图像分割区域生长法

合集下载

区域生长算法边界线

区域生长算法边界线

区域生长算法边界线
区域生长算法是一种用于图像处理和计算机视觉的算法,用于识别和分割图像中的目标区域。

该算法通常用于寻找图像中不同区域的边界线。

首先,区域生长算法需要一个种子点作为起始点,然后根据一定的准则来生长和扩展区域,直到达到某个停止条件。

在生长的过程中,算法会根据像素之间的相似性来判断是否将相邻的像素加入到同一个区域中。

这种相似性判断可以基于像素的灰度值、颜色值或者纹理特征等。

边界线的识别通常是通过在区域生长过程中记录像素的生长路径,并根据不同区域之间的边界像素来确定边界线的位置。

一种常见的方法是在生长过程中记录像素的生长路径,并在区域生长完成后,通过比较相邻区域的像素来确定边界线的位置。

另外,一些改进的区域生长算法还可以利用图像梯度、边缘检测算法或者边缘增强技术来增强边界线的识别效果。

这些方法可以帮助识别图像中更加复杂和细微的边界线,提高分割的准确性和稳定性。

总的来说,区域生长算法可以通过像素之间的相似性判断和区域生长路径记录来识别图像中的边界线,同时一些改进的方法可以提高边界线的识别效果。

在实际应用中,还需要根据具体的图像特点和应用场景来选择合适的算法参数和边界线增强技术,以获得更好的分割结果。

区域算法的分割方法

区域算法的分割方法

区域算法的分割方法
区域算法的分割方法是一种将图像分成若干个区域的图像分割技术。

这些区域通常具有相似的特征,例如颜色、纹理、亮度等,并且在图像内部具有连续性。

常见的基于区域的分割方法包括以下几种:
1. 区域生长法(Region Growing):从某个起始点开始,不断地向周围生长,直到达到一定条件为止,例如颜色、纹理或灰度值等。

这种方法需要手动选择起始点,并且计算复杂度较高。

2. 分裂与合并法(Split and Merge):将整张图像看作一个区域,将其分割成若干个子区域,然后对相邻的区域进行比较,并将相似的区域合并成更大的区域。

这种方法可以自动选择区域,并且可以产生较平滑的分割结果。

3. 基于能量函数的方法:通过定义一个能量函数来分割图像。

能量函数是一种用于衡量分割质量的函数,通常包括区域的特征和区域之间的相似度。

通过最小化能量函数来得到最佳的分割结果。

4. 基于图论的方法:将图像表示为一个图,其中每个像素表示一个节点,节点之间的边表示像素之间的相似度。

然后使用图分割算法来将图分割成若干个子图,每个子图对应一个区域。

这种方法可以自动选择区域,并且通常具有较高的分割质量。

这些基于区域的分割方法可以根据具体的应用场景和需求进行选择和应用。

基于区域生长的图像分割方法--南邮--车少帅

基于区域生长的图像分割方法--南邮--车少帅
S w1 ( x y ) 2 w2 ( x b) 2 w3 ( y a) 2
S值小则可以连接。
w1 , w2 , w3
为非负的权值
(2)依赖边缘确定两象素是否可以连接。

3. 登山算法
(1)灰度极大值 点作为中心点; (2)16个等角度 间隔方向上检测 斜率值最大的点 作为边缘点; (3)以16个边缘 点作为种子点进 行区域生长。
相邻像素表示:
图像中各个区域分割,都是从其种子点开始,在各个方向上 生长得到的。 区域生长分割示意图:
区域生长法关键:
(1)确定每个将相邻像素包括进来的相似性判别准 则(生长准则)。 (3)确定区域生长过程停止的条件或规则。 相似性准则可以用灰度级、彩色值、结构、梯度或其它特 征来表示。

