地表水环境监测方案
地表水监测方案

地表水监测方案一、引言地表水是人类生产生活的重要水源,它的质量直接影响着人们的健康和生活环境。
因此,建立科学有效的地表水监测方案对于保护水资源、预防水污染具有重要意义。
二、监测目标本方案的主要监测目标是掌握地表水体系的状况、及时发现异常情况,以便采取相应措施。
具体包括以下几个方面:1. 水质监测:监测地表水中常见污染物质的含量,包括有机物、重金属、营养盐等;2. 水量监测:监测地表水的流量、水位等参数,以了解水资源的利用状况;3. 水生态监测:监测地表水的生物多样性、水生态系统的健康状况。
三、监测方法为了保证监测结果的准确性和可比性,我们将采用以下方法进行地表水监测:1. 采样方法:根据地表水体系的特点,选择代表性的监测点位进行采样。
每个监测点位每季度至少进行一次采样,保证样本的全面性和时效性;2. 分析方法:使用标准的水质检测设备和方法,对采样的地表水样品进行综合分析,包括物理、化学和生物指标的测定;3. 数据处理:将监测数据进行统计和分析,制定科学合理的数据处理方法,并与历史数据进行对比,以发现潜在的趋势和异常情况;4. 结果报告:定期生成监测报告,将监测结果和分析结论提供给相关部门和公众,以便及时采取有效的措施。
四、监测频率和监测区域本方案将根据地表水体系的复杂程度和资源情况,制定不同的监测频率和监测区域划分方案。
一般来说,我们将重点监测以下区域和频率:1. 水库和河流:重点监测重要水库和河流的入口和出口位置,每季度进行一次采样和监测;2. 地下水和湖泊:根据地下水水源地和湖泊的规模和重要性,每年至少进行两次采样和监测;3. 海洋与海湾:关注海岸线附近的海洋和海湾区域,每年进行一次采样和监测。
五、应急响应机制为了应对突发事件和异常状况,我们将建立快速响应机制。
一旦发现水质异常或水体面临污染威胁,我们将立即启动应急响应措施,包括但不限于以下方面:1. 启动预警系统:利用先进的水质监测设备和网络系统,监测地表水的实时数据,一旦发现异常情况,及时发出预警信息;2. 协调相关部门:将监测结果及时通报给环境保护、水务管理等相关部门,协调各方力量,共同应对水质问题;3. 制定处置方案:根据具体情况制定相应的处置方案,包括水质修复、事件调查等;4. 宣传教育:加强对公众的宣传教育,提高水资源保护意识和环境意识。
地表水监测方案

地表水监测方案一、背景介绍地表水是指地球表面上的河流、湖泊、水库等自然水体及其汇集后形成的江河湖海等水系。
随着人口的增加和工业发展的加快,地表水的质量受到了日益严重的威胁。
为了保障公众的健康和生态环境的可持续发展,制定一套科学、高效的地表水监测方案势在必行。
二、监测目标与指标地表水监测的主要目标是对水体中的污染物进行及时、准确的检测,以评估水质的安全性和污染程度。
根据国家标准和环保法规,我们将监测以下指标:1. pH值:评估水体的酸碱度,判断是否符合水环境的生态要求;2. 溶解氧:反映水中的氧气含量,对水生态系统的生物生存至关重要;3. 化学需氧量(COD):用于检测水中有机物的含量,作为衡量水体污染的指标之一;4. 总氮和总磷:反映水体中营养盐的含量,对水生态环境的影响较大;5. 氨氮和硝酸盐氮:用于评估水体中的氨氮和硝酸盐含量,判断是否存在污染来源。
三、监测方法与频次为了确保监测结果的准确性和可靠性,我们将采用以下方法进行地表水的监测:1. 采样方法:选择合适的采样点,经过充分搅拌后取样,避免污染源的干扰;2. 仪器设备:使用符合国家标准的仪器设备,如多参数水质分析仪、紫外可见分光光度计等;3. 实验室测试:将采样的水样送往具备资质的实验室进行测试,确保结果的准确性;4. 监测频次:根据监测计划,定期进行监测,包括日常监测、季度性监测以及突发事件后的应急监测。
四、数据分析与报告监测完成后,我们将对数据进行分析和评估,以判断地表水质量的状况。
同时,我们将向相关部门、企事业单位提供监测结果报告,促使他们采取相应的环保措施,确保水质安全。
