选修2-3_12排列与组合资料

合集下载

人教版高中数学选修2-3《排列组合综合应用》

人教版高中数学选修2-3《排列组合综合应用》

上表演,出场安排甲,乙两人都不唱中间两位的 安排方法有多少种?
A C A A A A (种)
6 8 1 2 1 4 5 8 2 4 4 8
(二)有条件限制的组合问题:
例2:已知集合A={1,2,3,4,5,6,7,8,9} 求含有5个元素,且其中至少有两个是偶数的子 集的个数。 下面解法错在哪里? 至少有两个偶数,可先由4个偶数中取2个偶数, 然后再由剩下的7个数中选3个组成5个元素集合且满足至 少有2个是偶数。成以共有子集C42.C73=210(个)
用“具体排”来看一看是否重复,如C42中的一种选法是:选4 个偶数中的2,4,又C73中选剩下的3个元素不6,1,3组成集 合{2,4,6,1,3,};再看另一种选法:由C42 中选4个偶数中 的4,6,又C73中选剩下的3个元素不2,1,3组成集合{4,6, 2,1,3}。显然这是两个相同和子集,所以重复了。重复的原 因是分类不独立。
(三)排列组合混合问题:
例3.九张卡片分别写着数字0,1,2,…,8,从中取出三 张排成一排组成一个三位数,如果6可以当作9使用,问 可以组成多少个三位数?
1 1 1 解:可以分为两类情况:① 若取出6,则有2(A2 + C 8 2 C7C7 A 7 种方法,
解: ⑤ a在e的左边(可不相邻),这表明a,e只有一种顺 序,但a,e间的排列数为A22,所以,可把5个元素全排 列得排列数A55,然后再除以a,e的排列数A22。所以共 有排列总数为A55 / A22(种) 注意:若是3个元素按一定顺序,则必须除以排列数 A33。
1. 高二要从全级10名独唱选手中选出6名在歌咏会
优先法
解: ② 先从b,c,d三个选其中两个 排在首末两位,有A32种,然后把剩下的一个与a,e 排在中间三个位置有A33种,由乘法原理: 共有A32. A33=36种排列.

人教版高中数学选修2-3课件 组合与组合数公式

人教版高中数学选修2-3课件 组合与组合数公式
A.24 种 B.12 种 C.10 种 D.9 种 解析:第一步,为甲地选 1 名女老师,有 C21=2 种选法;第二 步,为甲地选 2 名男教师,有 C42=6 种选法;第三步,剩下的 3 名 教师到乙地,故不同的安排方案共有 2×6×1=12(种),故选 B. 答案:B
8
5.7 个朋友聚会,每两人握手 1 次,共握手________次. 解析:组合问题,共握手 C72=21 次. 答案:21
9
课堂探究 互动讲练 类型一 组合的有关概念 [例 1] 判断下列问题是组合问题还是排列问题: (1)10 人聚会,见面后每两人之间要握手相互问候,共需握手 多少次? (2)10 名同学分成人数相同的两个学习小组,共有多少种分法? (3)从 1,2,3,…,9 九个数字中任取 3 个,然后把这三个数字相 加得到一个和,这样的和共有多少个? (4)从 a,b,c,d 四名学生中选 2 名,去完成同一件工作,有 多少种不同的选法?
1
【课标要求】 1.理解组合的定义,正确认识组合与排列的区别与联系. 2.理解排列数与组合数之间的联系,掌握组合数公式,能运用 组合数公式进行计算. 3.会解决一些简单的组合问题.
2
自主学习 基础认识 1.组合的定义 从 n 个不同元素中取出 m(n≥m)个元素合成一组,叫做从 n 个
不同元素中取出 m 个元素的一个组合.
由此可以写出所有的组合:ABC,ABD,ABE,ACD,ACE, ADE,BCD,BCE,BDE,CDE.
17
方法归纳 (1)此类列举所有从 n 个不同元素中选出 m 个元素的组合,可 借助本例所示的“顺序后移法”(如方法一)或“树形图法”(如方 法二),直观地写出组合做到不重复不遗漏. (2)由于组合与顺序无关.故利用“顺序后移法”时箭头向后逐 步推进,且写出的一个组合不可交换位置.如写出 ab 后,不必再 交换位置为 ba,因为它们是同一组合.画“树形图”时,应注意顶 层及下枝的排列思路.防止重复或遗漏.