举例:一幅图像背景部分的均值为25,方
差为625,在背景上分布着一些互不重叠的 均值为150,方差为400的小目标。设所有 目标合起来约占图像总面积的20%,提出1 个基于区域生长的分割算法将这些目标分 割出来。
算法描述
①从左至右,从上至下扫描图像。 ②若扫描到灰度值大于150的象素,取为种 子点,进行区域生长。 生长准则为将相邻的灰度值与已有区域的 平均灰度值的差小于60(3σ )的象素扩展 进来。 ③若不能再生长,标记已生长区域。 ④若扫描到图像右下角,结束;否则回到 ①继续。
一个区域生长的示例
给出已知矩阵A:
大写的5 为种子, 从种子开始向周围每个象素的值与种子值 取灰度差的绝对值, 当绝对值少于某个门限T 时, 该象素便 生长成为新的种子, 而且向周围每个象素进行生长; 如果取门限T=1, 则区域生长的结果为:


可见种子周围的灰度值为4、5、6 的象素都被很好地包进 了生长区域之中, 而到了边界处灰度值为0、1、2、7 的象 素都成为了边界, 右上角的5 虽然也可以成为种子, 但由于 它周围的象素不含有一个种子, 因此它也位于生长区域之 外; 现在取门限T=3, 新的区域生长结果为:

图像处理中的图像分割算法改进方法

图像处理中的图像分割算法改进方法

图像处理中的图像分割算法改进方法图像分割是图像处理领域中的重要任务,它旨在将一幅图像划分为一组具有相似特征的区域。

对图像进行有效的分割可以提取出感兴趣的目标,并为后续的图像分析和理解提供基础。

然而,由于图像中存在复杂的噪声、背景干扰以及目标形状和大小的差异,图像分割任务一直面临着挑战。

为了进一步提高图像分割的性能,研究人员提出了许多改进方法。

本文将介绍几种常见的图像分割算法改进方法,并讨论它们的原理和优缺点。

一、区域生长算法区域生长算法是一种基于类似区域像素特征的图像分割方法。

该算法从一组种子点出发,逐步生长和合并具有相似特征的像素。

该方法的主要优点是对不同大小、形状和纹理的目标具有较好的适应性。

然而,传统的区域生长算法容易受到噪声和纹理差异的影响,导致分割结果不准确。

为了改进该方法,研究人员提出了以下几种改进方法:1.多特征融合:将像素的多个特征(如颜色、纹理、梯度等)融合起来进行区域生长。

通过融合不同特征,可以减轻单一特征带来的误差,提高分割的准确性。

2.自适应阈值选择:传统的区域生长算法中,阈值通常是手动设置的,无法适应不同图像的特点。

采用自适应的阈值选择方法,可以根据图像的特征动态地选择合适的阈值,从而提高分割的鲁棒性。

3.分层分割策略:将图像分割任务分为多个层次,通过逐层分割和合并来获取更精确的结果。

这种策略可以提高分割的效率和准确性,并适用于大规模图像的处理。

二、基于深度学习的图像分割算法随着深度学习的快速发展,基于深度学习的图像分割算法在近年来取得了巨大的成功。

深度学习模型能够学习到图像的高级特征表示,从而提高分割的准确性和鲁棒性。

以下是几种常见的基于深度学习的图像分割算法:1.卷积神经网络(CNN):CNN是一种常用于图像分割的深度学习模型。

通过多层卷积和池化操作,CNN可以学习到图像的局部和全局特征,从而实现像素级别的分割。

然而,传统的CNN在处理细节和形状复杂的目标时存在一定的困难,因此研究人员提出了一些改进的网络结构。

图像处理中的图像分割算法比较分析

图像处理中的图像分割算法比较分析

图像处理中的图像分割算法比较分析图像分割是图像处理中的一项重要任务,它旨在将图像划分为具有一定语义的区域。

图像分割在图像分析、计算机视觉和模式识别等领域有着广泛的应用。

随着技术的发展,越来越多的图像分割算法被提出,为了选择合适的算法进行应用,本文将对目前常用的图像分割算法进行比较分析,包括基于阈值、基于区域生长、基于边缘检测和基于深度学习的算法。

