选修2-3-12排列与组合
人教版高中数学选修2-3课件 组合与组合数公式

8
5.7 个朋友聚会,每两人握手 1 次,共握手________次. 解析:组合问题,共握手 C72=21 次. 答案:21
9
课堂探究 互动讲练 类型一 组合的有关概念 [例 1] 判断下列问题是组合问题还是排列问题: (1)10 人聚会,见面后每两人之间要握手相互问候,共需握手 多少次? (2)10 名同学分成人数相同的两个学习小组,共有多少种分法? (3)从 1,2,3,…,9 九个数字中任取 3 个,然后把这三个数字相 加得到一个和,这样的和共有多少个? (4)从 a,b,c,d 四名学生中选 2 名,去完成同一件工作,有 多少种不同的选法?
1
【课标要求】 1.理解组合的定义,正确认识组合与排列的区别与联系. 2.理解排列数与组合数之间的联系,掌握组合数公式,能运用 组合数公式进行计算. 3.会解决一些简单的组合问题.
2
自主学习 基础认识 1.组合的定义 从 n 个不同元素中取出 m(n≥m)个元素合成一组,叫做从 n 个
不同元素中取出 m 个元素的一个组合.
由此可以写出所有的组合:ABC,ABD,ABE,ACD,ACE, ADE,BCD,BCE,BDE,CDE.
17
方法归纳 (1)此类列举所有从 n 个不同元素中选出 m 个元素的组合,可 借助本例所示的“顺序后移法”(如方法一)或“树形图法”(如方 法二),直观地写出组合做到不重复不遗漏. (2)由于组合与顺序无关.故利用“顺序后移法”时箭头向后逐 步推进,且写出的一个组合不可交换位置.如写出 ab 后,不必再 交换位置为 ba,因为它们是同一组合.画“树形图”时,应注意顶 层及下枝的排列思路.防止重复或遗漏.
高中数学选修2-3-排列与组合

排列与组合知识集结知识元排列与排列数公式知识讲解1.排列及排列数公式【考点归纳】1.定义(1)排列:一般地,从n个不同的元素中任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.(其中被取的对象叫做元素)(2)排列数:从n个不同的元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号表示.2.相关定义:(1)全排列:一般地,n个不同元素全部取出的一个排列,叫做n个不同元素的一个全排列.(2)n的阶乘:正整数由1到n的连乘积,叫做n的阶乘,用n!表示.(规定0!=1)3.排列数公式(1)排列计算公式:=.m,n∈N+,且m≤n.(2)全排列公式:=n•(n﹣1)•(n﹣2)•…•3•2•1=n!.例题精讲排列与排列数公式例1.(x-2)(x-3)(x-4)…(x-15)(x∈N+,x>15)可表示为()A.A B.A C.A D.A例2.若=12,则n=()A.8B.7C.6D.4例3.已知=15,那么=()A.20B.30C.42D.72组合与组合数公式知识讲解1.组合及组合数公式【考点归纳】1.定义(1)组合:一般地,从n个不同元素中,任意取出m(m≤n)个元素并成一组,叫做从n个元素中任取m个元素的一个组合.(2)组合数:从n个不同元素中,任意取出m(m≤n)个元素的所有组合的个数,叫做从n 个不同元素中,任意取出m个元素的组合数,用符号表示.2.组合数公式:=.m,n∈N+,且m≤n.3.组合数的性质:性质1性质2.例题精讲组合与组合数公式例1.'排球单循环赛南方球队比北方球队多9支南方球队总得分是北方球队的9倍求证冠军是一支南方球队(胜得1分败得0分).'例2.'一个袋子里装有大小相同且标有数字1~5的若干个小球,其中标有数字1的小球有1个,标有数字2的小球有2个,…,标有数字5的小球有5个.(Ⅰ)从中任意取出1个小球,求取出的小球标有数字3的概率;(Ⅱ)从中任意取出3个小球,求其中至少有1个小球标有奇数数字的概率;(Ⅲ)从中任意取出2个小球,求小球上所标数字之和为6的概率.'例3.'求C3n38-n+C21+n3n的值.'排列组合的简单计数问题知识讲解1.排列、组合及简单计数问题【知识点的知识】1、排列组合问题的一些解题技巧:①特殊元素优先安排;②合理分类与准确分步;③排列、组合混合问题先选后排;④相邻问题捆绑处理;⑤不相邻问题插空处理;⑥定序问题除法处理;⑦分排问题直排处理;⑧“小集团”排列问题先整体后局部;⑨构造模型;⑩正难则反、等价转化.