高中数学选修2-3-排列与组合

高中数学选修2-3-排列与组合

排列与组合知识集结知识元排列与排列数公式知识讲解1.排列及排列数公式【考点归纳】1.定义(1)排列:一般地,从n个不同的元素中任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.(其中被取的对象叫做元素)(2)排列数:从n个不同的元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号表示.2.相关定义:(1)全排列:一般地,n个不同元素全部取出的一个排列,叫做n个不同元素的一个全排列.(2)n的阶乘:正整数由1到n的连乘积,叫做n的阶乘,用n!表示.(规定0!=1)3.排列数公式(1)排列计算公式:=.m,n∈N+,且m≤n.(2)全排列公式:=n•(n﹣1)•(n﹣2)•…•3•2•1=n!.例题精讲排列与排列数公式例1.(x-2)(x-3)(x-4)…(x-15)(x∈N+,x>15)可表示为()A.A B.A C.A D.A例2.若=12,则n=()A.8B.7C.6D.4例3.已知=15,那么=()A.20B.30C.42D.72组合与组合数公式知识讲解1.组合及组合数公式【考点归纳】1.定义(1)组合:一般地,从n个不同元素中,任意取出m(m≤n)个元素并成一组,叫做从n个元素中任取m个元素的一个组合.(2)组合数:从n个不同元素中,任意取出m(m≤n)个元素的所有组合的个数,叫做从n 个不同元素中,任意取出m个元素的组合数,用符号表示.2.组合数公式:=.m,n∈N+,且m≤n.3.组合数的性质:性质1性质2.例题精讲组合与组合数公式例1.'排球单循环赛南方球队比北方球队多9支南方球队总得分是北方球队的9倍求证冠军是一支南方球队(胜得1分败得0分).'例2.'一个袋子里装有大小相同且标有数字1~5的若干个小球,其中标有数字1的小球有1个,标有数字2的小球有2个,…,标有数字5的小球有5个.(Ⅰ)从中任意取出1个小球,求取出的小球标有数字3的概率;(Ⅱ)从中任意取出3个小球,求其中至少有1个小球标有奇数数字的概率;(Ⅲ)从中任意取出2个小球,求小球上所标数字之和为6的概率.'例3.'求C3n38-n+C21+n3n的值.'排列组合的简单计数问题知识讲解1.排列、组合及简单计数问题【知识点的知识】1、排列组合问题的一些解题技巧:①特殊元素优先安排;②合理分类与准确分步;③排列、组合混合问题先选后排;④相邻问题捆绑处理;⑤不相邻问题插空处理;⑥定序问题除法处理;⑦分排问题直排处理;⑧“小集团”排列问题先整体后局部;⑨构造模型;⑩正难则反、等价转化.对于无限制条件的排列组合问题应遵循两个原则:一是按元素的性质分类,二是按时间发生的过程进行分步.对于有限制条件的排列组合问题,通常从以下三个途径考虑:①以元素为主考虑,即先满足特殊元素的要求,再考虑其他元素;②以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置;③先不考虑限制条件,计算出排列或组合数,再减去不符合要求的排列或组合数.2、排列、组合问题几大解题方法:(1)直接法;(2)排除法;(3)捆绑法:在特定要求的条件下,将几个相关元素当作一个元素来考虑,待整体排好之后再考虑它们“局部”的排列.它主要用于解决“元素相邻问题”;(4)插空法:先把一般元素排列好,然后把待定元素插排在它们之间或两端的空档中,此法主要解决“元素不相邻问题”;(5)占位法:从元素的特殊性上讲,对问题中的特殊元素应优先排列,然后再排其他一般元素;从位置的特殊性上讲,对问题中的特殊位置应优先考虑,然后再排其他剩余位置.即采用“先特殊后一般”的解题原则;(6)调序法:当某些元素次序一定时,可用此法;(7)平均法:若把kn个不同元素平均分成k组,每组n个,共有;(8)隔板法:常用于解正整数解组数的问题;(9)定位问题:从n个不同元素中每次取出k个不同元素作排列规定某r个元素都包含在内,并且都排在某r个指定位置则有;(10)指定元素排列组合问题:①从n个不同元素中每次取出k个不同的元素作排列(或组合),规定某r个元素都包含在内.先C后A策略,排列;组合;②从n个不同元素中每次取出k个不同元素作排列(或组合),规定某r个元素都不包含在内.先C后A策略,排列;组合;③从n个不同元素中每次取出k个不同元素作排列(或组合),规定每个排列(或组合)都只包含某r个元素中的s个元素.先C后A策略,排列;组合.例题精讲排列组合的简单计数问题例1.的展开式中,x的系数为___(用数字作答)例2.在的展开式中,x4的系数是____.例3.若,则n的展开式中,含x2项的系数为_______.当堂练习单选题练习1.计算2+3的值是()A.72B.102C.5070D.5100练习2.=()A.30B.24C.20D.15练习3.6本不同的书在书桌上摆成一排,要求甲,乙两本书必须放在两端,丙、丁两本书必须相邻,则不同的摆放方法有()种。