1. 基于阈值的图像分割算法基于阈值的图像分割算法是最简单和最常用的方法之一。

该方法根据像素点的灰度值与设定的阈值进行比较,将图像分割成两个或多个区域。

对于灰度较为均匀的图像,基于阈值的方法能够得到较好的分割效果。

然而,对于灰度不均匀或存在噪声的图像,这种方法的效果较差。

2. 基于区域生长的图像分割算法基于区域生长的图像分割算法是一种基于连通性的方法。

该方法从一组种子像素出发,根据一定的生长准则逐步增长区域,直到达到停止条件为止。

区域生长方法能够处理一些复杂的图像,但对于具有相似颜色或纹理特征的区域容易产生错误的连续性。

3. 基于边缘检测的图像分割算法基于边缘检测的图像分割算法把图像中的边缘看作是区域之间的分界线。

常用的边缘检测算法包括Sobel、Canny和Laplacian等。

这些算法通过检测图像中的灰度值变化或梯度变化,找到边缘的位置,并将图像分割成相应的区域。

基于边缘的方法对于边缘清晰的图像分割效果较好,但对于复杂的图像容易产生断裂或错误的边缘。

4. 基于深度学习的图像分割算法近年来,随着深度学习的兴起,基于深度学习的图像分割算法成为研究热点之一。

深度学习方法利用卷积神经网络(CNN)或全卷积网络(FCN)等模型进行端到端的图像分割。

这些方法能够学习图像中的语义信息,并输出像素级别的分割结果。

深度学习方法在许多图像分割任务上取得了显著的效果,但需要大量的标注数据和计算资源。

综上所述,不同的图像分割算法适用于不同的场景和任务需求。

基于阈值的图像分割算法简单易用,适用于灰度较均匀的图像;基于区域生长的算法能够处理复杂的图像,但容易产生错误的连续性;基于边缘检测的算法对于边缘清晰的图像效果较好;基于深度学习的算法具有较强的泛化能力,可应用于多种场景。