对于无限制条件的排列组合问题应遵循两个原则:一是按元素的性质分类,二是按时间发生的过程进行分步.对于有限制条件的排列组合问题,通常从以下三个途径考虑:①以元素为主考虑,即先满足特殊元素的要求,再考虑其他元素;②以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置;③先不考虑限制条件,计算出排列或组合数,再减去不符合要求的排列或组合数.2、排列、组合问题几大解题方法:(1)直接法;(2)排除法;(3)捆绑法:在特定要求的条件下,将几个相关元素当作一个元素来考虑,待整体排好之后再考虑它们“局部”的排列.它主要用于解决“元素相邻问题”;(4)插空法:先把一般元素排列好,然后把待定元素插排在它们之间或两端的空档中,此法主要解决“元素不相邻问题”;(5)占位法:从元素的特殊性上讲,对问题中的特殊元素应优先排列,然后再排其他一般元素;从位置的特殊性上讲,对问题中的特殊位置应优先考虑,然后再排其他剩余位置.即采用“先特殊后一般”的解题原则;(6)调序法:当某些元素次序一定时,可用此法;(7)平均法:若把kn个不同元素平均分成k组,每组n个,共有;(8)隔板法:常用于解正整数解组数的问题;(9)定位问题:从n个不同元素中每次取出k个不同元素作排列规定某r个元素都包含在内,并且都排在某r个指定位置则有;(10)指定元素排列组合问题:①从n个不同元素中每次取出k个不同的元素作排列(或组合),规定某r个元素都包含在内.先C后A策略,排列;组合;②从n个不同元素中每次取出k个不同元素作排列(或组合),规定某r个元素都不包含在内.先C后A策略,排列;组合;③从n个不同元素中每次取出k个不同元素作排列(或组合),规定每个排列(或组合)都只包含某r个元素中的s个元素.先C后A策略,排列;组合.例题精讲排列组合的简单计数问题例1.的展开式中,x的系数为___(用数字作答)例2.在的展开式中,x4的系数是____.例3.若,则n的展开式中,含x2项的系数为_______.当堂练习单选题练习1.计算2+3的值是()A.72B.102C.5070D.5100练习2.=()A.30B.24C.20D.15练习3.6本不同的书在书桌上摆成一排,要求甲,乙两本书必须放在两端,丙、丁两本书必须相邻,则不同的摆放方法有()种。
高中数学第一章计数原理12排列与组合122组合第3课时教案新人教A版选修23

1.2.2 组合第三课时教学目标知识与技能理解排列组合的区别和联系,综合运用排列组合解决计数问题.过程与方法通过具体实例,经历把具体事例抽象为排列组合问题,利用排列、组合数公式求解的过程.情感、态度与价值观能运用排列组合要领分析简单的实际问题,提高分析问题的能力.重点难点教学重点:综合运用排列组合解决计数问题.教学难点:综合运用排列组合解决计数问题.教学过程复习回顾提出问题1:判断下列问题是组合问题还是排列问题?并求出下列问题的解.(1)在北京、上海、广州三个民航站之间的直达航线上,有多少种不同的飞机票?(2)高中部11个班进行篮球单循环比赛,需要进行多少场比赛?(3)从全班23人中选出3人分别担任班长、副班长、学习委员三个职务,有多少种不同的选法?(4)10个人互相通信一次,共写了多少封信?(5)10个人互通电话一次,共打了多少个电话?活动设计:学生自主完成,教师提问.活动成果:(1)(3)(4)是排列;(2)(5)是组合.(1)A 23=6;(2)C 211=55;(3)A 323=10 626;(4)A 210=90;(5)C 210=45.1.从n 个不同元素中,任取m(m≤n)个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.2.排列数公式:A m n =n(n -1)(n -2)…(n-m +1)(m ,n∈N ,m≤n).A m n =n(n -1)(n -2)…(n-m +1)=n !(n -m)!=A nn A n -m n -m . 3.组合的概念:一般地,从n 个不同元素中取出m(m≤n)个元素合成一组,叫做从n 个不同元素中取出m 个元素的一个组合.4.C mn =A mn A m =n(n -1)(n -2)…(n -m +1)m !或C m n =n !m !(n -m)!(n ,m∈N ,且m≤n). 设计意图:回顾本单元基础知识,为本节课的学习服务.典型例题类型一:排数字问题1(1)用0,1,2,3,4能组成多少个无重复数字的四位数?