新人教A版选修2-31.2排列与组合课件二

新人教A版选修2-31.2排列与组合课件二

从排列与组合的定义可 以知道,两者都是从n个不同 元素中取出mm n个元素, 这是排列、组合的共同 点;它们的不同点是 , 排列与元素的顺序有关 , 组合与 元素的顺序无关 .只有元素相同且顺序也 相同的两个 排列才是相同的; 只要两个组合的元素相 同 ,不论 元 素的顺序如何 , 都是相同的组合 .例如 ab 与 ba 是两个 不同的排列 , 但它们却是同一个组合 . , 我们引进如下概念 : 类比排列问题 C是英文com bination 组合的 从n个不同元素中取出m m n个 第一个字母 , 组合 元素的所有不同组合的个数 ,叫做 数还可用符号 从n个不同元素中取出m个元素的
上述解释可以推广到一 般情形. 求从n个不同元素中取出 m个元素的排列数 , 可看作由以下 2个步骤得到的: 第1步, 从这n个不同元素中取出 m个元素,共
有C 种不同的取法 ; 第 2 步, 将取出的m个元素做全排列 ,共有A m m 种不同的排法 . m m 根据分步乘法计数原理 ,有 Am C A n n m.
1.2 排列与组合
1.2.2 组合
探究 从甲、乙、丙 3名同学中选出 2名去参加 一项活动 , 有多少种不同的选法 ? 这一问题与上 一节开头提出的问题 1有什么联系与区别 ? 从3名同学中选出 2名的可能选法可以列举 如下 : 甲、乙; 甲、丙; 乙、丙 .
上一节开头的问题 1 :" 从甲、乙、丙 3名同学中 选出 2 名去参加一活动 , 其中1 名参加上午的活 动,1 名参加下午活动 " , 由于 "甲上午,乙下午" 与 "乙上午,甲下午" 是 两种不同的选法,因此解决 这个问题时 ,不仅要从 3 名同学中选出2名, 而且 还要将他们按照 " 上午在前 , 下午在后" 的顺序排 列.这是上一节研究的排列 问题.

高中数学选修2-3优质课件:组合与组合数公式

高中数学选修2-3优质课件:组合与组合数公式
第十五页,编辑于星期一:点 三十六分。
解:(1)从 10 名教师中选 2 名去参加会议的选法种数为 C210= 120××19=45. (2)可把问题分两类情况: 第 1 类,选出的 2 名是男教师有 C62种选法; 第 2 类,选出的 2 名是女教师有 C42种选法. 根据分类加法计数原理,共有 C62+C42=15+6=21 种不同的 选法.
由此可得所有的组合为 ab,ac,ad,ae,bc,bd,be,cd,ce,de.
第六页,编辑于星期一:点 三十六分。
与组合数有关的计算
[例 2] (1)计算:C140-C37·A33; (2)已知C15m-C16m=107Cm7 ,求 C8m+C58-m. [解] (1)原式=C140-A73=140××39××28××17-7×6×5=210 -210=0. (2)原式=m!55!-m!-m!66!-m! =7×71-0×m7!!m!,
第十页,编辑于星期一:点 三十六分。
解:(1)原式=C38+C2100×1=83× ×72× ×61+1020××199=56+4 950 =5 006. (2)原方程可变形为CC53nn- -31+1=159,Cn5-1=154Cn3-3, 即n-1n-2n5-!3n-4n-5 =154·n-3n3-!4n-5,化简整理,得 n2-3n-54=0.解此 二次方程,得 n=9 或 n=-6(不合题意,舍去),所以 n=9 为所求.
)
A.4 或 9
B.4
C.9
D.其他
解析:当 x=3x-8 时,解得 x=4;当 28-x=3x-8
时,解得 x=9.
答案:A
第十八页,编辑于星期一:点 三十六分。
2.某班级要从 4 名男生、2 名女生中选派 4 人参加某次社区服

