最新两个计数原理公开课(涂色很好)

合集下载

杨海燕--《计数原理》教案公开课

杨海燕--《计数原理》教案公开课

《计数原理》教案公开课第一章:计数原理概述1.1 教学目标让学生理解计数原理的基本概念让学生掌握排列组合的基本原理让学生了解计数原理在实际生活中的应用1.2 教学内容计数原理的定义及意义排列组合的基本原理计数原理在实际生活中的应用案例1.3 教学方法采用讲授法,讲解计数原理的基本概念和排列组合的原理利用案例分析法,分析计数原理在实际生活中的应用引导学生进行思考和讨论,提高学生的理解能力1.4 教学评估课堂问答:学生能准确回答计数原理的定义及意义练习题:学生能正确解答与排列组合相关的习题小组讨论:学生能积极参与讨论,提出自己的观点第二章:排列2.1 教学目标让学生掌握排列的计算方法让学生能够解决实际问题中的排列问题排列的定义及计算方法排列的应用案例2.3 教学方法采用讲授法,讲解排列的计算方法利用案例分析法,分析排列在实际生活中的应用引导学生进行思考和讨论,提高学生的理解能力2.4 教学评估课堂问答:学生能准确回答排列的定义及计算方法练习题:学生能正确解答与排列相关的习题小组讨论:学生能积极参与讨论,提出自己的观点第三章:组合3.1 教学目标让学生掌握组合的计算方法让学生能够解决实际问题中的组合问题3.2 教学内容组合的定义及计算方法组合的应用案例3.3 教学方法采用讲授法,讲解组合的计算方法利用案例分析法,分析组合在实际生活中的应用引导学生进行思考和讨论,提高学生的理解能力课堂问答:学生能准确回答组合的定义及计算方法练习题:学生能正确解答与组合相关的习题小组讨论:学生能积极参与讨论,提出自己的观点第四章:排列与组合的综合应用4.1 教学目标让学生掌握排列与组合的综合应用方法让学生能够解决实际问题中的排列与组合问题4.2 教学内容排列与组合的综合应用方法排列与组合在实际生活中的应用案例4.3 教学方法采用讲授法,讲解排列与组合的综合应用方法利用案例分析法,分析排列与组合在实际生活中的应用引导学生进行思考和讨论,提高学生的理解能力4.4 教学评估课堂问答:学生能准确回答排列与组合的综合应用方法练习题:学生能正确解答与排列与组合相关的习题小组讨论:学生能积极参与讨论,提出自己的观点第五章:计数原理在实际生活中的应用5.1 教学目标让学生了解计数原理在实际生活中的应用让学生能够运用计数原理解决实际问题5.2 教学内容计数原理在实际生活中的应用案例计数原理在数学和其他学科中的应用5.3 教学方法采用案例分析法,分析计数原理在实际生活中的应用引导学生进行思考和讨论,提高学生的理解能力利用实践操作法,让学生亲自动手解决实际问题5.4 教学评估课堂问答:学生能准确回答计数原理在实际生活中的应用练习题:学生能正确解答与计数原理相关的习题小组讨论:学生能积极参与讨论,提出自己的观点实践操作:学生能运用计数原理解决实际问题第六章:概率与计数原理6.1 教学目标让学生理解概率与计数原理的关系让学生掌握利用计数原理求解概率问题的方法6.2 教学内容概率的基本概念与计算方法利用计数原理求解概率问题的步骤与技巧6.3 教学方法采用讲授法,讲解概率的基本概念与计算方法利用案例分析法,分析利用计数原理求解概率问题的实例引导学生进行思考和讨论,提高学生的理解能力6.4 教学评估课堂问答:学生能准确回答概率的基本概念与计算方法练习题:学生能正确解答与概率计算相关的习题小组讨论:学生能积极参与讨论,提出自己的观点第七章:鸽巢原理与计数原理7.1 教学目标让学生了解鸽巢原理的基本概念让学生掌握利用鸽巢原理解决实际问题的方法7.2 教学内容鸽巢原理的定义与证明利用鸽巢原理解决实际问题的步骤与技巧7.3 教学方法采用讲授法,讲解鸽巢原理的定义与证明利用案例分析法,分析利用鸽巢原理解决实际问题的实例引导学生进行思考和讨论,提高学生的理解能力7.4 教学评估课堂问答:学生能准确回答鸽巢原理的定义与证明练习题:学生能正确解答与鸽巢原理相关的习题小组讨论:学生能积极参与讨论,提出自己的观点第八章:二项式定理与计数原理8.1 教学目标让学生理解二项式定理的基本概念让学生掌握利用二项式定理解决实际问题的方法8.2 教学内容二项式定理的定义与证明利用二项式定理解决实际问题的步骤与技巧8.3 教学方法采用讲授法,讲解二项式定理的定义与证明利用案例分析法,分析利用二项式定理解决实际问题的实例引导学生进行思考和讨论,提高学生的理解能力8.4 教学评估课堂问答:学生能准确回答二项式定理的定义与证明练习题:学生能正确解答与二项式定理相关的习题小组讨论:学生能积极参与讨论,提出自己的观点第九章:图论与计数原理9.1 教学目标让学生了解图论的基本概念让学生掌握利用图论解决实际问题的方法9.2 教学内容图的基本概念与计数原理的应用利用图论解决实际问题的步骤与技巧9.3 教学方法采用讲授法,讲解图的基本概念与计数原理的应用利用案例分析法,分析利用图论解决实际问题的实例引导学生进行思考和讨论,提高学生的理解能力9.4 教学评估课堂问答:学生能准确回答图的基本概念与计数原理的应用练习题:学生能正确解答与图论相关的习题小组讨论:学生能积极参与讨论,提出自己的观点第十章:计数原理在高考中的应用10.1 教学目标让学生了解计数原理在高考中的重要性让学生掌握计数原理在高考题目中的应用方法10.2 教学内容计数原理在高考中的典型题目分析计数原理在高考题目中的应用方法与技巧10.3 教学方法采用案例分析法,分析计数原理在高考中的典型题目引导学生进行思考和讨论,提高学生的理解能力利用练习法,让学生熟悉计数原理在高考题目中的应用方法10.4 教学评估课堂问答:学生能准确回答计数原理在高考中的重要性练习题:学生能正确解答与计数原理相关的的高考题目小组讨论:学生能积极参与讨论,提出自己的观点模拟测试:学生能在模拟高考环境中运用计数原理解决问题重点和难点解析一、第一章“计数原理概述”中的概念理解和实际应用案例分析。