(2)这四位数中能被3整除的数有多少个?思路分析:可以从特殊元素或特殊位置入手直接分析,也可以从对立面间接排除. 解:(1)直接分类法:①特殊元素分析法:分两类:选0,有A 13A 34=72个;不选0,有A 44=24个.根据分类加法计数原理可得共有72+24=96个.②特殊位置分析法:先考虑首位,可以从1,2,3,4四个数字中任取一个,共A 14种方法,再考虑其他三个位置,可以从剩下的四个数字中任取3个,即A 34种方法.根据分步乘法计数原理共有A 14A 34=96种方法,即96个无重复数字的四位数.③间接排除法:先从五个数字中任取四个排成四位数:A 45,再排除不符合要求的四位数,即0在首位的四位数:A 34.则共有A 45-A 34=96个.(2)能被3整除的四位数应该是四位数字之和为3的倍数的数.分析:因为不含0时,1+2+3+4=10,10不是3的倍数,所以组成的四位数必须有0,即0,1,2,3或0,2,3,4,共有2(A 44-A 33)=36个.点评:对于有特殊元素和特殊位置的问题,往往有三种方法:特殊元素分析法、特殊位置分析法、间接排除法.【巩固练习】用0,1,2,3,4五个数字组成无重复数字的五位数从小到大依次排列.(1)第49个数是多少?(2)23 140是第几个数?解:(1)首位是1,2,3,4组成的五位数各24个.所以第49个数是首位为3的最小的一个自然数,即30 124.(2)首位为1组成A 44=24个数;首位为2,第二位为0,1共组成2A 33=12个数.首位为2,第二位为3,第三位为0的数共A 22=2个;首位为2,第二位为3,第三位为1,第四位为0的数有1个,为23 104.由分类加法计数原理得:A 44+2A 33+A 22+1=39.按照从小到大的顺序排列,23 104后面的五位数就是23 140,所以23 140是第40个数.类型二:分组分配问题2(1)6本不同的书,按下列条件,各有多少种不同的分法:①分给甲、乙、丙三人,每人两本;②分成三份,每份两本;③分成三份,一份1本,一份2本,一份3本;④分给甲、乙、丙3人,一人1本,一人2本,一人3本;⑤分给5个人,每人至少一本;(2)6本相同的书,分给甲乙丙三人,每人至少一本,有多少种不同的分法?思路分析:可以根据分类加法计数原理和分步乘法计数原理,结合排列数和组合数来解决这类问题.解:(1)①分成三个步骤:第一步,选2本书分配给甲,有C 26种方法;第二步,从剩下的4本书中选2本书分配给乙,有C 24种方法;第三步,将剩下的2本书分配给丙,有C 22种方法.根据分步乘法计数原理,共有C 26C 24C 22=90种方法.②在①的基础上去掉顺序即可,有C 26C 24C 22A 33=15种方法. ③分成三个步骤:第一步,选1本书成为一组,有C 16种方法;第二步,从剩下的5本书中选2本书成为一组,有C 25种方法;第三步,剩下的3本书成为一组,有C 33种方法.根据分步乘法计数原理,共有C 16C 25C 33=60种方法.④在③的基础上,把三组书分配给三个人即可,有C 16C 25C 33A 33=360种方法.⑤分成两个步骤:第一步,分成5组,有C 26种方法;第二步,将5组分配给5个人,有A 55种方法.根据分步乘法计数原理,共有C 26A 55=1 800种方法.(2)分成两个步骤:第一步,分成3组,有C25种方法;第二步,将3组分配给3个人,有A33种方法.根据分步乘法计数原理,共有C25A33=60种方法.点评:在解决问题时,要先考虑分类还是分步完成,然后考虑是否有顺序,再确定方法.【巩固练习】1.今有10件不同奖品,从中选6件分成三份,其中两份各1件,另一份4件,有多少种分法?2.今有10件不同奖品,从中选6件分给甲乙丙三人,每人二件,有多少种分法?答案:1.C610C46=3 150 2.C610C26C24C22=18 900.【变练演编】对某种产品的6件不同的正品和4件不同的次品,一一进行测试,直至区分出所有次品为止,若所有次品恰好在第5次测试时全部发现,则这样的测试方法有几种可能?提示:因为在第5次测试时全部发现次品,所以第五次测试的一定是次品,前四次有三次出现次品.所以共有A34C16C11=144种可能.【达标检测】1.把6个学生分到一个工厂的三个车间实习,每个车间2人,若甲必须分到一车间,乙和丙不能分到二车间,则不同的分法有____________种.2.