人教新课标A版 选修2-3 1

人教新课标A版 选修2-3 1

人教新课标A版选修2-3 1.2排列与组合一、单选题(共12题;共24分)1.(2分)甲、乙等7人排成一排,甲在最中间,且与乙不相邻,那么不同的排法种数是()A.96B.120C.360D.4802.(2分)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有()A.120种B.90种C.60种D.30种3.(2分)袋中有100个球,其中红球10个,从中任取5个球,则至少有一个红球的取法种数是()A.B.C.D.4.(2分)为做好社区新冠疫情防控工作,需将四名志愿者分配到甲、乙、丙三个小区开展工作,每个小区至少分配一名志愿者,则不同的分配方案共有()种A.36B.48C.60D.165.(2分)某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在第四位、节目乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案共有()A.12种B.18种C.36种D.54种6.(2分)元宵节灯展后,悬挂有8盏不同的花灯需要取下,如图所示,每次取1盏,则不同的取法共有().A.32种B.70种C.90种D.280种7.(2分)在正方体的8个顶点中,以任意4个顶点为顶点的三棱锥,共有()A.52个B.54个C.58个D.62个8.(2分)2019年10月1日,中华人民共和国成立70周年,举国同庆.将2,0,1,9,10这5个数字按照任意次序排成一行,拼成一个6位数,则产生的不同的6位数的个数为()A.72B.84C.96D.1209.(2分)为抗战新冠病毒,社会各界积极捐赠医疗物资.爱心人士向某市捐赠了6箱相同规格的医用外科口罩,现需将这6箱口罩分配给4家医院,每家医院至少1箱,则不同的分法共有()A.10种B.40种C.80种D.240种10.(2分)已知字母x,y,z各有两个,现将这6个字母排成一排,若有且仅有一组字母相邻(如),则不同的排法共有()种A.36B.30C.24D.1611.(2分)由这十个数字组成的无重复数字的四位数中,个位数字与百位数字之差的绝对值等于8的个数为()A.180B.196C.210D.22412.(2分)在明代珠算发明之前,我们的先祖从春秋开始多是用算筹为工具来记数、列式和计算.算筹实际上是一根根相同长度的小木棍,算筹有纵式和横式两种,如图是利用算筹表示的数字,表示多位数时,个位用纵式,十位用横式,百位用纵式,千位用横式,以此类推,例如,137可以用根小木棍表示“ ”,则用6根小木棍(要求用完6根)能表示不含“ ”且没有重复数字的三位数的个数是()A.12B.18C.24D.27二、多选题(共2题;共6分)13.(3分)在100件产品中,有98件合格品,2件不合格品,从这100件产品中任意抽出3件,则下列结论正确的有()A.抽出的3件产品中恰好有1件是不合格品的抽法有种B.抽出的3件产品中恰好有1件是不合格品的抽法有种C.抽出的3件中至少有1件是不合格品的抽法有种D.抽出的3件中至少有1件是不合格品的抽法有种14.(3分)为弘扬我国古代的“六艺文化”,某夏令营主办单位计划利用暑期开设“礼”“乐”“射”“御”“书”“数”六门体验课程,每周一门,连续开设六周.则()A.某学生从中选3门,共有30种选法B.课程“射”“御”排在不相邻两周,共有240种排法C.课程“礼”“书”“数”排在相邻三周,共有144种排法D.课程“乐”不排在第一周,课程“御”不排在最后一周,共有504种排法三、填空题(共4题;共4分)15.(1分)某校开设A类选修课5门,B类选修课4门,一位同学从中供选3门,若要求两类课程中至少选一门,则不同的选法共有.种16.(1分)五位同学排成一排,其中甲、乙必须在一起,而丙、丁不能在一起的排法有种17.(1分)若,则.18.(1分)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有种.四、解答题(共6题;共80分)19.(15分)已知4名学生和2名教师站在一排照相,求:(1)(5分)中间二个位置排教师,有多少种排法?(2)(5分)两名教师不能相邻的排法有多少种?(3)(5分)两名教师不站在两端,且必须相邻,有多少种排法?20.