医学影像处理中的图像分割算法使用技巧

医学影像处理中的图像分割算法使用技巧

医学影像处理中的图像分割算法使用技巧医学影像处理是一门涉及医学图像采集、存储、处理和分析的学科。

医学图像中通常包含大量的信息,因此图像分割是医学影像处理中必不可少的一环。

图像分割是将医学图像中感兴趣的区域从背景中分离出来的过程,它通常用于检测病变区域、提取感兴趣的解剖结构或组织等。

在医学影像处理的图像分割中,有许多算法可供选择,下面将介绍一些常用的图像分割算法以及它们的使用技巧。

1. 阈值分割阈值分割是最简单且常用的图像分割方法之一。

它基于像素的灰度值,将图像中大于或小于特定阈值的像素分离出来。

阈值分割适用于图像中目标和背景的灰度值存在明显差异的情况,例如CT扫描中的骨骼分割。

在使用阈值分割时,需要根据图像的特点选择适当的阈值,并进行阈值的优化和调整,以获得更好的分割效果。

2. 区域生长区域生长是一种逐像素地将图像分割为几个连通区域的方法。

它通过选择种子点和定义生长准则来实现图像的分割。

区域生长适用于图像中目标的灰度值相似的情况,例如MRI图像中的脑部分割。

在使用区域生长时,需要选择适当的种子点,并根据具体情况设置生长准则,以获得准确的分割结果。

3. 边缘检测边缘检测是通过寻找图像中不连续的灰度值变化来实现图像分割的方法。

它可以准确地检测出图像中的边缘信息,并将其作为分割结果。

边缘检测适用于图像中目标的边界清晰的情况,例如X射线图像中的器官分割。

在使用边缘检测进行图像分割时,需要选择适当的边缘检测算法,并进行参数调整以获得满意的分割效果。

4. 水平线剖分水平线剖分是一种基于灰度值水平变化的分割方法。

它通过对图像的水平方向进行剖分和分析,将图像中的区域分隔开。

水平线剖分适用于图像中存在明显的水平变化的情况,例如胸部X射线图像中的肺部分割。

在使用水平线剖分进行图像分割时,需要选择适当的剖分方法,并进行参数的调整以获得理想的分割效果。

5. 基于机器学习的分割基于机器学习的分割方法是近年来发展起来的一种分割方法。

图像处理-区域分割ppt课件


• 各个区域Zebkde的加权平均值即为图像分割一致性的评价标准。
1 M
Zeb

N
Nk zebk
k 1
• 以区域内方差为原则:
• 区域内一致性判定
归一因子E,wk为权值 以分割图像一致性判断
2

1 Nk
(
iRk
fi


fk )2
(max fi min fi )2
E ( wk) iRk Rk I
• 所有的聚类分割法都对初始值敏感,分割效果不稳定;如果不考虑图像空间上下文间 信息,容易出现分割效果不理想的情况。
7
K-均值聚类
执行步骤:
• 1、选择某种方法将N割样本分成c个聚类的初始划分,计算每个聚类的均值u1、u2、 u3...uc和Je
• 2、选择一个备选样本x,设其在Xj中。
• 3、若Ni=1,则转步骤2,否则继续。
TP 、准确度=TP FP
FP FN
、错误率=
TP FPTN FN

15
其他分割方式
基于参数活动轮廓模型的分割
• 传统的Snake模型 • GVF Snake模型
基于几何形变模型的分割
• 几何活动轮廓模型 • 测地活动轮廓模型 • Chan-Vese模型
16
Thank you
• 4、计算。
j

Nj

N
j Ni
1
Ni 1
xuj x ui
2
ji 2 ji
• 5、对于所有的j,如果ρk<ρj,则将x从Xi移到Xk中。
• 6、重新计算uk和ui的值,并修改Je。
• 7、若迭代N次,Je不变,则停止,否则转到步骤2。