两个计数原理课件

两个计数原理课件

排列组合问题练习
总结词
通过排列组合问题的练习,学生可以加深对计数原理的理解,掌握排列和组合的计算方法。
详细描述
排列组合问题是计数原理的重要应用之一,通过这类问题的练习,学生可以学习到如何对问题进行分类和分步, 从而应用计数原理进行计算。
概率计算问题练习
总结词
概率计算问题练习有助于学生掌握概率的基本计算方法,理解概率与计数原理的关系。
分步计数原理广泛应用于计算机科学 、运筹学、生产调度等领域,用于解 决不同分步问题。
在应用分步计数原理时,需要确保各 个步骤之间是相互独立的,即每个步 骤的结果不影响其他步骤的实施。
两个计数原理的异同点
相同点
分类计数原理和分步计数原理都是用于解决计数问题的基本原理,都涉及到将问 题分解为更小的部分,并分别计算每部分的方法数,最后通过加法或乘法得到总 的方法数。
02
分类计数原理应用
分类计数原理广泛应用于组合数学、 概率论、统计学等领域,用于解决不 同分类问题。
03
分类计数原理注意事 项
在应用分类计数原理时,需要确保各 个分类之间是互斥的,即每个事件不 能同时属于多个分类。
分步计数原理
分步计数原理定义
分步计数原理应用
分步计数原理注意事项
分步计数原理也称为乘法原理,是指完成一件 事情,需要分成$n$个步骤,第一步有$n_1$种 不同的方法,第二步有$n_2$种不同的方法, 第$n$步有$n_n$种不同的方法,则完成这件事 情共有$N=n_1times n_2times...times n_n$ 种不同的方法。
条件概率
条件概率是概率论中的一个重要概念,可以使用分步计数原理来解释和计算。在条件概率 中,我们关注某个事件在另一个事件发生的前提下的概率,可以通过分步计数原理来计算 。

