高等数学求导公式
导数表大全高等数学

导数表大全高等数学导数是高等数学中一个重要的概念,它在实际问题中有广泛的应用。
在求解实际问题时,我们通常需要根据问题的特点寻找合适的导数公式,进而求解问题。
以下是一些常见的导数公式和应用:1. 基本导数公式:- y" = lim(Δx→0) [f(x+Δx) - f(x)] / Δx- y"" = lim(Δx→0) [f"(x+Δx) - f"(x)] / Δx(x 是导数的定义)2. 三角函数的导数公式:- sin x" = cos x- cos x" = - sin x- tan x" = cot x- cot x" = - tan x- csc x" = 1/sin x- 1/sin x" = csc x3. 指数函数的导数公式:- a^x" = a^x *ln(a) + C(C 是常数)4. 对数函数的导数公式:- (ln x)" = dxn/dx(x是自然对数的底数)- (log x)" = (ln x)" / x(x 是自然对数的底数)5. 反函数的导数公式:- f^{-1}(x)" = f"(f^{-1}(x)) / f"(x)(x 是函数的反函数)6. 二次函数的导数公式:- 二次函数 y = ax^2 + bx + c 的导数为:y" = 2ax + b(x 是二次函数的导数定义)7. 其他函数的导数公式:- 幂函数 y = x^a 的导数为:y" = ax^(a-1)- 递归函数 y = f(f(x)) 的导数为:y" = f"(x)(x 是递归函数的定义)- 对数函数的导数公式 (2)- 指数函数的导数公式 (2)在实际问题中,我们可以根据问题的特点选择合适的导数公式,进而求解问题。
大学高等数学公式大全

大学高等数学公式大全第一部分:微积分基础一、导数1. 导数的定义:导数是一个函数在某一点上的瞬时变化率,表示为f'(x)或dy/dx。
2. 导数的运算法则:常数函数的导数为0。
幂函数的导数为指数乘以底数的指数减1,即d/dx(x^n) =nx^(n1)。
指数函数的导数为指数函数乘以指数,即d/dx(a^x) = a^xln(a)。
对数函数的导数为1除以x乘以底数的对数,即d/dx(ln(x)) =1/x。
三角函数的导数:d/dx(sin(x)) = cos(x),d/dx(cos(x)) =sin(x),d/dx(tan(x)) = sec^2(x)。
3. 高阶导数:函数的导数可以继续求导,得到高阶导数。
例如,f''(x)表示二阶导数。
二、积分1. 定积分的定义:定积分是一个函数在某个区间上的累积和,表示为∫[a,b]f(x)dx。
2. 积分的运算法则:常数函数的积分为其乘以区间长度,即∫[a,b]c dx = c(ba)。
幂函数的积分为其指数加1除以指数加1乘以区间长度,即∫[a,b]x^n dx = (b^(n+1)a^(n+1))/(n+1)。
指数函数的积分为其指数函数除以指数,即∫[a,b]a^x dx = (a^ba^a)/ln(a)。
对数函数的积分为其对数函数乘以区间长度,即∫[a,b]ln(x) dx = (xln(x)x)。
三角函数的积分:∫[a,b]sin(x) dx = cos(x) + C,∫[a,b]cos(x) dx = sin(x) + C,∫[a,b]tan(x) dx = ln|cos(x)| + C。
3. 积分的性质:积分与导数互为逆运算,即d/dx(∫f(x)dx) = f(x)。
积分区间可以改变顺序,即∫[a,b]f(x)dx = ∫[b,a]f(x)dx。
积分可以分解为多个区间上的积分,即∫[a,c]f(x)dx =∫[a,b]f(x)dx + ∫[b,c]f(x)dx。
高等数学重要公式(必记)

高等数学重要公式(必记)一、导数公式:二、基本积分表:三、三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-C ax a x a x dx x a C a x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:四、三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin 2cos 2sin sin 2cos2sin 2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
导数表大全高等数学

导数表大全高等数学这里是高等数学的导数表大全,包括了常见的函数的导数公式以及一些常用的求导技巧和公式。