从6位同学中选出4位参加一个座谈会,要求张、王两人中至多有一个人参加,则有不同的选法种数为________________.3.要从8名男医生和7名女医生中选5人组成一个医疗队,如果其中至少有2名男医生和至少有2名女医生,则不同的选法种数为____________.(用排列数和组合数表示) 答案:1.9 2.9 3.C38C27+C28C37课堂小结1.知识收获:进一步复习分类加法计数原理和分步乘法计数原理以及排列、组合的概念.2.方法收获:(1)注意区别“恰好”与“至少”;(2)特殊元素(或位置)优先安排;(3)“相邻”用“捆绑”,“不邻”就“插空”;(4)混合问题,先“组”后“排”.3.思维收获:化归思想、分类讨论思想.补充练习【基础练习】1.用1、2、3、4、5、6、7、8组成没有重复数字的八位数,要求1与2相邻,3与4相邻,5与6相邻,而7与8不相邻,这样的八位数共有______个(用数字作答).2.五个工程队承建某项工程的5个不同的子项目,每个工程队承建1项,其中甲工程队不能承建1号子项目,则不同的承建方案共有______种.3.从集合{O,P,Q,R,S}与{0,1,2,3,4,5,6,7,8,9}中各任取2个元素排成一排(字母和数字均不能重复).每排中字母O、Q和数字0至多只出现一个的不同排法种数是______.答案:1.576 2.96 3.8 424【拓展练习】4.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同的派遣方案?解:因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况:①若甲乙都不参加,则有派遣方案A48种;②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有A38种方法,所以共有3A38种方案;③若乙参加而甲不参加,同理也有3A38种方案;④若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余8人到另两个城市有A28种,共有7A28种方法.所以共有不同的派遣方案总数为A48+3A38+3A38+7A28=4 088.设计说明本节课是排列组合复习课,目的是总结综合应用排列组合的问题和方法.特点是教师总结题目,学生在解决的过程中总结方法,举一反三,达到灵活掌握的程度.备课资料相同元素的分配问题隔板法:1把20个相同的球全放入编号分别为1,2,3的三个盒子中,要求每个盒子中的球数不少于其编号数,则有多少种不同的放法?解:向1,2,3号三个盒子中分别放入0,1,2个球后还余下17个球,然后再把这17个球分成3份,每份至少一球,运用隔板法,共有C216=120种.210个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?解:10个名额分到7个班级,就是把10个名额看成10个相同的小球分成7堆,每堆至少一个,可以在10个小球的9个空位中插入6块木板,每一种插法对应着一种分配方案,故共有不同的分配方案为C69=84种.变式1:7个相同的小球,任意放入四个不同的盒子,问每个盒子都不空的放法有______种.变式2:马路上有编号为1,2,3,4,5,6,7,8,9的9盏路灯,为节约用电,可以把其中的三盏路灯关掉,但不能同时关掉相邻的两盏或三盏,也不能关掉两端的路灯,满足条件的关灯办法有________种.3将4个相同的白球、5个相同的黑球、6个相同的红球放入4个不同盒子中的3个中,使得有一个空盒且其他盒子中球的颜色齐全的不同放法有多少种?解:(1)先从4个盒子中选三个放置小球有C34种方法.(2)注意到小球都是相同的,我们可以采用隔板法.为了保证三个盒子中球的颜色齐全,可以在4个相同的白球、5个相同的黑球、6个相同的红球所产生的3个、4个、5个空档中分别插入两个板.各有C23、C24、C25种方法.(3)由分步乘法计数原理可得C34C23C24C25=720种.。
高中数学选修2-3优质课件:组合与组合数公式

解:(1)从 10 名教师中选 2 名去参加会议的选法种数为 C210= 120××19=45. (2)可把问题分两类情况: 第 1 类,选出的 2 名是男教师有 C62种选法; 第 2 类,选出的 2 名是女教师有 C42种选法. 根据分类加法计数原理,共有 C62+C42=15+6=21 种不同的 选法.
