多孔金属材料的制备方法及应用研究

合集下载

多孔材料的合成与应用

多孔材料的合成与应用

多孔材料的合成与应用多孔材料由于其独特的孔隙结构和巨大的表面积,在各个领域都有着广泛的应用。

本文将探讨多孔材料的合成方法及其在不同领域的应用。

一、多孔材料的合成方法多孔材料的合成方法多种多样,下面将介绍几种常见的方法。

1. 模板法模板法是一种常用的多孔材料制备方法,通过选择合适的模板(如胶体晶体、介孔材料等),将所需的功能材料填充到模板中,再通过溶胶-凝胶、沉积、溶剂挥发等方法制备多孔材料。

这种方法制备的多孔材料具有良好的孔隙结构和高度可控的孔径大小。

2. 溶胶-凝胶法溶胶-凝胶法是一种常见的多孔材料制备方法,通过将溶胶(一般为金属盐、硅源等)溶解在溶剂中,然后通过凝胶化处理使溶胶形成固体凝胶,最后通过热处理得到多孔材料。

这种方法制备的多孔材料具有高度可控的孔隙结构和较大的比表面积。

3. 模板蚀刻法模板蚀刻法是一种通过腐蚀模板材料制备多孔材料的方法。

首先将功能材料填充到模板中,然后通过适当的腐蚀剂对模板进行蚀刻,使模板材料被去除,最后得到多孔材料。

这种方法可以制备具有复杂孔隙结构的多孔材料。

二、多孔材料在不同领域的应用由于多孔材料具有独特的孔隙结构和表面特性,可以应用在各个领域。

1. 催化剂多孔材料的高比表面积和孔隙结构使其在催化剂领域有着重要的应用。

多孔材料可以作为催化剂的载体,提供大量的反应活性位点和扩散通道,提高反应效率和催化剂的稳定性。

2. 吸附剂多孔材料的孔隙结构和表面特性使其具有较大的吸附容量和较高的吸附选择性,可以应用于气体分离、水处理等领域。

例如,介孔材料可以作为吸附剂用于有机污染物的去除;活性炭可以作为吸附剂用于废气处理等。

3. 药物输送多孔材料可以作为药物的载体,在药物输送领域有着广泛的应用。

多孔材料可以调控药物的释放速率和控制药物的输送方向,提高药物的治疗效果和减轻副作用。

4. 能源存储与转换多孔材料的高表面积和孔隙结构使其在能源存储与转换领域有着潜在的应用。

例如,多孔碳材料可以用于超级电容器、锂离子电池等能源存储装置;多孔金属有机骨架(MOF)可以用于气体储存和分离等。

无机多孔材料的制备及功能化研究

无机多孔材料的制备及功能化研究

一、无机多孔材料的制备方法
1、沉淀法沉淀法是一种常用的无机多孔材料制备方法。该方法是通过向溶液 中加入沉淀剂,使溶液中的离子形成沉淀,再经过滤、洗涤和干燥等步骤得到 多孔材料。沉淀法具有操作简单、成本低廉等优点,但制备过程易受沉淀剂种 类和溶液浓度等因素的影响。
2、水解法水解法是利用某些化合物在水中水解生成氢氧化物或氨水的过程, 制备出具有多孔结构的产品。水解法具有反应条件温和、易于控制等优点,但 水解过程可能会受到水解剂种类和浓度等因素的影响。
3、喷雾热解法喷雾热解法是一种将溶液喷入高温炉中,通过高温反应制备无 机多孔材料的方法。喷雾热解法具有生产效率高、可连续生产等优点,但高温 炉的温度和喷雾液滴的大小等因素会对制备过程和产物性能产生影响。
二、无机多孔材料的功能化处理
1、表面改性表面改性是一种对无机多孔材料表面进行处理的方法,旨在改变 材料的表面性质,提高其应用性能。表面改性方法包括物理涂覆、化学包覆和 离子交换等,改性剂包括金属氧化物、金属氢氧化物和有机物等。
3、pH值 pH值是指材料溶液中氢离子浓度的负对数,是表征溶液酸碱性的指 标。对于某些多孔材料,如硅酸盐和金属氧化物等,其结构和性能会受到溶液 pH值的影响。
四、无机多孔材料的应用领域
1、气体存储无机多孔材料具有高度发达的孔隙结构和比表面积,可用作气体 存储材料。例如,碳纳米管和金属氢化物等具有较高的可逆吸氢性能,被广泛 应用于氢气储存和运输领域。
2、掺杂掺杂是一种向无机多孔材料中引入其他元素或化合物以改善其性能的 方法。掺杂元素或化合物可以改变材料的电子结构、化学性质和物理性能等, 从而优化其应用领域。
3、吸附吸附是一种利用无机多孔材料高度发达的孔隙结构和比表面积,将气 体或液体中的杂质或有害物质吸附在材料表面,从而达到净化或分离的目的。 吸附法具有操作简单、能耗低、可循环使用等优点。