1. 常数函数的导数公式如果 $f(x) = C$ 是一个常数函数,那么它的导数就是 $f'(x) = 0$。
2. 幂函数的导数公式如果 $f(x) = x^n$ 是一个幂函数,那么它的导数就是 $f'(x) = n \cdot x^{n-1}$。
3. 指数函数的导数公式如果 $f(x) = a^x$ 是一个指数函数,那么它的导数就是 $f'(x) = a^x \cdot \ln a$。
4. 对数函数的导数公式如果 $f(x) = \log_a x$ 是一个对数函数,那么它的导数就是$f'(x) = \frac{1}{x \cdot \ln a}$。
5. 三角函数的导数公式正弦函数的导数公式:$\frac{d}{dx} \sin x = \cos x$余弦函数的导数公式:$\frac{d}{dx} \cos x = -\sin x$正切函数的导数公式:$\frac{d}{dx} \tan x = \sec^2 x$余切函数的导数公式:$\frac{d}{dx} \cot x = -\csc^2 x$6. 反三角函数的导数公式反正弦函数的导数公式:$\frac{d}{dx} \arcsin x =\frac{1}{\sqrt{1-x^2}}$反余弦函数的导数公式:$\frac{d}{dx} \arccos x = -\frac{1}{\sqrt{1-x^2}}$反正切函数的导数公式:$\frac{d}{dx} \arctan x =\frac{1}{1+x^2}$反余切函数的导数公式:$\frac{d}{dx} \text{arccot} x = -\frac{1}{1+x^2}$7. 复合函数的导数公式如果 $f(x)$ 和 $g(x)$ 都是可导函数,那么复合函数 $h(x) = f(g(x))$ 的导数就是 $h'(x) = f'(g(x)) \cdot g'(x)$。
高等数学导数公式大全

高等数学导数公式大全在高等数学中,导数是一个非常重要的概念,它反映了函数在某一点处的变化率。
导数公式则是求解导数的基本工具,熟练掌握这些公式对于学习和应用高等数学具有至关重要的意义。
下面,我们将详细介绍常见的导数公式。
一、基本函数的导数公式1、常数函数的导数若\(f(x) = C\)(\(C\)为常数),则\(f'(x) = 0\)。
这意味着常数函数的图像是一条水平直线,其斜率始终为零,即变化率为零。
2、幂函数的导数对于\(f(x) = x^n\)(\(n\)为实数),其导数为\(f'(x) = nx^{n 1}\)。
例如,\(f(x) = x^2\)的导数为\(f'(x) = 2x\);\(f(x) =x^3\)的导数为\(f'(x) = 3x^2\)。
3、指数函数的导数若\(f(x) = e^x\),则\(f'(x) = e^x\)。
\(e\)是一个常数,约等于\(271828\),\(e^x\)的导数等于其本身,这是指数函数的一个重要特性。
若\(f(x) = a^x\)(\(a > 0\)且\(a \neq 1\)),则\(f'(x) = a^x \ln a\)。
4、对数函数的导数若\(f(x) =\ln x\),则\(f'(x) =\frac{1}{x}\)。
若\(f(x) =\log_a x\)(\(a > 0\)且\(a \neq 1\)),则\(f'(x) =\frac{1}{x \ln a}\)。
二、三角函数的导数公式1、\(f(x) =\sin x\),则\(f'(x) =\cos x\)。
2、\(f(x) =\cos x\),则\(f'(x) =\sin x\)。
3、\(f(x) =\tan x\),则\(f'(x) =\sec^2 x\)。
4、\(f(x) =\cot x\),则\(f'(x) =\csc^2 x\)。
高等数学公式大全

高等数学公式大全
1.极限运算法则:lim(f(x)+g(x))=limf(x)+limg(x),
lim(f(x)-g(x))=limf(x)-limg(x),
lim(f(x)*g(x))=limf(x)*limg(x),
lim(f(x)/g(x))=limf(x)/limg(x)。
2.导数公式:包括求导的四则运算法则、复合函数的求导法
则、高阶导数等。
3.导数的应用:包括极值与拐点、曲线的凹凸性和拐点、函
数图形的描绘等。
4.不定积分:包括不定积分的性质和运算法则、基本积分公
式、积分的方法等。
5.定积分:包括定积分的性质和运算法则、微积分基本定理
等。
6.多重积分:包括二重积分、三重积分等。
7.微分方程:包括一阶微分方程、高阶微分方程、线性微分
方程等。
8.空间解析几何:包括向量的表示与运算、向量的数量积、