五、质量保证与持续改进为确保监测方案的科学性和有效性,在实施过程中我们将采取以下措施:1. 建立质量保证体系:制定监测操作规范、实验室质量控制规程等,确保监测过程的准确性和可比性;2. 培训与实施:定期对监测人员进行专业培训,提高他们的技术水平和操作能力;3. 仪器设备维护:定期对仪器设备进行检修和校准,确保其正常运行和准确性;4. 数据分析和评估:建立科学的数据分析方法,不断完善监测评估体系;5. 监测方案的持续改进:根据监测结果和相关要求,及时更新监测方案,提高监测效率和可信度。
地表水环境监测方案教案

地表水环境监测方案教案地表水是指地球表面上的河流、湖泊、水库等自然水体以及城市污水处理后的排放水体。
地表水环境监测是保障水资源安全、促进环境保护的重要手段。
本课程将介绍地表水环境监测的基本原理、常见参数、监测方法和数据分析方法,以及相关法律法规和标准。
二、教学目标1. 了解地表水环境监测的基本概念和意义;2. 掌握地表水环境监测的常见参数、监测方法和数据分析方法;3. 了解地表水环境监测相关法律法规和标准。
三、教学内容1. 地表水环境监测的基本概念和意义;2. 常见地表水环境监测参数及其意义;3. 地表水环境监测的采样方法和实验室分析方法;4. 地表水环境监测数据的处理和分析方法;5. 地表水环境监测相关法律法规和标准。
四、教学方法1. 讲授法:介绍地表水环境监测的基本概念、常见参数、监测方法和法律法规等内容;2. 实践操作:进行地表水采样和实验室分析,学习数据处理和分析方法。
五、教学评价1. 考试:考察学生对地表水环境监测的基本概念、常见参数、监测方法和数据处理分析方法的掌握程度;2. 实验报告:评价学生对地表水采样和实验室分析的操作技能和数据处理分析能力。
六、教学资源1. 教材:《水环境监测学》;2. 实验室设备:水采样器、传统水质分析仪器、高级仪器;3. 相关法律法规和标准:《中华人民共和国水污染防治法》、《地表水环境质量标准》。
七、教学时长总计8学时,其中理论授课6学时,实验操作2学时。
八、教学步骤1. 介绍地表水环境监测的基本概念和意义;2. 讲解地表水环境监测的常见参数及其意义;3. 介绍地表水环境监测的采样方法和实验室分析方法;4. 讲解地表水环境监测数据的处理和分析方法;5. 介绍地表水环境监测相关法律法规和标准;6. 进行实验室操作,进行地表水采样和实验室分析;7. 教师对学生的实验操作进行指导和辅导;8. 学生提交实验报告并进行评分。
环境质量现状监测方案

环境质量现状监测方案一、地表水环境质量现状监测1.1监测点位地表水环境质量现状监测的监测断面设在项目废水所排入的河流上游1000m处(背景断面),下游500m处(控制断面),下游1000m处(削减断面),共3个监测断面1.2监测项目本次评价选择的监测项目有pH、CODcr、BOD5、DO、氨氮、总磷、粪大肠菌群等因子,同时测水温和流量。
1.3监测频次本次现状监测一次性连续监测三天,每天采样一次。
二、地下水环境质量现状监测2.1监测点位监测点位为项目预选厂址,以及项目预选厂址2.5km范围内的敏感点。
2.2监测项目本次监测项目为:pH、总硬度、溶解性总固体、高锰酸盐指数、NH3-N和总大肠菌群。
地下水取样同时测水温、井深。
2.3监测频次地下水监测与地表水监测同时进行,一次性监测2天,每天采样1次。
三、环境空气质量现状监测3.1监测点位环境空气质量现状监测的监测点位分布在项目预选厂址内、以及项目预选厂址附近2.5km内的敏感点3.2监测项目本次监测项目为TSP、PM10、SO2、NO X、氨。
3.3监测频次各监测项目连续监测7天,TSP日均值每天不少于24h采样,PM10、SO2、NO X、氨的日均值每天采样不能少于20h,SO2、NO X、氨小时均值每天监测四次,每次采样不少于45min,时间为02、08、14、20时。
四、声环境质量现状监测4.1监测点位声环境质量现状监测的监测点位分布在项目预选厂址四周、以及项目预选厂址附近2.5km内的敏感点。