多孔材料的制备和性能调控

多孔材料的制备和性能调控

多孔材料的制备和性能调控多孔材料拥有独特的结构和性能,广泛应用于催化剂、吸附材料、传感器等领域。

然而,多孔材料的制备和性能调控一直是科学家们关注和研究的热点。

本文将从多孔材料的制备方法、性能调控策略以及应用前景等方面进行论述。

一、多孔材料的制备方法多孔材料的制备方法多种多样,其中常见的包括溶胶-凝胶法、共沉淀法、模板法和燃烧法等。

溶胶-凝胶法是一种常用的多孔材料制备方法。

通过将溶胶物质在溶剂中溶解形成溶胶,再通过凝胶化反应使之形成凝胶,最后通过干燥和煅烧等步骤得到多孔材料。

该方法成本低、操作简便,适用于制备种类多样的多孔材料。

共沉淀法是利用化学反应在溶液中共沉淀出多孔材料的方法。

通过合适的溶剂和沉淀剂,可以控制沉淀速度和颗粒大小,从而调控多孔材料的孔径和孔隙结构。

这种方法制备的多孔材料通常具有较好的孔隙结构和稳定性。

模板法是一种通过有机或无机模板来制备多孔材料的方法。

通过将溶胶物质浸渍到模板材料中,然后通过煅烧或溶解模板材料得到多孔材料。

模板法可以制备孔径较小、孔隙结构有序的多孔材料,适用于制备纳米级孔径的材料。

燃烧法是一种通过燃烧反应来制备多孔材料的方法。

通常将可燃性物质与原料混合,通过燃烧反应形成多孔材料。

燃烧法制备的多孔材料具有较大的比表面积和良好的热稳定性,常用于催化剂和吸附材料的制备。

二、多孔材料的性能调控策略多孔材料的性能可以通过调控其孔径、孔隙结构和比表面积等方面来实现。

一种常用的性能调控策略是材料合成过程中的添加剂控制。

通过添加表面活性剂、聚合剂或酸碱调节剂等,可以调控多孔材料的孔径大小、孔隙结构和孔道分布等。

另一种常用的性能调控策略是后处理方法。

在多孔材料制备完成后,通过煅烧、酸碱处理、氧化还原等方法,可以进一步调控多孔材料的结构和性能。

比如,通过煅烧可以提高多孔材料的热稳定性和孔道连通性;通过酸碱处理可以调节多孔材料的酸碱性质;通过氧化还原反应可以改变多孔材料的电导性能等。

此外,多孔材料的性能还可以通过复合材料的制备来实现。

电沉积法制备多孔金属材料的研究

电沉积法制备多孔金属材料的研究

电沉积法制备多孔金属材料的研究随着科学技术的不断发展和创新,许多新的制备材料的方法也随之涌现。

其中,电沉积法是一种非常重要的制备技术,它可以利用电化学原理在电极表面上制备各种材料。

多孔金属材料是一类具有很好性能的新兴材料,在很多领域都有广泛的应用前景。

本文将阐述电沉积法制备多孔金属材料的研究进展和方法。

一、多孔金属材料的研究现状多孔金属材料是指表面或内部具有微孔和介孔的金属材料。

这种材料相较于传统的普通金属材料,具有更大的比表面积和更好的吸附性能等优点,因而在光催化、电催化、电极等领域有广泛的应用。