(15分)将7名应届师范大学毕业生分配到3所中学任教.(最后结果用数字表示)(1)(5分)4个人分到甲学校,2个人分到乙学校,1个人分到丙学校,有多少种不同的分配方案?(2)(5分)一所学校安排4个人,一所学校安排2个人,一所学校1个人,有多少种不同的分配方案?(3)(5分)其中有两所学校都各安排3个人,另一所学校安排1个人,有多少种不同的分配方案?21.(10分)有4个不同的球,4个不同的盒子,把球全部放入盒子内.(1)(5分)共有几种放法?(2)(5分)恰有2个盒子不放球,有几种放法?22.(10分)(1)(5分)由0,1,2,…,9这十个数字组成的无重复数字的四位数中,十位数字与千位数字之差的绝对值等于7的四位数的个数共有几种?(2)(5分)我校高三学习雷锋志愿小组共有16人,其中一班、二班、三班、四班各4人,现在从中任选3人,要求这三人不能是同一个班级的学生,且在三班至多选1人,求不同的选取法的种数. 23.(15分)盒子内有3个不同的黑球,5个不同的白球.(1)(5分)全部取出排成一列,3个黑球两两不相邻的排法有多少种?(2)(5分)从中任取6个球,白球的个数不比黑球个数少的取法有多少种?(3)(5分)若取一个白球记2分,取一个黑球记1分,从中任取5个球,使总分不少于7分的取法有多少种?24.(15分)江夏一中高二年级计划假期开展历史类班级研学活动,共有6个名额,分配到历史类5个班级(每个班至少0个名额,所有名额全部分完).(1)(5分)共有多少种分配方案?(2)(5分)6名学生确定后,分成A、B、C、D四个小组,每小组至少一人,共有多少种方法?(3)(5分)6名学生来到武汉火车站.火车站共设有3个“安检”入口,每个入口每次只能进1个旅客,求6人进站的不同方案种数.答案解析部分1.【答案】D【解析】【解答】解:甲的位置在中间已经固定,甲与乙不相邻,因此甲的左右相邻两个位置应从除甲乙之外的5人中选2人进行排列,剩下的人在其余位置上全排列,故有种,故答案为:D.【分析】从出甲乙之外的5人中选2人排在甲的两边并和甲相邻,剩下的全排列,利用排列数公式和乘法计数原理得到..2.【答案】C【解析】【解答】首先从6名同学中选1名去甲场馆,方法数有;然后从其余5名同学中选2名去乙场馆,方法数有;最后剩下的3名同学去丙场馆.故不同的安排方法共有种.故答案为:C【分析】分别安排各场馆的志愿者,利用组合计数和乘法计数原理求解.3.【答案】C【解析】【解答】由题意,袋中有100个球,其中红球10个,从中任取5个球,至少有一个红球的取法有:①直接法:种不同的取法;②间接法:.故答案为:C.【分析】根据题意,可分别利用直接法和间接法求解,得到答案.4.【答案】A【解析】【解答】根据题意可知必有二名志愿者去同一小区开展工作,因此有种方式,所以四名志愿者分配到甲、乙、丙三个小区开展工作,每个小区至少分配一名志愿者共有种方式.故答案为:A【分析】根据题意可知必有二名志愿者去同一小区开展工作,结合排列数的定义进行求解即可.5.【答案】B【解析】【解答】由于节目甲必须排在第四位、节目乙不能排在第一位,节目丙必须排在最后一位,则节目乙可放在第二、三、五个位置中的任何一个位置,其他节目任意排列,由分步计数原理可知,该台晚会节目演出顺序的编排方案共有种,故答案为:B.【分析】固定节目甲、丙的位置,将节目乙放在第二、三、五个位置中的任何一个位置,其他节目任意排列,利用分步计数原理可得出结果.6.【答案】B【解析】【解答】因为取灯时每次只能取一盏,所以每串灯必须先取下面的灯,即每串灯取下的顺序确定,取下的方法有种.故答案为:B【分析】因为取灯时每次只能取一盏,所以每串灯必须先取下面的灯,由定序问题可求解.7.【答案】C【解析】【解答】从正方体的8个顶点中任取四个顶点,共有种,其中有6个表面和6个对角面中的四个顶点共面,不能构成三棱锥,所以共有个三棱锥.故答案为:C.【分析】利用间接法可得结果:从正方体的个顶点中任取四个顶点的取法减去四点共面的情形即可得到结果.8.【答案】B【解析】【解答】先选择一个非0数排在首位,剩余数全排列,共有种,其中1和0排在一起形成10和原来的10有重复,考虑1和0相邻时,且1在0的左边,和剩余数字共有4!=24种排法,其中一半是重复的,故此时有12种重复.故共有种.故答案为:B.【分析】先选择一个非0数排在首位,剩余数全排列,共有种,其中1和0排在一起有重复,共有12种,即可得答案.9.