向量积等。
9.多元函数的微分学:包括偏导数与高阶偏导数、全微分、
方向导数等。
10.重积分:包括二重积分、三重积分、曲线积分、曲面
积分等。
常用的求导公式高数

常用的求导公式高数
1. 常数函数求导:常数函数的导数为零。
2. 幂函数求导:若y=x^n,则导函数dy/dx=nx^(n-1)。
3. 指数函数求导:若y=a^x,则导函数dy/dx=a^xln(a)。
4. 对数函数求导:若y=log_a(x),则导函数dy/dx=1/(xln(a))。
5. 三角函数求导:若y=sin(x),则导函数dy/dx=cos(x);若
y=cos(x),则导函数dy/dx=-sin(x);若y=tan(x),则导函数
dy/dx=sec^2(x)。
6. 反三角函数求导:若y=arcsin(x),则导函数dy/dx=1/sqrt(1-x^2);若y=arccos(x),则导函数dy/dx=-1/sqrt(1-x^2);若
y=arctan(x),则导函数dy/dx=1/(1+x^2)。
7. 复合函数求导(链式法则):若y=f(g(x)),则导函数
dy/dx=f'(g(x))g'(x)。
8. 乘积函数求导(乘积法则):若y=u(x)v(x),则导函数
dy/dx=u'(x)v(x)+u(x)v'(x)。
9. 商函数求导(商法则):若y=u(x)/v(x),则导函数
dy/dx=(u'(x)v(x)-u(x)v'(x))/v(x)^2。
以上是常用的求导公式,可以用于求解高等数学中的导数问题。
高等数学18个求导公式

高等数学18个求导公式高等数学的求导,是高等数学的重要的基本技能。
求导的基本定义是求出一个函数的变化率,也就是求函数的导数。
下面给出18个求导公式:1.常数项求导公式:若y = c,其中c为常数,则y′ = 0;2.幂函数求导公式:若y = x^n,其中n为正整数,则y′ = nx^{n-1};3.多次幂函数求导公式:若y = x^n + a^n,其中n为正整数,则y′ = nx^{n-1} + na^{n-1};4.指数函数求导公式:若y = a^x,其中a为正数,则y′ = a^xln a;5.对数函数求导公式:若y = lnx,则y′ = \frac{1}{x};6.三角函数求导公式:若y = sin x,则y′ = cos x;若y = cos x,则y′ = -sin x;若y = tan x,则y′ = \frac{1}{cos^2 x};7.反三角函数求导公式:若y = arcsin x,则y′ =\frac{1}{\sqrt{1-x^2}};若y = arccos x,则y′ = \frac{-1}{\sqrt{1-x^2}};若y = arctan x,则y′ = \frac{1}{1+x^2};8.指数函数的导数:若y = e^x,则y′ = e^x;9.乘法公式求导公式:若y = f(x)g(x),则y′ = f'(x)g(x) +f(x)g'(x);10.链式法则求导公式:若y = f(g(x)),则y′ = f'(g(x))g'(x);11.求和求导公式:若y = \sum_{i=1}^{n} f(x_i),则y′ =\sum_{i=1}^{n} f'(x_i);12.积分求导公式:若y = \int f(x)dx,则y′ = f(x);13.极限求导公式:若y = \lim_{x \to a} f(x),则y′ =\lim_{x \to a} f'(x);14.复合函数求导公式:若y = f(g(x)),则y′ = f'(g(x))g'(x);15.乘方公式求导公式:若y = (f(x))^n,其中n为正整数,则y′ = n(f(x))^{n-1}f'(x);16.幂函数的导数:若y = x^n,则y′ = nx^{n-1};17.对数函数的导数:若y = lnx,则y′ = \frac{1}{x};18.三角函数的导数:若y = sinx,则y′ = cosx;若y = cosx,则y′ = -sinx;若y = tanx,则y′ = \frac{1}{cos^2 x}。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
I.基本函数的导数 01.()0C '=;02.()1x x μμμ-'=;03.()sin cos x x '=; 04.()cos sin x x '=-;05.()2tan sec x x '=; 06.()2cot csc x x '=-;07.()sec sec tan x x x '=; 08.()csc csc cot x x x '=-;09.()ln x xa a a '=; 10.()xx e e '=;11.()1log ln ax x a'=; 12.()1ln x x '=;13.()1arcsin x '=;14.()arccos x '=-; 15.()21arctan 1x x '=+; 16.()21arccot 1x x '=-+。