4.2监测项目噪声。
4.3监测频次每天2次,昼夜各一次,连续监测3天。
地表水监测方案制定

地表水监测方案制定1. 引言地表水是指地球表面上的河流、湖泊、水库和水塘等自然界中的水体。
由于地表水对人类生活和生产的重要性,进行地表水监测是保障水资源安全、确保环境健康的重要手段。
本文档旨在制定地表水监测方案,以保护和管理地表水资源。
2. 方案制定目的制定地表水监测方案的目的是为了:1.监测和评估地表水的质量和数量状况;2.指导地表水管理和保护工作;3.提供数据支持,为决策和政策制定提供科学依据。
3. 监测指标和参数地表水监测需要关注的指标和参数包括但不限于以下内容:1.水质指标:包括pH值、溶解氧含量、氨氮、总磷、总氮等;2.水量指标:包括水位、水体流速等;3.水温;4.悬浮物含量;5.水体透明度;6.重金属含量等。
4. 监测频次和地点选择地表水监测的频次和地点选择应根据实际情况进行合理确定。
一般而言,监测频次应包括以下几个方面:1.日常监测:每日对指定地点的地表水进行监测,以了解水质和水量的日常变化;2.季节性监测:按照季节变化对不同地点的地表水进行监测,以了解季节性变化;3.长期监测:对特定地点的地表水进行长期监测,以建立历史数据并分析长期趋势。
地点选择应涵盖地表水系统的整体情况,并考虑以下几个因素:1.水体来源:包括河流、湖泊、水库等;2.水体用途:包括生活供水、农业灌溉、工业用水等;3.水体受污染程度:选择污染程度较高的地点进行重点监测。
5. 监测方法和设备地表水监测方法和设备的选择应根据监测指标和参数的要求进行。
常见的监测方法和设备包括:1.野外监测装置:如水质自动监测站、水位计、流速计等;2.实验室设备:如PH计、溶解氧仪、光度计等;3.采样器具:包括水样采集瓶、滤纸等。
在选择监测方法和设备时,应考虑其准确性、稳定性和可操作性。
6. 数据处理与分析地表水监测数据的处理与分析是方案制定中重要的一环。
数据处理与分析的内容包括以下几个方面:1.数据录入与存储:将采集到的数据进行整理和录入,并建立数据库进行存储;2.数据质量控制:对采集到的数据进行质量控制,剔除异常数据和检查数据准确性;3.数据分析与报告:根据监测数据进行数据分析,生成数据报告,并提取有价值的信息和结论。
地表水监测的优秀方案推荐_地表水监测方案

地表水监测的优秀方案推荐_地表水监测方案地表水监测需要人们时时进行管理与检查,及时发现问题并且改正才能共同进步与发展,接下来让我们来看看地表水监测的优秀方案推荐吧。
地表水监测方案一概述地表水自动监测系统可实现自动采样及预处理、在线测量、报表分析、数据传输、远程监控等功能,及时掌握水质状况、预警预报水质污染事故、保障公众用水安全等。
截止2021年我国已建设了972个水质自动监测站。
监测因子:常规监测因子包括:水温、ph、溶解氧、电导率、浊度、高锰酸盐指数、总有机碳、氨氮,湖泊水质自动监测站的监测项目还包括总氮和总磷。
部分站点进行挥发性有机物、生物毒性及叶绿素a的监测。
监测频次一般监测频次设为每4h监测一次(即每天6个监测数据)。
当发现水质状况明显变化或发生污染事故时,监测频率可调整为连续监测。
数据通过外网vpn方式传送到各监测站、省级监测中心站及中国环境监测总站。
系统组成:地表水自动监测站主要由采水单元、配水单元、分析仪器、控制系统组成。
采水单元:包括水泵、管路、供电等,为系统提供可靠、有效的水样。
可采用栈桥、浮筒、固定桩等方式。
配水单元:包括水样预处理装置、自动清洗装置及辅助部分,为各分析仪器提供其所需要压力和流量的水样。
分析仪器:由一系列水质分析仪器、仪表组成,具有校准、测量、反控、自诊断等功能,并将测量结果发送到控制系统。
控制系统:用于控制整个系统自动完成采水、配水、分析测量、数据存储、数据传输、生成报表等功能,也可接受监控平台发送的指令,远程控制系统各部分。
站房及配套设施:包括站房主体、空调、供电、防雷、防火、给排水等。