以光催化为例,多孔金属材料由于其多孔的结构,在提高催化剂利用率的同时,也能够提高反应速率和稳定性。

因此,多孔金属材料在新能源、环境保护、生命医学等领域中都有着很大的应用前景。

二、电沉积法制备多孔金属材料的基本原理电沉积法是一种通过电极表面的化学反应,在电极表面沉积金属或合金的方法。

其基本原理是利用电化学原理,在外场的作用下,将无机离子从电解质中沉积在电极上,从而形成所需的材料。

在制备多孔金属材料时,电沉积法可通过控制电极电位、电流密度和电解液的成分和条件等参数,调整所沉积的金属材料的孔径大小、形貌和分布等特征,从而达到制备所需的多孔金属材料的目的。

三、电沉积法制备多孔金属材料的制备步骤(1)电解液溶液制备电解液是电沉积法制备多孔金属材料时不可忽略的一个重要参数。

具体来说,它需要提供必要的金属离子,同时还要满足调节电极电位、控制沉积速率和影响孔径大小等多重作用。

因此,电解液的选择对于制备多孔金属材料来说至关重要。

(2)电极材料选择电极材料的选择直接影响多孔金属材料的品质和形态。

以普通的铜箔为例,酸性电解液可以使其表面产生空洞;而碱性电解液中,即使使用铜颗粒作为电极,也无法实现孔径的控制。

因此,在选择电极材料的过程中,需要考虑其特性和适用性,并对不同电解液的特殊适应性进行测试。

(3)电化学条件的控制在电沉积制备多孔金属材料时,电化学条件的控制也是十分关键的一点。

多孔金属有机骨架材料的制备及其应用研究

多孔金属有机骨架材料的制备及其应用研究

多孔金属有机骨架材料的制备及其应用研究近年来,多孔金属有机骨架材料受到了广泛关注。

这种材料在化学、物理、材料科学等领域都有着重要的应用,同时也是新型材料领域的前沿研究课题。

本文将介绍多孔金属有机骨架材料的制备方法和应用研究进展。

一、多孔金属有机骨架材料的制备方法1. 溶剂热法溶剂热法是制备多孔金属有机骨架材料的常用方法之一,其原理是将金属离子与有机配体在有机溶剂中反应生成多孔结构。

其中的有机配体通常为大环化合物,能够提供足够的空间和配位位点,从而形成高度有序的孔洞结构。

2. 水热合成法水热合成法是利用水热反应条件制备多孔金属有机骨架材料的方法。

该方法需要在高温高压下进行实验,水热反应的高效性极大提高了孔洞结构的有序性和纯度,有助于实现更高效和可重复的制备方法。

3. 等离子体增强化学气相沉积法等离子体增强化学气相沉积法是一种新型的制备多孔金属有机骨架材料的方法,其利用等离子体增强化学反应在表面上生成有机乃至无机薄膜,再通过控制氧化剂、反应时间等因素调控氧化反应来实现多孔结构的形成。

二、多孔金属有机骨架材料的应用研究1. 气体储存与分离多孔金属有机骨架材料具有高度有序孔结构,可以承载气体分子并具有储存和分离作用,因此在气体储存和分离方面具有很大的应用潜力。