用于牙齿图像的图像分割方法

用于牙齿图像的图像分割方法图像分割是指将图像分成若干个具有相似特征的区域的过程,是图像处理和计算机视觉领域中的一个重要任务。

牙齿图像分割的目标是将牙齿从背景中准确地提取出来,为牙齿相关的进一步分析和诊断提供可靠的基础。

本文将介绍几种常用的用于牙齿图像分割的方法。

1. 阈值分割法阈值分割法是一种简单且常用的图像分割方法。

它基于图像像素的灰度值,将图像分成两个或多个部分。

对于牙齿图像而言,可以根据前景(牙齿)和背景的灰度差异来选择一个合适的阈值,将牙齿从背景中分割出来。

然而,由于牙齿图像的灰度值分布不均匀,以及牙齿和其他组织的灰度重叠,单纯的阈值分割方法往往不能准确地实现牙齿的分割。

2. 区域生长法区域生长法是一种基于像素相似性的图像分割方法。

它从图像的某个种子点开始,将与种子点相似的像素逐渐添加到同一个区域中,直到满足某个停止准则。

在牙齿图像分割中,可以选择一个种子点,如牙齿中心的像素,然后根据像素的灰度值和空间位置等特征,将属于牙齿的像素逐渐添加到同一个区域中。

区域生长法相对于阈值分割法可以更好地处理灰度值分布不均匀的情况,但对于牙齿之间接触较紧密或重叠的情况仍然存在一定的挑战。

3. 边缘检测法边缘检测法是一种基于图像亮度或颜色的变化来检测图像边缘的方法。

在牙齿图像分割中,可以利用边缘检测算法来提取牙齿的边缘轮廓,然后通过边缘轮廓的闭合来得到牙齿的分割结果。

常用的边缘检测算法包括Sobel算子、Canny算子等。

边缘检测法对于牙齿边缘清晰、与背景明显区分的图像有较好的效果,但对于背景噪声较多或图像分辨率较低的情况效果可能不理想。

4. 基于机器学习的方法基于机器学习的方法在图像分割领域中得到了广泛的应用。

通过使用已标注的牙齿图像作为训练样本,可以训练一个分类器来自动地将牙齿和背景进行区分。

常用的机器学习算法包括支持向量机(SVM)、随机森林等。

这些方法可以根据图像的各种特征,如灰度、纹理、形状等进行牙齿和背景的分类,从而实现牙齿的准确分割。

区域生长法自适应阈值分割

区域生长法自适应阈值分割区域生长法是一种在图像处理中广泛应用的像素聚类技术,它通过预先定义的相似性准则将像素或像素区域组合成更大的、具有相似性质的区域。

自适应阈值分割则是在传统的全局阈值分割基础上发展起来的一种更为灵活和适应性更强的图像分割方法。

本文旨在探讨区域生长法与自适应阈值分割相结合的应用,并分析其在图像处理中的优势与局限性。

一、区域生长法的基本原理区域生长法的基本思想是从图像中选取一组“种子”像素,然后根据某种相似性准则,将与种子像素相邻且具有相似性质的像素合并到种子区域中。

这一过程不断迭代,直到没有新的像素可以加入为止。

相似性准则可以是像素的灰度值、颜色、纹理等属性的差异。

通过这种方法,可以将图像分割成若干个内部性质相似、相互之间性质差异较大的区域。

二、自适应阈值分割的原理与特点与传统的全局阈值分割不同,自适应阈值分割是根据图像的局部性质动态地确定阈值。

它通常将图像划分为若干个小区域(如邻域、窗口等),然后在每个小区域内计算一个局部阈值,用于分割该区域内的像素。

局部阈值的计算可以基于该区域内像素的灰度直方图、均值、方差等统计信息。

这种方法能够更好地适应图像中不同区域的灰度分布和对比度变化,从而得到更准确的分割结果。

三、区域生长法与自适应阈值分割的结合将区域生长法与自适应阈值分割相结合,可以充分利用两者的优点,实现更为精确和灵活的图像分割。

具体而言,可以先使用自适应阈值分割方法将图像初步划分为若干个小区域,然后在每个小区域内应用区域生长法,根据像素之间的相似性准则进行进一步的细分和合并。

这种方法能够在保持局部适应性的同时,有效地减少噪声和伪影的干扰,提高分割结果的准确性和鲁棒性。

四、应用实例与效果分析为了验证区域生长法自适应阈值分割的有效性,我们可以将其应用于不同类型的图像进行实验。

例如,在医学图像处理中,可以利用该方法对CT、MRI等医学图像进行分割,提取出感兴趣的区域(如肿瘤、血管等);在遥感图像处理中,可以利用该方法对地表覆盖类型进行分类和识别;在工业自动化领域,可以利用该方法对产品质量进行检测和评估等。