对应仪器ph智能电极(amt-ph300)、溶解氧智能电极(amt-pr300)、电导率智能电极(amt-pd300)、浊度智能电极(amt-pz300)、多参数水质电极(amt-w400)、总有机碳水质分析仪(amt-zz300)、氨氮水质分析仪(amt-pa100)、总磷总氮水质分析仪(amt-1226)、生物毒性水质分析仪(amt-tox100)、紫外吸收水质分析仪(amt-0504)、全光谱水质电极(amt-0120)、叶绿素智能电极(amt-py300)、蓝绿藻智能电极(amt-pl300)。
地表水环境质量自动监测方案

技术方案地表水环境质量自动监测系统目录1 项目概述 (3)1.1项目背景介绍................................................................................................................................. 错误!未定义书签。
1.2项目建设能力................................................................................................................................. 错误!未定义书签。
1.3项目建设优势................................................................................................................................. 错误!未定义书签。
2 地表水水质在线监测系统建设方案 (3)2.1标准规范 (3)2.2水质自动监测系统总体结构设计 (4)2.1.1水质自动监测站系统工艺设计 (6)2.1.2水质自动监测站系统布局设计 (6)2.3站房建设方案 (7)2.3.1站房选址条件 (7)2.3.2站房建设方式 (7)2.4采水系统方案 (9)2.4.1采水方式 (10)2.4.2采水工艺设计 (12)2.4.3采水工艺功能 (13)2.4.4输水单元设计 (13)2.5配水系统方案 (13)2.5.1配水系统设计思路 (14)2.5.2配水单元 (14)2.6预处理设计方案 (16)2.6.1沉砂预处理装置 (16)2.6.2过滤预处理装置 (17)2.7控制单元 (17)2.7.1 控制系统设计 (17)2.7.2 系统管理软件 (18)2.8数据处理单元 (19)2.8.1数据传输方式 (20)2.8.2数据采集/控制 (20)2.8.3数据传输终端 (21)2.9辅助系统方案 (22)2.10视频监控系统方案 (22)2.10.1视频监控点位布置需求 (22)2.10.2系统组成 (23)3仪表分析单元 (24)3.1水质四参数分析仪器单元 (24)3.1.1WS1501型COD CR水质在线自动分析仪 ................................................................................... 错误!未定义书签。
地表水监测方案编制

地表水监测方案编制一、引言地表水是人类生活和生产活动中不可或缺的重要资源,其质量状况直接关系到生态环境的平衡和人类的健康。
为了准确掌握地表水的水质状况,及时发现潜在的污染问题,科学合理地编制地表水监测方案至关重要。
二、监测目的地表水监测的主要目的包括以下几个方面:1、评估地表水的水质状况,确定其是否符合相关的环境质量标准和用水要求。
2、追踪和识别地表水污染的来源和迁移路径,为污染治理提供依据。
3、监测地表水水质的变化趋势,为环境保护和水资源管理提供决策支持。
三、监测范围和断面设置(一)监测范围根据监测目的和实际需求,确定监测的地表水体范围。