《两个基本计数原理》示范公开课教学课件【高中数学苏教版】

《两个基本计数原理》示范公开课教学课件【高中数学苏教版】

“每一步”与“完成这件事”有什么关系?
“每一步”都不能独立“完成这件事”.
从甲地经乙地到丙地,共有多少种不同的方法?
共有(种)不同的方法.
完成这件事要分几步?每一步有几种方法? 分两步: 第一步:先选上衣,有种不同方法; 第二步:再选裤子,有种不同方法.“每一步”与“完成这件事”有什么关系? “每一步”都不能独立“完成这件事”.完成这件事,共有多少种不同的方法? 共有(种)不同的方法.
考虑选择分“类”还是分“步”:分类计数原理中每种方法都可以解决这件事情;分步计算原理中连续几个步骤合起来共同完成一件事情.
解:(1)选出名代表有两类方式:第一类:从男生中选出名代表,有种不同的选法;第二类:从女生中选出名代表,有种不同的选法.根据分类计数原理,共有不同的选法种数是.
某班共有男生名、女生名,从该班选出学生代表参加校学生代表大会.(1)若学校分配给该班名代表,则有多少种不同的选法?(2)若学校分配给该班名代表,且男、女生代表各名,则有多少种不同的选法?
解:(1)从个年级共名学生中选出名代表,共种选法.(2)从每个年级中各选人,根据分步计数原理知,共种选法.
结构框图
教材第56页练习第1,2,3题.
各个步骤相互依存,各个步骤都完成才算完成这件事.
分步计数原理针对“分步”问题
分类计数原理针对 “分类”问题
某班共有男生名、女生名,从该班选出学生代表参加校学生代表大会.(1)若学校分配给该班名代表,则有多少种不同的选法?(2)若学校分配给该班名代表,且男、女生代表各名,则有多少种不同的选法?
解:(2)选出男、女生代表各名,可以分成两个步骤完成:第一步:选名男生代表,有种不同的选法;第二步:选名女生代表,有种不同的选法.根据分步计数原理,选出男、女生代表各名,共有不同的选法种数是.答:选出名代表有种不同的选法;选出男、女生代表各名,有种不同的选法.

最新两个计数原理优秀课件

最新两个计数原理优秀课件
N=3×2×4×3=72
3、乘积 (a1+ a2+ a3)(b1+ b2+ b3)(c1+ c2+ c3+ c4) 展开后共有多少项?
N=3×3×4=36
3、分类计数原理和分步计数原理的联系与区别
联系 分类计数原理和分步计数原理,回答的 都是有关做一件事情的不同方法的种数的问 题。
区别 分类计数原理:针对的是“分类”问题, 其各种方法互相独立,用其中任何一种方 法都可以做完这件事。
练习:
2、若集合A={a1,a2,a3,a4,a5}, B={b1,b2,b3},则从A到B可建立 _____个不同的映射,从B到A 可建立___个不同的映射。
例2、由数字1,2,3,4可以组成多少个 三位数?
变式1:若各位数字不允许重复,则 有多少个三位数? 变式2:由数字0,1,2,3,4,可组成 多少个无重复数字的三位数? 变式3:由数字0,1,2,3,4可以组 成多少个无重复数字的三位偶数? 变式4:在不大于200的正整数中, 各个数位都不含有数字8的自然数 有多少个?
例3、某文艺小组有10人,每人 至少会唱歌和跳舞中的一项,其 中7人会唱歌,5人会跳舞,从中 选出会唱歌与会跳舞的各1人, 有多少种不同的选法?
例4、用5种不同的颜色给图中A、 B、C、D四个区域涂色,规定每 个区域只涂一种颜色,相邻区域 颜色不同,求有多少种不同的涂 色方法?
AA CB
BD DC
分步计数原理:针对的是“分步”问题, 各个步骤的方法相互依存,只有各个步骤 都完成了才算做完这件事。
例1 图书馆的书架上第1层放有4本不 同的《读者》,第 2层放有3本不同的 《小小说月刊》,第3层放有2本不同的 《足球》