医学图像分割算法及其在肿瘤检测中的应用

医学图像分割算法及其在肿瘤检测中的应用医学图像分割技术是一种通过对医学图像进行图像处理的方法,将图像中不同的结构和组织分离开来,以便医生更好地进行诊断和治疗。

在肿瘤检测中,医学图像分割技术发挥着重要的作用。

本文将介绍医学图像分割算法及其在肿瘤检测中的应用。

首先,我们来了解一下医学图像分割算法的原理。

医学图像分割算法主要包括阈值分割、边缘分割、区域生长和基于图论的分割等。

阈值分割是最简单的一种方法,通过设定一个阈值,将像素值高于阈值的像素归为一类,低于阈值的像素归为另一类。

边缘分割则是通过检测图像中的边缘信息进行分割,常用的边缘检测算法有Sobel算子和Canny算子等。

区域生长方法则是从某个种子点开始,不断延伸其邻域像素直到满足某个条件为止,形成一个区域。

基于图论的分割方法则是将医学图像转化为图,并利用图的属性进行分割。

在肿瘤检测中,医学图像分割算法能够有效地辅助医生进行诊断。

首先,肿瘤区域的分割可以帮助医生找到患者体内的肿瘤位置和大小。

通过对肿瘤进行分割,医生可以更直观地观察到肿瘤的形态特征,从而帮助判断是良性还是恶性肿瘤。

其次,医学图像分割算法可以辅助医生进行肿瘤的定位和边界确定。

将肿瘤从正常组织中分割出来,可以清晰地显示肿瘤的边界,为手术和治疗提供准确的指导。

此外,医学图像分割算法还可以帮助医生进行肿瘤的分型和分级,进一步指导治疗方案的选择。

在实际应用中,医学图像分割算法的性能和准确度至关重要。

有许多因素会影响到医学图像分割算法的准确性,如图像噪声、光照变化、遮挡等,以及分割算法本身的复杂程度和计算效率。

因此,选择适合肿瘤检测的医学图像分割算法是非常重要的。

近年来,深度学习在医学图像分割领域取得了显著的成果。

深度学习利用神经网络的强大拟合能力和自动特征提取能力,有效地解决了传统图像分割算法中的许多问题。

基于深度学习的医学图像分割算法不仅在分割精度上取得了较好的结果,而且能够自动学习到图像的高级特征,提高了算法的泛化性和鲁棒性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏科技大学数字图像处理图像分割——区域生长法专题1 图像分割简介图像分割( image segmentation) 就是把图像分成各具特征的区域并提取出感兴趣目标的技术和过程。

这里特征可以是象素的灰度、颜色、纹理等, 预先定义的目标可以对应单个区域也可以对应多个区域。

图像分割是图像处理到图像分析的关键步骤, 在图像工程中占据重要的位置。

一方面, 它是目标表达的基础, 对特征测量有重要的影响。

另一方面, 因为图像分割及其基于分割的目标表达、特征提取和参数测量等将原始图像转化为更抽象更紧凑的形式, 使得更高层的图像分析和理解成为可能。

图像分割是一种重要的图像处理技术, 它不仅得到人们的广泛重视和研究, 在实际中也得到大量的应用。

图像分割包括目标轮廓、阈值化、图像区分或求差、目标检测、目标识别、目标跟踪等技术。

从大的方面来说,图像分割方法可大致分为基于区域的方法、基于边缘的方法、区域与边缘相结合的方法,以及在此基础上的采用多分辨率图像处理理论的多尺度分割方法。

其中基于区域的方法采用某种准则,直接将图像划分为多个区域。

而基于边缘的方法则通过检测包含不同区域的边缘,获得关于各区域的边界轮廓描述,达到图像分割的目的,而区域与边缘相结合的方法通过区域分割与边缘检测的相互作用,得到分割结果。

图像分割中基于区域的方法主要有直方图门限法、区域生长法、基于图像的随机场模型法、松弛标记区域分割法等。

本文主要讨论基于区域分割的区域生长法。

区域生长是一种古老的图像分割方法,最早的区域生长图像分割方法是由Levine等人提出的。

该方法一般有两种方式,一种是先给定图像中要分割的目标物体内的一个小块或者说种子区域,再在种子区域基础上不断将其周围的像素点以一定的规则加入其中,达到最终将代表该物体的所有像素点结合成一个区域的目的;另一种是先将图像分割成很多的一致性较强,如区域内像素灰度值相同的小区域,再按一定的规则将小区域融合成大区域,达到分割图像的目的,典型的区域生长法如T. C. Pong等人提出的基于小面(facet)模型的区域生长法,区域生长法固有的缺点是往往会造成过度分割,即将图像分割成过多的区域。

2图像分割定义借助集合概念对图像分割给出如下较正式的定义:令集合R 代表整个图像区域, 对R 的分割可看做将R 分成N 个满足以下五个条件的非空子集( 子区域)R1, R3, ……, RN:①1Ni i R R ==②对所有的i 和j, i ≠j, 有Ri ∩Rj ≠○;③对i=1,2,⋯,N, 有P(Ri)=TRUE;④对i ≠j, 有P(Ri ∪Rj)=FALSE;⑤对i=1,2,⋯,N, Ri 是连接的区域。