由此可得所有的组合为 ab,ac,ad,ae,bc,bd,be,cd,ce,de.
第六页,编辑于星期一:点 三十六分。
与组合数有关的计算
[例 2] (1)计算:C140-C37·A33; (2)已知C15m-C16m=107Cm7 ,求 C8m+C58-m. [解] (1)原式=C140-A73=140××39××28××17-7×6×5=210 -210=0. (2)原式=m!55!-m!-m!66!-m! =7×71-0×m7!!m!,
第十页,编辑于星期一:点 三十六分。
解:(1)原式=C38+C2100×1=83× ×72× ×61+1020××199=56+4 950 =5 006. (2)原方程可变形为CC53nn- -31+1=159,Cn5-1=154Cn3-3, 即n-1n-2n5-!3n-4n-5 =154·n-3n3-!4n-5,化简整理,得 n2-3n-54=0.解此 二次方程,得 n=9 或 n=-6(不合题意,舍去),所以 n=9 为所求.
)
A.4 或 9
B.4
C.9
D.其他
解析:当 x=3x-8 时,解得 x=4;当 28-x=3x-8
时,解得 x=9.
答案:A
第十八页,编辑于星期一:点 三十六分。
2.某班级要从 4 名男生、2 名女生中选派 4 人参加某次社区服
新人教A版高中数学(选修2-3)1.2《排列与组合》(排列)ppt课件

例2.解方程
A
3 2x
100Ax
2
解:原方程可化为2x(2x-1)(2x-2)=100x(x-1) ∵x≠0,x≠1 ∴ 2x-1=25 解得x=13 经检验x=13 是原方程的根。 例3.证明:A m
=A +mA n+1
。 。
m n
m-1 n
n! n! 证明:右边 m (n m )! (n m 1)! n ! (n m 1) n ! m (n 1)n ! (n m 1)! (n m 1)! (n 1)! Anm1 左 [(n 1) m ]!
一列,共有多少种不同的排法?
解决这个问题,需分3个步骤: 第1步,先确定左边的字母,在4个字母中任取1个,有4种方法; 第2步,确定中间的字母,从余下的3个字母中去取,有3种方法; 第3步,确定右边的字母,只能从余下的2个字母中去取,有2种方法. 根据分步计数原理,共有4×3×2=24
一般地,从n个不同元素中取出m(m≤n)个元素,按照一 定的顺序排成一列,叫做从n个不同元素中取出m个元素的一 个排列. 注意: 1.我们所研究的排列问题,是不同元素的排列,这里既没有 重复元素,也没有重复抽取相同的元素. 2.排列的定义中包含两个基本内容:一是“取出元素”;二是 “按照一定顺序排列”.“一定顺序”就是与位置有关,这也 是判断一个问题是不是排列问题的重要标志. 3.根据排列的定义,两个排列相同,当且仅当这两个排列的元 素完全相同,而且元素的排列顺序也完全相同.也就是说,如 果两个排列所含的元素不完全一样,那么就可以肯定是不同的 排列;如果两个排列所含的元素完全一样,但摆的顺序不同, 那么也是不同的排列. 4.如果m<n,这样的排列(也就是只选一部分元素作排列), 叫做选排列;如果m=n,这样的排列(也就是取出所有元素 作排列),叫做全排列.