两个计数原理优秀PPT课件

两个计数原理优秀PPT课件

2、为了对某农作物新品选择最佳生产条 件,在分别有3种不同土质,2种不同施肥量,4 种不同种植密度,3种不同时间的因素下进 行种植试验,则不同的实验方案共有多少种?
N=3×2×4×3=72
3、乘积 (a1+ a2+ a3)(b1+ b2+ b3)(c1+ c2+ c3+ c4) 展开后共有多少项?
都完成了才算做完这.件事。
12
例1 图书馆的书架上第1层放有4本不
同的《读者》,第 2层放有3本不同的
《小小说月刊》,第3层放有2本不同的
《足球》
(1)从书架上任取1本书,有多少种不同
的取法?
(2)从书架的第1、 2、 3层各取1本书,
有多少种 不同取法?
(3)从这些书中选2本不同类的书,有
多少种不同的取法?.
18
例1、四封不同的信投入3个不同的
邮箱,共有多少种不同的投法?
练习: 4位同学参加3项不同的竞赛:
(1)每名学生只能参加一项竞赛,有
多少种不同的报名方案?
(2)每项竞赛只许有一位学生参加,
有多少种不同的报名方案?
(3)每位学生只能参加一项竞赛,每
项竞赛只许有1位学生参加,有多少种
不同的报名方案? .
13
例2 给程序模块命名,需要 用3个字符,其中首字符要求 用字母A-G或U-Z,后两个 要求用数字1-9。问最多可以 给多少个程序命名?
.
14
例3 桐乡市电话号码057388××××××,若从 0~9这10个数字中选数,问可以产生多少个不 同的电话号码?
057388
10× 10 × 10 × 10× 10× 10 =106
19

两个计数原理公开课(涂色很好)

两个计数原理公开课(涂色很好)

THANKS
感谢观看
分类计数原理在生活中的应用
例如,从北京到上海有3种交通方式(飞机、高铁、汽车), 每种交通方式又有多种选择(如飞机有多个航班),选择任 意一种交通方式到达上海的方法数就是各种交通方式方法数 的和。
分步计数原理的应用
分步计数原理(乘法原理)
当完成一件事情需要两个或多个连续步骤,且各个步骤相互依赖时,完成这件 事情的方法数等于各个步骤的方法数之积。
两个计数原理公开课
目录
• 两个计数原理的概述 • 两个计数原理的应用 • 两个计数原理的实例解析 • 两个计数原理的练习题及答案 • 总结与展望
01
两个计数原理的概述
分类计数原理
分类计数原理定义
分类计数原理也称为加法原理,是指 完成一件事情,需要分成$n$个类, 第一类有$n_1$种不同的方法,第二 类有$n_2$种不同的方法,以此类推 ,第$n$类有$n_n$种不同的方法, 则完成这件事情共有 $N=n_1+n_2+...+n_n$种不同的方 法。
在工作方面
分类计数原理可用于计算完成一个项 目所需的不同技能的人数,而分步计 数原理可用于计算完成一个任务所需 的各个流程的人数。
03
两个计数原理的实例解析
分类计数原理实例解析
总结词
简单明了地列举了分类计数原理的实例。
详细描述
分类计数原理是指将一个复杂问题分解为若干个简单、独立的问题,分别解决后再汇总结果。例如,一个班级有 30名学生,需要组织一次春游,可以选择多种交通方式,如公交车、地铁、出租车等。根据分类计数原理,可以 分别计算每种交通方式的费用和时间,然后比较选择最优方案。
分步计数原理在计数问题中应用广泛, 例如在排列组合、概率论、统计学等 领域都有应用。