【答案】A【解析】【解答】由题意, 因为6箱医用外科口罩的规格相同,故四家医院分配到的口罩箱数有1,1,2,2与1,1,1,3两种情况,则分配的方法有:①1,1,2,2:从4家医院中选择两家,分别分配1箱,共种.②1,1,1,3:从4家医院选出1家,分配给3箱,共种.共种.故答案为:A【分析】分四家医院分配到的口罩箱数分别为1,1,2,2与1,1,1,3两种情况,分别计算再求和即可. 10.【答案】A【解析】【解答】有且仅有一组字母相邻,这组字母有三种情况:.当相邻的这组字母为时,将6个位置编成1-6号,若在1号和2号,则3号和5号字母相同,4号和6号字母相同,有2种排法;若在2号和3号,则1号和5号字母相同,4号和6号字母相同,有2种排法;若在3号和4号,则1号和2号字母不相同,5号和6号字母不相同,有种排法;若在4号和5号,则2号和6号字母相同,1号和3号字母相同,有2种排法;若在5号和6号,则1号和3号字母相同,2号和4号字母相同,有2种排法,即相邻的字母为时,共有种排法.同理,相邻的字母为时,也都有12种排法,故共有种排法.故答案为:A.【分析】有且仅有一组字母相邻,这组字母有三种情况:,利用位置分析法,可得出当相邻的字母为时,共有12种排法,进而可知不同的排法共有有种.11.【答案】C【解析】【解答】分两种情况:⑴个位与百位填入0与8,则有个;⑵个位与百位填入1与9,则有个.则共有个.故答案为:C【分析】首先分析可得,个位数字与百位数字之差的绝对值等于8的情况有2种,即:①当个位与百位数字为0,8时,②当个位与百位为1,9时,分别求出所有的情况,由加法原理计算可得答案.12.【答案】C【解析】【解答】数字7、2、1组成6个,数字7、6、1组成6个,数字6、3、1组成6个,数字3、2、1组成6个,共24个符合要求的三位数.故答案为:C.【分析】6根小木棍可能组成数字7、2、1,7、6、1,6、3、1,3、2、1,分别对其进行全排列即可得出结果.13.【答案】A,C,D【解析】【解答】解:根据题意,若抽出的3件产品中恰好有1件是不合格品,即抽出的3件产品中有2件合格品,1件不合格品,则合格品的取法有种,不合格品的取法有种,则恰好有1件是不合格品的取法有种取法;则正确,错误;若抽出的3件中至少有1件是不合格品,有2种情况,①抽出的3件产品中有2件合格品,1件不合格品,有种取法,②抽出的3件产品中有1件合格品,2件不合格品,有种取法,则抽出的3件中至少有1件是不合格品的抽法有种,正确;也可以使用间接法:在100件产品中任选3件,有种取法,其中全部为合格品的取法有种,则抽出的3件中至少有1件是不合格品的抽法有种取法,正确;故答案为:ACD.【分析】根据题意,依次分析选项,对于,由分步计数原理计算可得合格品的取法以及不合格品的取法,由分步计数原理可得正确,错误;对于,分2种情况讨论:①抽出的3件产品中有2件合格品,1件不合格品,②抽出的3件产品中有1件合格品,2件不合格品,由加法原理可得;对于,由间接法分析:先计算在100件产品中任选3件的取法数目,再计算其中全部为合格品的取法,据此分析可得正确;综合即可得答案.14.【答案】C,D【解析】【解答】6门中选3门共有种,A不符合题意;课程“射”“御”排在不相邻两周,共有种排法,B不符合题意;课程“礼”“书”“数”排在相邻三周,共有种排法,C符合题意;课程“乐”不排在第一周,课程“御”不排在最后一周,共有种排法,D符合题意.故答案为:CD【分析】根据排列组合的相邻关系和不相邻关系,以及有限制排列的关系,逐个分析选项即可. 15.【答案】70【解析】【解答】由条件可知3门课程可以分成以下两种情况:类2门,类1门,共有种,或类1门,类2门,共有,所以不同的选法共有种方法.故答案为:70【分析】根据分类计数原理,3门功课可分成2种情况,分别求方法种数.16.【答案】24【解析】【解答】根据题意,先将甲乙看成一个“元素”,有2种不同的排法,将丙、丁单独排列,也有2种不同的排法,若甲、乙与第5个元素只有一个在丙丁之间,则有种情况,若甲、乙与第5个元素都在丙丁之间,有2种不同的排法,则不同的排法共有种情况.故答案为:24.【分析】根据题意,先使用捆绑法,将甲乙看成一个“元素”,再将丙、丁单独排列,进而将若甲、乙与第5个元素分类讨论,分析丙丁之间的不同情况,由乘法原理,计算可得答案.17.