高中数学选修2-3排列组合

计数原理【知识要点】一、分类加法原理与分布乘法计数原理1.加法原理:完成一件事有n 类办法,在第1类办法中有m 1种不同的方法,在第2类办法中有m 2种不同的方法,……,在第n 类办法中有m n 种不同的方法,那么完成这件事一共有N=m 1+m 2+…+m n 种不同的方法。
种不同的方法。
2.乘法原理:完成一件事,完成它需要分n 个步骤,第1步有m 1种不同的方法,第2步有m 2种不同的方法,……,第n 步有m n 种不同的方法,那么完成这件事共有N=m 1×m 2×…×m n 种不同的方法。
种不同的方法。
二、排列与组合1.排列与排列数:从n 个不同元素中,任取m(m m(m≤≤n)n)个元素,按照一定顺序排成一列,叫做从个元素,按照一定顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,从n 个不同元素中取出m 个(m (m≤≤n)n)元素的所有排列个元素的所有排列个数,叫做从n 个不同元素中取出m 个元素的排列数,用mn A 表示,表示,mn A =n(n-1)=n(n-1)……(n-m+1)=)!(!m n n -,其中m,n m,n∈∈N,m N,m≤≤n,注:一般地0n A =1,0!=1,n n A =n! 。
2.组合与组合数:一般地,从n 个不同元素中,任取m(m m(m≤≤n)n)个元素并成一组,叫做从个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合,即从n 个不同元素中不计顺序地取出m 个构成原集合的一个子集。
从n 个不同元素中取出m(m m(m≤≤n)n)个元素的所有组合的个数,叫做从个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用mn C 表示:表示:.)!(!!!)1()1(m n m n m m n n n C mn -=+--=规定:1C 0=n组合数的基本性质:(1)mn n m n C C -=;(2)11--+=n n m n m n C C C ;解决排列与组合的应用题的一般方法有:解决排列与组合的应用题的一般方法有:(1)特殊元素(位置)法)特殊元素(位置)法 (2)相邻问题的“捆绑法”)相邻问题的“捆绑法” (3)不相邻问题“插空法”)不相邻问题“插空法” (4)正难则反)正难则反 “排除法”“排除法”一、两个计数原理1、某人计划按“石家庄—青岛—广州”的路线旅游,从石家庄到青岛可乘坐汽车、火车、飞机3种交通工具,从青岛到广东可以乘坐汽车、火车、飞机、轮船4种交通工具,文此人可选择的旅行方式有 ()选择的旅行方式有A、7 种B、8 种C、10 种D、12种2、从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b 组成复数a+bi,其中虚数有其中虚数有 ()A、30个B、36个C、42个D、35个3、(07全国)从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一人参加,则不同的选派方法有 ()天,要求星期五有2人参加,星期六、星期日各1人参加,则不同的选派方法有A、40种B、60种C、100 种D、120种4、有4部机床,需要加工3个不同的零件,其不同的安排方法有个不同的零件,其不同的安排方法有 ()A、43B、34C、3A D、4445、有一项活动,需在3名老师,8名男同学和5名女同学中选人参加。
人教A版选修2-3高考数学轻松搞定排列组合难题二十一种方法 .docx

高中数学学习材料唐玲出品高考数学轻松搞定排列组合难题二十一种方法排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。
教学目标1.进一步理解和应用分步计数原理和分类计数原理。
2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。
提高学生解决问题分析问题的能力3.学会应用数学思想和方法解决排列组合问题. 复习巩固1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:12n N m m m =+++种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:12n N m m m =⨯⨯⨯种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有13C 然后排首位共有14C 最后排其它位置共有34A由分步计数原理得113434288C C A =C 14A 34C 13练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
2020人教版高三数学选修2-3(B版)电子课本课件【全册】

1.3 二项式定理
本章小结
2.1 离散型随机变量及其分布列
2.1.1 离散型
2Байду номын сангаас1.3 超几何分布
2.2.2 事件的独立性
2.3 随机变量的数字特征
2.3.1 离散型随机变
2.4 正态分布
阅读与欣赏 关于“玛丽莲问题”的争论
3.1 独立性检验
本章小结
附表
后记
第一章 计数原理
2020人教版高三数学选修2-3(B版) 电子课本课件【全册】
1.2.2 组合
2020人教版高三数学选修2-3(B版) 电子课本课件【全册】
2020人教版高三数学选修2-3(B 版)电子课本课件【全册】目录
0002页 0065页 0109页 0165页 0242页 0291页 0317页 0352页 0392页 0394页 0447页 0514页 0608页 0652页
第一章 计数原理
1.2 排列与组合
1.2.1 排列
1.3 二项式定理
1.1 基本计数原理
2020人教版高三数学选修2-3(B版) 电子课本课件【全册】
1.2 排列与组合 排列
1.2.1
2020人教版高三数学选修2-3(B版) 电子课本课件【全册】