这可能包括河流、湖泊、水库等。
(二)断面设置1、对照断面:设置在河流进入监测区域之前,未受本区域污染源影响的地方,用于对比和评估监测区域内的水质变化。
2、控制断面:设置在污染源排放口下游,能反映污染对水体水质影响的位置。
3、消减断面:设置在污染物经治理或自然净化后浓度降低的位置,用于评估治理效果。
在设置断面时,要充分考虑水体的水文特征、污染源分布、功能区划分等因素,确保断面具有代表性和科学性。
四、监测项目(一)常规监测项目包括水温、pH 值、溶解氧、化学需氧量(COD)、五日生化需氧量(BOD5)、氨氮、总磷、总氮等。
(二)特征污染物监测项目根据监测区域内的污染源类型和潜在的污染风险,确定特征污染物监测项目。
例如,如果周边有化工企业,可能需要监测重金属、有机污染物等。
五、监测频率监测频率应根据地表水体的重要性、水质变化情况和管理需求来确定。
一般来说,对于重要的地表水体和水质容易变化的区域,监测频率应较高;对于水质相对稳定的区域,监测频率可以适当降低。
例如,对于主要河流的控制断面,每月监测一次;对于一般河流的控制断面,每季度监测一次。
在特殊情况下,如发生突发环境污染事件、雨季等,应增加监测频率。
六、监测方法选择合适的监测方法是确保监测数据准确可靠的关键。
监测方法应符合国家和行业的相关标准和规范。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
地表水水质监测方案——广州大学内水质监测一、监测目的(1)对校园教学区,主要是实验楼区域的校园景观的用水及水样进行监测,了解学校实验楼区域的水质现状。
(2)学习水质监测的步骤,进一步将课堂所学知识运用到实践中,学会制定水质监测方案并按步实施。
(3)进一步熟练常用的水质监测中的实验操作技术,掌握地表各种指标与污染物的测定方法。
(4)熟悉环境质量标准评价的各项标准,并学会运用其来评价水质,提出改善校园水质的意见和建议。
二、基础资料的收集本次监测选取了校园网主场至生化实验楼区域水域进行监测。
根据相关的文档和网上搜寻的资料可知,该河段属于珠江水系广州段,水域的有关资料如下:1.地形地貌广州大学城位于中国东南沿海,紧靠珠江两岸地,地处珠江三角洲腹地,是三角洲平原与低山丘陵区的过渡地带。
小岛总体地形是东北高、西南低。
东北部是由花岗岩与变质岩组成的低山丘陵区,地形高差250m 左右,坡度15°~35°。
广州大学位于岛的西部,坐落于河流堆积组成的冲积平原,地势平缓,其中分布零星的残丘和苔地,有着树枝状般的水系。
2.气象广州大学城地处南亚热带,属海洋性季风气候,有着温暖多雨、光热充足、雨量充沛的特点。
其年平均气温约为21.8℃,一年中7月、8月的温度最高,1月最低,绝对最高气温约38.7℃。
平均年降雨量为1699.8毫米,集中在梅雨季、台风季两个季节,占全年的82.1%,在七、八、九月份常遭受六级以上的大风袭击或影响,台风最大风力在9级以上,并带来暴雨,破坏力极大,年评卷蒸发量160315,mm。
3.水文广州大学城位于珠江、冻僵溪流的交汇区上,该区域河段属于不规则半日潮。
冲积平原和三角洲平原,地势低平,地表水体类别有:库唐、涌溪、干流河道,全区水域面积16011k㎡,占广州市区面积的10.8%。
据黄埔潮汐站资料,珠江平均高潮水位为0.72m,平均低潮水位为-0.88m,涨潮最大潮差2.56m,落潮最大潮差3.00m。
潮汐周期为半个月,即15天。
每年的1~3月份平均潮位较低,6~9月份较高。
各月均值之间差值一般只有0.2米左右,变化较小。
4.监测河段概况经实地考察,此河段是珠江至校园图书馆中心湖之间的河段,全长约400m,平均宽约4.5m,平均水深1.5m,流经生化实验楼和工程实验楼,水质主要受到这两处污染源的影响。
此河段是人工河段,包括河流的河床、两岸的植被、河流的流水量以及河流的污染等,都是有人类活动主导的,其生态系统也极大地收到人类活动的影响,已非自然状态下的生态系统,具有其自身独特的特点。