《两个计数原理》课件

《两个计数原理》课件

概率计算问题
概率的基本性质
概率具有非负性、规范性、可加性等基本性质,用于描述随机事件发生的可能性。
概率计算方法
通过列举法、古典概型、几何概型等方法计算概率。
分步计数原理在概率计算问题中的应用
将复杂事件分解为若干个简单事件的组合,利用分步计数原理计算每个简单事件发生的概率,然后根据 概率的加法原则和乘法原则计算出复杂事件发生的概率。
04
两个计数原理的实例分析
排列组合实例
总结词
通过具体实例,理解排列与组合的概念及计算方法。
详细描述
通过实际生活中的例子,如不同颜色球的不同排列方式、不同组合的彩票中奖 概率等,来解释排列与组合的基本概念,以及如何使用计数原理进行计算。
概率计算实例
总结词
通过实例掌握概率计算的基本方 法。
详细描述
选择分步计数原理
当问题涉及多个独立步骤,且需要按照顺序逐步计算每一步 的数量时,应选择分步计数原理。例如,计算排列数时,需 要按照顺序计算从n个不同元素中取出k个元素的所有排列数 。
THANK YOU
感谢聆听
05
总结与思考
两个计数原理的异同点
相同点
两个计数原理都是用来解决计数问题,特别是涉及多个独立事件 的问题。
不同点
分类计数原理是针对完成某一任务的不同方式进行计数,而分步 计数原理则是针对完成某一任务的不同步骤进行计数。
两个计数原理的应用范围
分类计数原理
适用于问题涉及多种独立的方式或方法,需要分别计算每一种方式或方法的数量 ,然后求和得到总数。
分步计数原理的适用范围是:当完成 一个任务时,需要分成几个有序的步 骤,并且各个步骤之间有相互影响。
两个计数原理的对比