【答案】3【解析】【解答】因为,所以,化简得,解得.故答案为:3.【分析】用排列数和组合数的定义把已知等式化为乘积形式,然后可解方程.18.【答案】36【解析】【解答】4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学先取2名同学看作一组,选法有:现在可看成是3组同学分配到3个小区,分法有:根据分步乘法原理,可得不同的安排方法种故答案为:36.【分析】根据题意,采用捆绑法,先取2名同学看作一组,现在可看成是3组同学分配到3个小区,即可求得答案.19.【答案】(1)解:;(2)解:;(3)解:.【解析】【分析】(1)先排教师有种方法,再排学生有种方法,再根据分步计数原理即可得到答案;(2)先排4名学生有种方法,再把老师插入4个学生形成的5个空位中,有种方法,根据分步计数原理即可得到答案;(3)先将2名老师看成一个整体,有种方法,再从4名学生种选2名排两端,有种方法,最后将剩下的2名学生和老师这个整体全排列,有种方法,由乘法原理即可得到答案.20.【答案】(1)解:(种)(2)解:(种)(3)解:(种)【解析】【分析】(1)利用组合的知识求解;(2)先不均匀分组,再分配到学校即可求解;(3)先不均匀分组,再分配即可.21.【答案】(1)解:每一个球有4种放法,故共有44=256(种)(2)解:恰有2个盒子不放球,也就是把4个不同的小球只放入2个盒子中,有两类放法;第一类,1个盒子放3个小球,1个盒子放1个小球,先把小球分组,有种,再放到2个小盒中有种放法,共有种方法;第二类,2个盒子中各放2个小球有种放法,故恰有2个盒子不放球的方法共有种放法.【解析】【分析】(1)明确共有4个球,每个球都有4种放法,盒子可以不放球,根据分步计数原理求解.(2)首先明确有两个盒子不放球的含义是将4个球放入2个盒子中,放球分为两类,一类是1个盒子放3个另一个放1个,二类是两个盒子各放2个,分别求出每一类的放法,再用加法计数原理求解.22.【答案】(1)解:十位数字与千位数字之差的绝对值等于7,可得千位数字和十位数字的组合有五种,每种组合中百位和个位的数共有种组合,所以符合条件的四位数共有种.(2)解:情形一:不选三班的同学,从12个人中选出3人,有种选取方法,其中来自同一个班级的情况有种,则此时有种选取方法;情形二:选三班的一位同学,三班的这一位同学的选取方法有4种,剩下的两位同学从剩下的12人中任选2人,有种选取方法,则此时有种选取方法.根据分类计数原理,共有种选取方法.【解析】【分析】(1)千位数字和十位数字的组合有五种,百位和个位的数共有种组合,计算得到答案.(2)考虑不选三班的同学和选三班的一位同学两种情况,利用排除法和分步分类计数原理得到答案.23.【答案】(1)解:首先5个白球进行排列,然后3个黑球进行插空,则3个黑球两两不相邻的排法有种;(2)解:从中任取6个球,白球的个数不比黑球个数少的取法有3类:1个黑球和5个白球、2个黑球和4个白球、3个黑球和3个白球,共有种(3)解:从中任取5个球,使总分不少于7分的取法有4类:5个白球、4个白球1个黑球、3个白球2个黑球、2个白球3个黑球,共有种.【解析】【分析】(1)首先5个白球进行排列,然后3个黑球进行插空,则3个黑球两两不相邻的排法有;(2)从中任取6个球,白球的个数不比黑球个数少的取法有3类:1个黑球和5个白球、2个黑球和4个白球、3个黑球和3个白球;(3)从中任取5个球,使总分不少于7分的取法有4类:5个白球、4个白球1个黑球、3个白球2个黑球、2个白球3个黑球.24.【答案】(1)解:由题意得:问题转化为不定方程的非负整数解的个数,∴方程又等价于不定方程的正整数解的个数,利用隔板原理得:方程正整数解的个数为,∴共有多少种分配方案.(2)解:将问题转化为不定方程的正整数解个数,分组后再进行排列,∵不定方程的正整数解个数为,∴共有种方法.(3)解:设6名学生在3个安检的人数分别为,∵方程非负整数解的个数等价于方程的正整数解的个数,∴6人进站的不同方案种数为.【解析】【分析】(1)将问题转化为不定方程的非负整数解问题,再利用隔板原理进行求解;(2)将问题转化为不定方程的正整数解问题,再利用隔板原理、排列数公式进行求解;(3)将问题转化为不定方程方程的正整数解问题,再利用隔板原理、排列数公式进行求解.。