II.和、差、积、商的导数 01.()u v u v '''±=±; 02.()Cu Cu ''=; 03.()uv u v uv '''=+; 04.2(0)u u v uv v v v '''-⎛⎫=≠ ⎪⎝⎭。
III 复合函数的导数 若()(),y f u u x ϕ==,则dy dy dudx du dx= 或 ()()()y x f u x ϕ'''=。
● 计算极限时常用的等价无穷小limsin x xx → 0lim tan x xx → ()201lim 1cos 2x x x →- ()lim 1x x e x →- ()limln 1x x x →+ 011x x n→- ● 两个重要极限: 0sin lim 1x x x →= 1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭● 若 ()()lim 0, lim f x A g x B =>=,则 ()()lim g x B f x A =● 罗尔定理:()0F x '≠若()f x 在[],a b 上连续,在(),a b 内可导,且()()f a f b =,则存在一(),a b ξ∈,使()0f ξ'=。
● 拉格朗日中值定理:若()f x 在[],a b 上连续,在(),a b 内可导,则存在一(),a b ξ∈,使得()()()()f b f a f b a ξ'-=-。
● 柯西中值定理:若()f x 、()F x 在[],a b 上连续,在(),a b 内可导,且()0F x '≠则存在一(),a b ξ∈,使得0x x δ-<,则()()()()()()f b f a f F b F a F ξξ'-='-。
● 罗必达法则:若(1)()()()()lim lim 0()x a x a f x F x →∞→∞==∞或或或,(2)()f x '及()F x '在00x x δ<-<(或x X >)处存在,且()0F x '≠,(3)()()lim()x a f x F x →∞''或存在(或∞),则()()()()limlim ()()x a x a f x f x F x F x →∞→∞'='或或。
● 泰勒公式:()()()()()()()()()()200000001!2!!n nn f x f x f x f x f x x x x x x x R x n '''=+-+-++-+其中:()()()()()1101!n n n f R x x x n ξ++=-+ ,()0,x x ξ∈。
● 马克劳林公式: ()()()()()()()200001!2!!n nn f f f f x f x x x R x n '''=+++++其中:()()()()111!n n n f R x x n ξ++=+,()0,x ξ∈。
1.()()2311 012!3!!1!n x xn x x x e e x x n n θθ+=++++++<<+ ()x -∞<<∞ 2. ()()357211sin 13!5!7!21!m m x x x x x x m --=-+-++-+- ()x -∞<<∞3. ()()()2462cos 11 2!4!6!2!nnx x x x x x n =-+-++-+-∞<<∞4.()2311 111n x x x x x x =++++++-<<-5. ()()2422111 111nn x x x x x=-+-+-+-<<+6. ()()2341ln 112341n nx x x x x x n ++=-+-++-++ ()11x -<≤● 驻点:导数为零的点拐点:()()121222f x f x x x f ++⎛⎫>⎪⎝⎭,则称()f x 在[],a b 上是凸的, ()()121222f x f x x x f ++⎛⎫< ⎪⎝⎭,则称()f x 在[],a b 上是凹的,若曲线在0x 两旁改变凹凸性,则称()()00,x f x 为曲线的拐点。
● 凹凸性判断(充分条件):设()f x ''存在,若a x b <<时()0f x ''<,则曲线是为凸的,若a x b <<时()0f x ''>,则曲线是为凹的。