三、监测断面和采样点的设置及水样采集1.检测断面结合实际的调查情况,设计3个检测断面,如下图:设计如图A、B、C,三个监测断面2.采样点位的确定由于研究的河流区域没有形成完整的将流水系,所检测的水面宽约5m,水深约为2m,据此,在水面上设一条中弘线,在该垂线上0.5m处设为采样点。
3.采样时间和采样频率的确定拟定检测时间为2天,用混合采样法,每天分别于早上9:00,中午12:00,晚上18:00采样三次。
4.水样的采集与保存采集的水样为表层水样,采用适当的容器(如塑料桶)直接采集。
对测定pH值,溶解氧、高锰酸盐指数等项目进行单独采样。
采样结束后,从采集到分析测定这段时间内,采用冷藏法保存待测水样。
5、检测项目浊度、色度、水温、pH值、电导率、氨氮、COD(Mn)6、水样监测方法四、拟采用的评价标准校园环境水属于非人体直接接触的景观用水,本检测方案选用地表水环境质量标准(GB3838-2002)的Ⅲ,Ⅳ级标准限值作为评价标准。
监测项目及其操作步骤1、浊度—浊度计法(1)仪器的操作步骤:仪器的校准,仪器使用前需进行校正,这一步通常由实验室校准。
(2)水样的测定:开机【ENTER】—量程选择【RANGE】—选自动量程【AUTORNG】—信号平均【SIGNAL】—放样品(样品量至少30mL,用绒布揩干样品瓶表面,除去水滴、指纹、油污、脏物等,将样品瓶外壁表面滴一滴硅油均匀浸润,并用软布轻拭,使均匀并无液体状痕迹。
注意样品瓶上的三角标志应与样品槽的箭头方向一致)—按确定【ENTER】—读书(稳定后)(3)若读数在仪器量程范围内,可直接读数。
(4)若读数超出测量范围,需进行稀释,并用无浊度水定容至100mL。
(5)计算:若水样经过稀释,则按下式计算原始水样的浊度:浊度(NTU)=T×100V式中:T——稀释后浊度值V——取样体积2.水样色度的测定——稀释倍数法(一)仪器♦ 50ml具塞比色管,其标线高度要一致。
(二)测定步骤(1) 取100 ml澄清水样置于烧杯中,以白色瓷板为背景,观测并描述其颜色种类。
(2) 分取澄清的水样,用水稀释成不同倍数。
分取50 ml分别置于50 ml比色管中,管底部衬一白瓷板,由上向下观察稀释后水样的颜色,并与50 ml蒸馏水相比较,直至刚好看不出颜色,记录此时的稀释倍数。
3.水温测定——温度计(一)仪器♦水温计,测量范围0~+100℃,分度值为1.0℃。
♦电子温度计,pH/mV/Temperature meter Model: PH-870,分度值为0.1℃。
(二)测定步骤 (1) 水温在采样现场进行测定。
将水温计投入取水样容器中,感温5min后,迅速上提并立即读数。
从水温计离开水面至读数完毕应不超过20s,读数完毕后,将容器内水倒净。
4. 水样pH的测定(一)仪器♦电位计 pH/mV/Temperature meter Model: PH-870,最小刻度 0.1pH单位(二)测定步骤 (1) 调整仪器标准,直接测定,读取的数据即为水样的pH 值5. 水电导率的测定(一)仪器♦ECTEST11+ 防水型电导率仪,量程: 0 - 200.0 μS/cm;0-2000μS/cm;0-20.00mS/cm(二)测定步骤 (1) 调整仪器标准,直接测定,读取的数据即为水样的电导率6、水中氨氮的测定(一)仪器500mL全玻璃蒸馏器;50mL具塞比色管;分光光度计;pH计。
(二)试剂无氨水:可用一般纯水通过强酸性阳离子交换树脂或加硫酸和高锰酸钾后,重蒸馏得到。
1mol/L氢氧化钠溶液。
吸收液:①硼酸溶液:称取20g硼酸溶于水中,稀释至1L。
②0.01mol/L硫酸溶液。
纳氏试剂:称取15g氢氧化钾,溶于50ML水中,冷却至室温。
称取5g碘化钾,溶于10ML水中,在搅拌下,将2.5g二氯化汞粉末分次少量加入碘化钾溶液中,直到溶液呈深黄色或出现微朱红色沉淀溶解缓慢时,充分搅拌混合,并改为滴加二氯化汞饱和溶液,当出现少量朱红色沉淀不再溶解时,停止滴加。