其中P(Ri)对所有在集合Ri 中元素的逻辑谓词, ○代表空集。

上述的五个条件分别称为完备性,独立性,相似性,互斥性,连通性。

3、图像分割方法及串行区域分割技术简述多年来的研究使得人们对图像分割产生了高度的重视, 并且已经提出了上千种分割算法, 将算法分类就是把一个集合分成若干子集,这与分割本身有一定相似性, 因此参考分割定义, 每个算法都能被分成一类, 各类总和包括所有算法, 同类中算法有相同性质, 不同类算法有某些不同性质。

参照这些条件进行分类。

拿一幅普通的人物照片来举例, 相邻象素在象素值方面有两个性质: 不连续性和相似性( 区域内的象素都具有相似性, 如人的额头和面颊的象素, 而区域边界一般具有某种不连续性, 如耳朵的边缘和紧连着耳朵的背景上的象素) 。

另外由于分割过程的处理方法不同, 算法又可分为串行和并行的( 串行算法早期的结果被后来的计算所利用, 时间较长, 但抗噪声能力强, 并行算法所有的判断和决定都可独立、同时地完成。

所需时间较短) 。

综上两种分类, 图像分割的算法可归入四大类串行区域分割技术指采用串行处理的策略通过对目标区域的直接检测来实现图像分割的技术, 它的特点是将整个处理过程分解为顺序的多个步骤逐次进行, 对后继步骤的处理要对前面已完成步骤的处理结果进行判断而确定。

这里的判定要根据一定的准则, 一般来说如果准则是基于图像灰度特性的, 则这个方法可以用于灰度图像分割。

基于区域的串行分割技术有两种基本的形式, 一是从单个象素出发, 渐渐合并以形成所需的分割区域, 二是从整个图出发, 分裂切割至所需要的分割区域, 第一种方法的典型技术就是区域生长法。

4 区域生长的原理区域生长的基本思想是将具有相似性质的象素集合起来构成区域。

首先对每个需要分割的区域找出一个种子象素作为生长的起点,然后将种子象素周围邻域中与种子有相同或相似性质的象素( 根据事先确定的生长或相似准则来确定) 合并到种子象素所在的区域中。

而新的象素继续做种子向四周生长, 直到再没有满足条件的象素可以包括进来, 一个区域就生长而成了。

现在给出一个区域生长的示例。

给出已知矩阵A:大写的5 为种子, 从种子开始向周围每个象素的值与种子值取灰度差的绝对值, 当绝对值少于某个门限T 时, 该象素便生长成为新的种子, 而且向周围每个象素进行生长; 如果取门限T=1, 则区域生长的结果为:可见种子周围的灰度值为4、5、6 的象素都被很好地包进了生长区域之中, 而到了边界处灰度值为0、1、2、7 的象素都成为了边界, 右上角的5 虽然也可以成为种子, 但由于它周围的象素不含有一个种子, 因此它也位于生长区域之外; 现在取门限T=3, 新的区域生长结果为:整个矩阵都被分到一个区域中了。

由此可见门限选取是很重要的。

在实际应用区域生长法时需要解决三个问题:1.选择或确定一组能正确代表所需区域的种子象素( 选取种子) ;2.确定在生长过程中能将相邻象素包括进来的准则( 确定门限) ;3.确定让生长过程停止的条件或规则( 停止条件)利用迭代的方法从大到小收缩是一种典型的方法, 它不仅对2- D图像而且对3-D 图像也适用。

一般情况下可以选取图像中亮度最大的象素作为种子, 或者借助生长所用准责对每个象素进行相应的计算, 如果计算结果呈现聚类的情况则接近聚类重心的象素可以作为种子象素。