两个计数原理PPT优秀课件1

两个计数原理PPT优秀课件1
根据分步计数原理,最多可以有13×9×9=1053种不同的选法
答:最多可以给1053个程序命名。
例3.核糖核酸(RNA)分子是在生物细胞中发现的化学成分,一个RNA分子 是一个有着数百个甚至数千个位置的长链,长链中每一个位置上都由一种称 为碱基的化学成分所占据,总共有4个不同的碱基,分别用A,C,G,U表 示,在一个RNA分子中,各种碱基能够以任意次序出现,所以在任意一个位 置上的碱基与其他位置上的碱基无关。假设有一类RNA分子由100个碱基组 成,那么能有多少种不同的RNA分子?
例2.给程序模块命名,需要用3个字符,其中首个字 符要求用字母A~G或U~Z,后两个要求用数字1~9, 问最多可以给多少个程序命名?
分析:要给一个程序模块命名,可以分三个步骤:第一步, 选首字符;第二步,先中间字符;第三步,选末位字符。
解:首字符共有7+6=13种不同的选法, 中间字符和末位字符各有9种不同的选法
分类加法计数原理和分步乘法计数原理的 共同点:回答的都是有关做一件事的不同方法种数的问题 不同点:分类加法计数原理与分类有关, 分步乘法计数原理与分步有关。
分类计数原理
区别1 完成一件事,共有n类 办法,关键词“分类”
分步计数原理
完成一件事,共分n个 步骤,关键词“分步”
每类办法都能独立地完成 这件事情,它是独立的、 区别2 一次的、且每次得到的是 最后结果,只须一种方法 就可完成这件事。 区别3
100 4 4 4 4 = 4 种不同的RNA分子. 100 个 4
例4.电子元件很容易实现电路的通与断、电位的高与底等两种 状态,而这也是最容易控制的两种状态。因此计算机内部就采 用了每一位只有0或1两种数字的计数法,即二进制,为了使计 算机能够识别字符,需要对字符进行编码,每个字符可以用一 个或多个字节来表示,其中字节是计算机中数据存储的最小计 量单位,每个字节由8个二进制位构成,问 (1)一个字节(8位)最多可以表示多少个不同的字符? (2)计算机汉字国标码(GB码)包含了6763个汉字,一个 汉字为一个字符,要对这些汉字进行编码,每个汉字至少要用 多少个字节表示? 如00000000,10000000, 11111111.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所以共有12+8+6=26种方法。
例4 有架楼梯共6级,每次只允
许上一级或两级,求上完这架楼梯共有多少种来自同的走法?第1类:走3步
1种走法
第2类:走4步
6种走法
第3类:走5步
5种走法
第4类:走6步
1种走法
N=1+6+5+1=13(种)
例7 在1,2,3,…,200这些自 然数中,各个数位上都不含数字8的 自然数共有多少个?
不含8的一位数
8个
不含8的二位数 不含8的三位数
8×9=72个 9×9+1=82个
N=8+72+82=162(个)
例8 用5种不同颜色给图中A,B, C,D四个区域涂色,每个区域只涂 一种颜色,相邻区域的颜色不同, 求共有多少种不同的涂色方法?
A5 4 B C3 D3
N=5×4×3×3=180(种)
甲地
丙地
乙地
思考3:你能类比分类加法计数原理,概 括出第二种计数原理吗?
分步乘法计数原理
思考4:类比分类加法原理的推广,分步 乘法原理能推广吗?
思考5:你能说说分类加法原理与分 步乘法原理两个原理的异同点?
分步加法计数原理和分类乘法 计数原理的共同点:
计算做一件事情完成它的所 有不同方法种数的问题。
长 的 时 间 隧 道,袅
两个计数原理公开课(涂色很好)
两个计数原理
莆田第二中学高二1班
思考1:从甲地到乙地,可以乘火车,
也可以乘汽车。一天中,火车有3班,
汽车有2班。那么一天中,乘坐这些
交通工具从甲地到乙地共有多少种不
同的走法?
3+2=5(种)
火车1
火车2