在搅拌下,将冷的氢氧化钾溶液缓慢加入到上述二氯化汞和碘化钾的混合液中,并稀释至100ML,于暗处静置24H,倾出上清液,贮于棕色瓶中,用橡皮塞塞紧。
存放暗处,此试剂至少可稳定一个月。
酒石酸钾钠溶液:称取50g酒石酸钾钠(KNaC4H4O6·4H2O)溶于100mL水中,加热煮沸以除去氨,放冷,定容至100mL。
铵标准贮备溶液:称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,移入1000mL容量瓶中,稀释至标线。
此溶液每毫升含1.00mg氨氮。
铵标准使用溶液:移取5.00mL铵标准贮备液于500mL容量瓶中,用水稀释至标线。
此溶液每毫升含0.010mg氨氮。
(三)实验步骤1.水样预处理:无色澄清的水样可直接测定;色度、浑浊度较高和含干扰物质较多的水样,需经过蒸馏或混凝沉淀等预处理步骤。
2.标准曲线的绘制:吸取 0 、0.50、1.00、3.00、5.00、7.00和10.0mL铵标准使用液于50mL比色管中,加水至标线,加1.0mL酒石酸钾钠溶液,混匀。
加1.5mL纳氏试剂,混匀。
放置10min后,在波长420nm处,用光程10mm比色皿,以水为参比,测定吸光度。
由测得的吸光度,减去零浓度空白管的吸光度后,得到校正吸光度,绘制以氨氮含量(mg)对校正吸光度的标准曲线。
3.水样的测定:分取适量的水样(使氨氮含量不超过0.1mg),加入50mL比色管中,稀释至标线,加1.0mL酒石酸钾钠溶液(经蒸馏预处理过的水样,水样及标准管中均不加此试剂),混匀,加1.5mL的纳氏试剂,混匀,放置10min。
4.空白试验:以无氨水代替水样,作全程序空白测定。
(四)计算由水样测得的吸光度减去空白实验的吸光度后,从标准曲线上查得氨氮含量(mg)。
氨氮(N,mg/L)=m×1000/V式中:m——由校准曲线查得样品管的氨氮含量(mg);V——水样体积(mL)。
7.水中COD的测定(一)试剂的配制(1)重铬酸钾标准溶液C(1/6K2Cr2O7)=0.2000mol/L将重铬酸钾预先在120℃烘箱内烘2h,冷却至室温,置于干燥器内备用。
准确称取9.806g溶于500ml水中,边搅拌边缓慢加入浓硫酸250ml,冷却至室温(一般情况下放置12h以上,避免灰尘落人)后,移入1000ml容量瓶中。
转移过程中,防止重铬酸钾溶液外溅,用水冲洗2-3次,并完全转移至容量瓶中,慢慢摇动,使溶液充分混匀后稀释至995ml左右,再次冷却至室温后稀释至刻度,盖上瓶塞,摇匀。
(2)亚铁灵指示剂称取1.485g邻菲罗啉(C12H8N2·H2O)放人烧杯中,加水30ml,温热至完全溶解,称取0.695g硫酸亚铁(FeSO4·7H2O)放入烧杯中加水溶解,移入邻菲罗啉溶液中混匀,用水稀释至100ml。
(3)硫酸亚铁铵标准溶液C[(NH4)2Fe(SO4)2·6H2O]≈0.042mol/L 称取16.6g硫酸亚铁铵溶于水中,加入20ml浓硫酸,待其溶液冷却至室温后,稀释到1000ml。
临用前用重铬酸钾标准溶液标定。
标定方法:准确吸取5.00ml重铬酸钾标准溶液置于150ml锥形瓶中,用水稀释至30ml,加入5ml浓硫酸混匀,冷却后加2滴(约0.10m1)试亚铁灵指示剂,用硫酸亚铁铵标准溶液滴定。
溶液的颜色由黄色经蓝绿色变为红褐色,即为终点。
记录下硫酸亚铁铵的消耗量(ml)。
其计算公式如下:C[(NH4)2Fe(SO4)2·6H2O]=(5.00×0.2000)/V式中:C为硫酸亚铁铵标准溶液的浓度(mol/L);y为滴定时消耗硫酸亚铁铵溶液的毫升数(ml)(4)硫酸一硫酸银向1L硫酸中加入10g硫酸银,放置1-2天使之溶解并混匀,使用前小心摇动。
(5)硫酸汞结晶或粉末。
(6)COD小于50mg/L水样的溶液配制对于COD小于50mg/L的水样,应采用0.100mol/L重铬酸钾标准溶液氧化,消解后,采用0.021mol/L的硫酸亚铁铵标准溶液回滴。