2. 催化反应多孔金属有机骨架材料在催化反应中作为载体,有助于调控反应速率和选择性,进而提高反应效率和产率。

因此,多孔金属有机骨架材料被广泛应用于各种催化反应领域。

3. 气体传感器多孔金属有机骨架材料的结构与表面性质可通过调控实现对特定气体分子的识别和探测。

基于这种特性,多孔金属有机骨架材料可用于气体传感器、化学传感器等领域,对环境污染物等进行检测。

三、结语多孔金属有机骨架材料的制备方法和应用研究已经取得了令人瞩目的进展。

随着科技的不断发展,多孔金属有机骨架材料在化学、物理、能源等领域的应用将会越来越广泛,成为新型材料领域中的重要研究方向。

多孔金属材料

多孔金属材料

多孔金属材料
多孔金属材料是一种具有特殊结构和性能的材料,其具有许多独特的优点,因
此在各个领域都有着广泛的应用。

多孔金属材料通常具有高度的孔隙率和较大的比表面积,这使得它们在吸附、过滤、隔热、隔声等方面具有独特的优势。

本文将介绍多孔金属材料的组成、制备方法以及应用领域。

多孔金属材料通常由金属颗粒或纤维通过一定的方法组装而成,其孔隙结构可
以精确控制,从而实现对材料性能的调控。

常见的多孔金属材料包括泡沫金属、多孔板、网状结构等。

这些材料具有高度的孔隙率和连通的孔隙结构,使得气体和液体可以在其中自由流动,具有优秀的过滤和吸附性能。

制备多孔金属材料的方法多种多样,常见的方法包括模板法、发泡法、粉末冶
金法等。

模板法是利用模板的空隙结构来制备多孔金属材料,可以通过模板的选择来控制孔隙结构和孔隙大小;发泡法是利用金属的发泡性质来制备多孔金属材料,可以实现大面积、连续生产;粉末冶金法是利用金属粉末的成型和烧结来制备多孔金属材料,可以实现复杂形状和微观结构的控制。

多孔金属材料在各个领域都有着广泛的应用。

在能源领域,多孔金属材料可以
作为催化剂载体、电极材料等,具有优异的传质性能和催化性能;在航空航天领域,多孔金属材料可以作为轻质结构材料、隔热隔烟材料等,具有优异的强度和耐高温性能;在生物医学领域,多孔金属材料可以作为植入材料、药物载体等,具有良好的生物相容性和生物活性。