火车3

汽车1
汽车2
分类加法计数原理
(3)从书架上任取两本不同学科的书,有多少种不 同的取法?
解: 从书架上任取两本不同学科的书,有三类方法:
第一类方法:取计算机书和文艺书 该方法分两步完成,共4*3=12种方法
第二类方法:取计算机书和体育书 该方法分两步完成,共4*2=8种方法
第三类方法:取文艺书和体育书 该方法分两步完成,共3*2=6种方法
第3步:从第3层取1本体育书,有2种方法;
根据分步乘法计数原理,从书架的1、2、3层各取1本书, 不同取法的种数是:
N 4 3 2 24
答:从书架的1、2、3层各取1本书,有24种不同的取 法。
例1 书架的第1层放有4本不同的计算机书,第2层放 有3本不同的文艺书,第3层放有2本不同的体育书,
.在填写高考志愿表时,一名高中毕业生了解到A,B 两所大学各有一些自己感兴趣的强项专业,具体情 况如下:
A大学
B大学
生物学
数学
化学
会计学
医学
信息技术学
物理学
法学
工程学
如果这名同学只能选一个专业,那么他共有多少种 选择呢?
练习 :在填写高考志愿表时,一名高中毕业生了解
到,A,B,C三所大学各有一些自己感兴趣的强项专
分类加法计数原理 分步乘法计数原理
区别1 完成一件事,共有 完成一件事,共分n
n类方案,关键词 个步骤,关键词
“分类”
“分步”
区别2 每类方案的任何一个 任何一步都不能独立完成
方法都能独立地完成 这件事,只有各个步骤都
这件事情
完成了,才能完成这件事
区别3
相加
相乘
例1:书架的第1层放有4本不同的计算机书,第2 层放有3本不同的文艺书,第3层放有2本不同的体 育书,
(1)从书架上任取1本书,有多少种不同的取法?
解(:1)从书架上任取一本书,有三类方法: 第1类办法是:从第1层取1本计算机书,有4种方法; 第2类办法是:从第2层取1本文艺书,有3种方法; 第3类办法是:从第3层取1本体育书,有2种方法; 根据分类加法计数原理,不同取法的种数是:
N 4329
答:从书架上任取1本书,有9种不同的取法.
例9 将一个四棱锥的每个顶点染上
一种颜色,并使同一条棱上的两端点颜
色不同,如果只有5种颜色可供使用,求
共有多少种不同的染色方法?
进 入 夏 天 ,少 不了一 个热字 当头, 电扇空 调陆续 登场, 每逢此 时,总 会想起 那 一 把 蒲 扇 。蒲扇 ,是记 忆中的 农村, 夏季经 常用的 一件物 品。 记 忆 中 的故 乡 , 每 逢 进 入夏天 ,集市 上最常 见的便 是蒲扇 、凉席 ,不论 男女老 少,个 个手持 一 把 , 忽 闪 忽闪个 不停, 嘴里叨 叨着“ 怎么这 么热” ,于是 三五成 群,聚 在大树 下 , 或 站 着 ,或随 即坐在 石头上 ,手持 那把扇 子,边 唠嗑边 乘凉。 孩子们 却在周 围 跑 跑 跳 跳 ,热得 满头大 汗,不 时听到 “强子 ,别跑 了,快 来我给 你扇扇 ”。孩 子 们 才 不 听 这一套 ,跑个 没完, 直到累 气喘吁 吁,这 才一跑 一踮地 围过了 ,这时 母 亲总是 ,好似 生气的 样子, 边扇边 训,“ 你看热 的,跑 什么? ”此时 这把蒲 扇, 是 那 么 凉 快 ,那么 的温馨 幸福, 有母亲 的味道 ! 蒲 扇 是 中 国传 统工艺 品,在 我 国 已 有 三 千年多 年的历 史。取 材于棕 榈树, 制作简 单,方 便携带 ,且蒲 扇的表 面 光 滑 , 因 而,古 人常会 在上面 作画。 古有棕 扇、葵 扇、蒲 扇、蕉 扇诸名 ,实即 今 日 的 蒲 扇 ,江浙 称之为 芭蕉扇 。六七 十年代 ,人们 最常用 的就是 这种, 似圆非 圆 , 轻 巧 又 便宜的 蒲扇。 蒲 扇 流 传 至今, 我的记 忆中, 它跨越 了半个 世纪, 也 走 过 了 我 们的半 个人生 的轨迹 ,携带 着特有 的念想 ,一年 年,一 天天, 流向长
例1 书架的第1层放有4本不同的计算机书,第2层放 有3本不同的文艺书,第3层放有2本不同的体育书,
(2)从书架的第1,2,3层各取1本书,有多少种不 同的取法?
解(:2)从书架的1、2、3层各取1本书,可以分3步来完成:
第1步:从第1层取1本计算机书,有4种方法;
第2步:从第2层取1本文艺书,有3种方法;
业,具体情况如下:
A大学
B大学
C大学
生物学
数学
机械制造
化学
会计学
建筑学
医学
信息技术学 广告学
物理学
法学
汉语言文学
工程学
韩语
如果这名同学只能选一个专业,那么他共有多少种 选择呢? N=5+4+5=14(种)
推广:
思考2:从甲地到丙地,有3条道路,从丙地到 乙地有2条道路,那么从甲地经丙地到乙地共
有多少种不同的走法 ?
相关文档
最新文档