3;8必须是3+5,则5只能是1+4,6是2+4,7是2+5,因为“杯”是1,所以有2种可能的情况,如下图所示:
4。

相关文档
最新文档