设曲线方程()y f x =,()f x 具有二阶导数,则函数()y f x =在(),x y 的曲率K 为:()2/321y K y ''='+(工程中,若1y '<<时,K y ''=)。
基本积分公式:kdx kx C =+⎰ 11x x dx C μμμ+=++⎰ 1ln dx x C x =+⎰21arctan 1dx x C x =++⎰arcsin x C =+⎰cos sin xdx x C =+⎰ sin cos xdx x C =-+⎰;221sec tan cos dx xdx x Cx ==+⎰⎰221csc cot sin dx xdx x C x ==-+⎰⎰sec tan sec x xdx x C =+⎰ csc cot csc x x x C =-+⎰x xe dx e C =+⎰ ln x x a a dx C a=+⎰ shxdx chx C =+⎰ chxdx shx C =+⎰*tan ln cos dx x C =-+⎰ *cot ln sin xdx x C =-+⎰*sec ln sec tan xdx x x C =++⎰ *csc ln csc cot xdx x x C =-+⎰*2211arctan xdx C x a a a=++⎰ *2211ln 2x a dx C x a a x a -=+-+⎰*arcsin x C a =+⎰*(ln x C =++⎰*ln x C =++⎰基本积分方法1换元法:(1)设()f u 具有原函数()F u ,而()u x ϕ=可导,则有:()()()()f x x dx f u du F x C ϕϕϕ'==+⎡⎤⎡⎤⎣⎦⎣⎦⎰⎰; (2)设()x t ϕ=在区间[],αβ上单调可导,且()0t ϕ'≠,又设()()f x x ϕϕ'⎡⎤⎣⎦具有原函数()F t ,则有:()()()()1f x dx f t t dt F t C ϕϕϕ-'⎡⎤==+⎡⎤⎣⎦⎣⎦⎰⎰。
2分布积分法: udv uv vdu =-⎰⎰ 3.有理函数积分:①()nAdx x a -⎰②()2nMx Ndx xPx q +++⎰4.万能代换(三角函数的有理式的积分):设tan 2xu =,则221dx du u =+, 22sin 1ux u =+,221cos 1u x u -=+。
●()()222211231216n n n n ++++=++。
● 定积分中值定理:()()()() baf x dx f b a a b ξξ=-≤≤⎰。
● 定理:如果函数()f x 在区间[],a b 上连续,则积分上限的函数()()x ax f t dt Φ=⎰在[],a b 上具有导数,并且它的导数是()()()() xa d x f t dt f x a xb dx'Φ==≤≤⎰ ● 定积分换元公式: ()(), a b ϕαϕβ==,()()()b af x dx f t t dt βαϕϕ'=⎡⎤⎣⎦⎰⎰。
●()()220sin cos f x dx f x dx ππ=⎰⎰()()0sin sin 2xf x dx f x dx πππ=⎰⎰ ● 定积分的分步积分: []bbba aaudv uv vdu =-⎰⎰()()201331 , 2422sin 1342 , 253n n n nn n n I xdx n n n n n ππ--⎧⎪⎪-==⎨--⎪⎪-⎩⎰为正偶数为大于1的奇数 ● 弧长计算公式:①bas =⎰;②()()() t x t y t ϕαβφ=⎧⎪≤≤⎨=⎪⎩ ,sβα=⎰; ③()()()cos sin x r y r θθαθβθθ=⎧⎪≤≤⎨=⎪⎩,s βαθ=⎰。
向量代数● 定比分点公式:121212, , 111x x y y z z x y z λλλλλλ+++===+++。
● 数量积: cos a b a b θ=, x x y y z z a b a b a b a b =++。
2cos a b a b a b a ba b a θ++==+。
● 向量积:xyzxyzij k a b a a a b b b ⨯=。
● 平面➢ 平面的一般方程:0Ax By Cz D +++=(向量{},,n A B C =为平面法向量)。
➢ 平面点法式方程:()()()0000A x x B y y C z z -+-+-=。
➢ 平面的截距式方程:1x y za b c++=(,,a b c 为平面在三个坐标轴上的截距)。
➢ 两个平面的夹角:两个平面方程为:1π平面:1110A x B y C z D +++=,2π平面:2220A x B y C z D +++=,则两平面的夹角ϕ的余弦为:cos ϕ=。