人教高中数学选修2-3第一章121排列(优质公开课教案)

人教高中数学选修2-3第一章121排列(优质公开课教案)

1.2.1排列上课班别:高二授课教师:教材:人教版选修2—3教学目标:1、知识与技能:了解排列数的意义,掌握排列数公式及推导方法,从中体会“化归”的数学思想,并能运用排列数公式进行计算。

2、过程与方法:能运用所学的排列知识,正确地解决的实际问题3、情感、态度与价值观:能运用所学的排列知识,正确地解决的实际问题.教学重点:排列数公式的理解与运用;排列应用题常用的方法有直接法,间接法教学难点:排列数公式的推导授课类型:新授课课时安排:1课时教具:多媒体内容分析:分类计数原理是对完成一件事的所有方法的一个划分,依分类计数原理解题,首先明确要做的这件事是什么,其次分类时要根据问题的特点确定分类的标准,最后在确定的标准下进行分类.分类要注意不重复、不遗漏,保证每类办法都能完成这件事.分步计数原理是指完成一件事的任何方法要按照一定的标准分成几个步骤,必须且只需连续完成这几个步骤后才算完成这件事,每步中的任何一种方法都不能完成这件事.分类计数原理和分步计数原理的地位是有区别的,分类计数原理更具有一般性,解决复杂问题时往往需要先分类,每类中再分成几步.在排列、组合教学的起始阶段,不能嫌罗嗦,教师一定要先做出表率并要求学生严格按原理去分析问题.只有这样才能使学生认识深刻、理解到位、思路清晰,才会做到分类有据、分步有方,为排列、组合的学习奠定坚实的基础分类计数原理和分步计数原理既是推导排列数公式、组合数公式的基础,也是解决排列、组合问题的主要依据,并且还常需要直接运用它们去解决问题,这两个原理贯穿排列、组合学习过程的始终.搞好排列、组合问题的教学从这两个原理入手带有根本性.排列与组合都是研究从一些不同元素中任取元素,或排成一排或并成一组,并求有多少种不同方法的问题.排列与组合的区别在于问题是否与顺序有关.与顺序有关的是排列问题,与顺序无关是组合问题,顺序对排列、组合问题的求解特别重要.排列与组合的区别,从定义上来说是简单的,但在具体求解过程中学生往往感到困惑,分不清到底与顺序有无关系.教学过程:一、复习引入:1分类加法计数原理:做一件事情,完成它可以有n类办法,在第一类办法中有种不同的方法,在第二类办法中有种不同的方法,……,在第n类办法中有种不同的方法那么完成这件事共有种不同的方法2.分步乘法计数原理:做一件事情,完成它需要分成n个步骤,做第一步有种不同的方法,做第二步有种不同的方法,……,做第n步有种不同的方法,那么完成这件事有种不同的方法二、讲解新课:问题1.从甲、乙、丙3名同学中选取2名同学参加某一天的一项活动,其中一名同学参加上午的活动,一名同学参加下午的活动,有多少种不同的方法?图 1.2一1把上面问题中被取的对象叫做元素,于是问题可叙述为:从3个不同的元素 a , b ,。

选修2-3:1.2.2组合——排列组合综合应用

选修2-3:1.2.2组合——排列组合综合应用

第二步:将甲乙两人也排一下,共有A22种排法
第三步:将甲乙等5人看成一个元素,与其余2人,一共三个元素 进行全排 由分步计数原理可知:甲、乙两人中间必须有3人的排法一共有: A53 A22A33种排法
例2. 有3名男生,4名女生,求下列各有多少种不同站法 (6)全体排成一行,男、女各不相邻. 特殊位置排列方式 第一步:将4名女生全排,共有A44种放法
乙、丙三人从左至右的顺序只是6种顺序中的一种 由此可见:甲、乙、丙三人从左至右的顺序的排法一共有:
A
7 7
A
3 种排法 3
例2. 有3名男生,4名女生,求下列各有多少种不同站法 (9)排成前后二排,前排3人,后排4人. 站成两排,其实可以理解为,站成一排后,将后面的人砍到第二 排即可
由此可知:站两排的排法一共有:A77种排法
第二步:将三名男生看成一个元素,与其余4个女生人全排,共有
A55种排法 由分步计数原理可知:3名男生站一起的排法一共有: A33×A55种排法
例2. 有3名男生,4名女生,求下列各有多少种不同站法 (5)全体排成一行,甲、乙两人中间必须有3人. 特殊元素,优先排 第一步:将甲乙中间安排3个人,共有A53种放法
这种排法是要被删掉的
第二步:将乙安排在右端,其余人全排,共有A55种放法 这种排法也是要被删掉的 但是甲在左端且乙在右端的排法有A44,这个排法被减掉2次, 要补回
注意要做到不重不漏
甲不在最左边,乙不在最右边的排法一共有:A66-2A55 +A44种排法
例2. 有3名男生,4名女生,求下列各有多少种不同站法 (1)全体排成一行,其中甲只能在左右两端.
给三个学习兴趣小组去研究,每组一个课题,共有多少种不同
的分法;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档