上面的例子, 分析它的直方图可知灰度值为1 和5 的象素最多且处于聚类的中心, 所以可各选一个具有聚类中心灰度值的象素作为种子。

生长准则的选取不仅依赖于具体问题本身, 也和所用图像数据种类有关, 如彩色图和灰度图。

一般的生长过程在进行到再没有满足生长条件的象素时停止, 为增加区域生长的能力常需考虑一些与尺寸、形状等图像和目标的全局性质有关的准则。

区域生长的关键是选择合适的生长或相似准则, 大部分区域生长准则会使用图像的局部性质生长准则可以根据不同原理制定, 而使用不同的生长准则会影响区域生长的过程。

常用的生长准则和方法有两种, 即基于区域灰度差的、基于区域内灰度分布统计性质的。

下面给出实验结果:灰度图lena 直方图区域生长结果三次均方值计算直方图 区域生长结果由于lena 细节性较强( 比如姑娘的发丝) , 对它进行区域生长的结果还会有一些区域无法连在一起, 所以对它进行了三次均值运算( 取象素及周围共九个点的平均灰度作为新的灰度值) 。

区域生长以后小的区域就较好地连成了一片。

5 基于区域灰度差的生长准则在我们使用的区域生长方法中, 操作的基本单位是象素, 基于区域灰度差的生长准则步骤如下:1.对图像进行逐行扫描, 找出尚无归属的象素;2.以该象素为中心, 检查它相邻的象素, 即将邻域中的象素逐个与它比较, 如果灰度差小于事先确定的阈值, 则将它们合并;3.以新合并的象素为中心, 再进行步骤2 检测, 直到区域不能进一步扩张;4.重新回到步骤1, 继续扫描直到不能发现没有归属的象素, 整个生长过程结束。

上述方法是先要进行扫描, 这对区域生长起点的选择有比较大的依赖性, 为克服这个问题可以改进方法如下:1.设灰度差的阈值为零, 用上述方法进行区域扩张, 合并灰度相同的象素;2.求出所有邻接区域之间的平均灰度差, 合并具有最小灰度差的邻接区域;3. 设定终止准则, 通过反复进行步骤2 中的操作将区域依次合并, 直到终止准则满足为止, 生长过程结束。

当图像中存在灰度缓慢变化的区域时, 上述方法有可能会将不同区域逐步合并而产生错误。

为了克服这个问题, 可以不用新象素的灰度值去与邻域象素的灰度值进行比较, 而用新象素所在区域的平均灰度值去与各邻域象素的灰度值进行比较。

对一个有N 个象素的图像区域R, 灰度均值为:1(,)Rm f x y N =∑对象素的比较为:max |(,)|Rf x y m T -< 其中T 为阈值。

如果区域是均匀的, 区域内的灰度变化应当尽量小; 如果区域是非均值的( 一般情况) ,且由两部分构成。

这两部分象素在R 中所占比例分别为q 1和q 2, 灰度值分别为m 1和m 2, 则区域均值为q 1m 1+q 2m 2, 对灰度值为m 1的象素, 它与区域均值的差为:S m =m 1-(q 1m 1+q 2m 2) 可知正确判决的概率为:这表明, 当考虑灰度均值时, 不同部分象素间的灰度差距应该尽量大。

6 基于区域内灰度分布统计性质的生长准则考虑以灰度分布相似性作为生长准则来决定区域的合并, 具体步骤为:1.把图像分成互不重叠的小区域;2.比较邻接区域的累积灰度直方图, 根据灰度分布的相似性进行区域合并;3.设定终止准则, 通过反复进行步骤2中的操作将各个区域依次合并直到满足终止准则, 生长过程结束。

设两个相邻区域的积累灰度直方图分别为h 1(z)和h 2(z), 常用的两种检测方法为:1. Kolmogorov- Smirnov 检测:12max |()()|zh z h z - 2. Smoothed- Difference 检测:12|()(2)|zh n h -∑ 如果检测结果小于给定阈值T, 则两个区域合并。

使用此方法, 小区域的尺寸对结果可能有较大影响, 尺寸太小时检测可靠性降低, 尺寸太大时得到的区域形状不理想, 小的目标会被漏掉, 用Smoothed-Difference 方法检测直方图相似性时效果Kolmogorov- Smirnov 要好, 因为它考虑了所有的灰度值。

1()[(||)(||)]2m m P T P T s P T s =-++。

相关文档
最新文档