总之,多孔金属材料具有独特的结构和性能,其制备方法多样,应用领域广泛。

随着材料科学的不断发展,相信多孔金属材料将会在更多领域展现出其独特的价值,为人类社会的进步做出更大的贡献。

多孔材料的制备与应用

多孔材料的制备与应用

多孔材料的制备与应用多孔材料是指材料中存在一定空隙或孔洞的材料,其孔隙可以是连通的也可以是孤立的。

多孔材料具有较大的比表面积和较低的密度,这赋予了它们许多优良的性质和广泛的应用。

本文将介绍多孔材料的制备方法和一些常见的应用。

模板法是一种常用的制备多孔材料的方法。

该方法利用其中一材料作为模板,在其表面涂覆一层可溶性的材料,待可溶性材料溶解后,形成的孔洞即为多孔材料的孔洞。

例如,可以以聚苯乙烯微球为模板,涂覆一层溶于有机溶剂的聚合物,然后用溶剂将聚合物溶解,形成多孔材料。

该方法的优点是制备过程简单,可控性好,但需要寻找适合的模板和可溶性材料。

发泡法是通过在材料中加入发泡剂,使其在固化过程中释放气体而形成孔洞。

该方法适用于许多材料如金属、聚合物和陶瓷等。

例如,将聚合物与发泡剂混合,通过加热使其固化,并使发泡剂释放气体,形成多孔材料。

这种方法制备的多孔材料可以具有较高的孔隙率和较大的孔径,但孔洞分布不均匀。

烧结法是一种以颗粒为基础的制备多孔材料的方法。

该方法利用微米级颗粒形成颗粒堆积,然后通过高温处理使其粘结成型。

在烧结过程中,颗粒会形成连通的孔洞,从而形成多孔材料。

该方法的优点是可以控制孔隙大小和分布,但对于短纤维颗粒不适用。

溶胶凝胶法是一种以溶胶和凝胶为中间体的制备多孔材料的方法。

该方法通过溶胶转化为凝胶,再通过脱溶胶剂将溶胶中的溶剂去除,形成多孔材料。

这种方法制备的多孔材料具有较高的孔隙率和较小的孔径,但需要耗费较长的制备时间。

气相沉积法是一种在气相中通过化学反应制备多孔材料的方法。

该方法通过气相反应生成气态产物,然后使其在固体表面上沉积,形成多孔材料。

这种方法制备的多孔材料具有较高的比表面积和孔隙度,但需要较高的工艺条件。

多孔材料在众多领域中有着广泛的应用。

其中一种常见的应用是作为催化剂的载体。

由于多孔材料具有较大的比表面积和较低的密度,因此可以提供更多的活性位点,提高催化剂的活性和选择性。

此外,多孔材料还可以用于分离杂质和纯化溶液,例如通过选择性吸附分离有机物或离子。

浅谈金属多孔材料的制备方法与应用

浅谈金属多孔材料的制备方法与应用

浅谈金属多孔材料的制备方法与应用关键词:功能机构;金属加工;多孔材料文献标识码:A文章编号:1671-7597(2011)0120144-01多孔材料是一种由相互贯通或封闭的孔洞构成网络结构的材料,孔洞的边界或表面由支柱或平板构成。

由于多孔材料具有相对密度低、比强度高、比表面积大、重量轻、隔音、隔热、渗透性好等优点,其应用范围远远超过单一功能的材料。

近年来金属多孔材料的开发和应用日益受到人们的关注。

从20世纪中叶开始,世界各国竞相投入到多孔金属材料的研究与开发之中,并相继提出了各种不同的制备工艺。

1 金属多孔材料的制备工艺1.1 粉末冶金(PM)法。

该方法的原理是将一种或多种金属粉末按一定的配比混合均匀后,在一定的压力下压制成粉末压坯。

将成形坯在烧结炉中进行烧结,制得具有一定孔隙度的多孔金属材料。

或不进行成形压制的步骤,直接将粉末松装于模具内进行无压烧结,即粉末松装烧结法。

1.2 纤维烧结法。

纤维烧结法与粉末冶金法基本类似。

用金属纤维代替金属粉末颗粒,选取一定几何分布的金属纤维混合均匀,分布成纤维毡,随后在惰性气氛或还原性气氛中烧结制各金属纤维材料。

该方法制各的金属多孔材料孔隙度可在很大范围内调整。

1.3 发泡法。

1)直接吹气法。

对于制备泡沫金属,直接吹气法是一种简便、快速且低耗能的方法。

2)金属氢化物分解发泡法。

这种方法是在熔融的金属液中加入发泡剂(金属氢化物粉末),氢化物被加热后分解出H2,并且发生体积膨胀,使得液体金属发泡,冷却后得到泡沫金属材料。

3)粉末发泡法。

该方法的基本工艺是将金属与发泡剂按一定的比例混合均匀,然后在一定的压力下压制成形。

将成形坯经过进一步加工,如轧制、模锻等,使之成为半成品,然后将半成品放入一定的钢模中加热,使得发泡剂分解放出气体发泡,最后得到多孔泡沫金属材料。

1.4 自蔓延合成法。

自蔓延高温合成法是一种利用原材料组分之间化学反应的强烈放热,在维持自身反应继续进行的同时产生大量孔隙的材料合成方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多孔金属材料的制备方法及应用研究本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意!多孔金属材料是金属基体与孔隙共同组成的复合材料,也是一种新型的集结构和功能于一体的材料,因其具有独特的性质而备受广大科研工作者的热切关注. 它不仅比重低、强度高,而且具有消音、减振、耐热、渗透等诸多良好的性能,因而在化工、建筑、国防、医学、环保等领域有广泛的应用.从多孔金属材料的性质考虑,多孔金属既承接了金属方面的性能,又具有多孔材料方面的性能. 作为金属材料,相比玻璃、陶瓷、塑料等非金属,它具有耐高温、良好的导电导热性、高强度,易加工成型的特点; 作为多孔材料,它比致密金属有诸多良好的性能,如轻质、比表面积大、吸能好等. 根据金属的状态和孔隙形成的来源,逐渐产生了许多制备多孔金属材料的工艺,有些在原有的工艺条件下进行了优化和创新,并取得了一定的成效.1 多孔金属材料的制备方法从多孔金属材料的定义上讲,它是多孔和金属两个词的统一体,这给科研工作者提供了制备多孔金属的着手点,从而衍生出一系列制备多孔金属的工艺,包括材料的选择、孔隙结构的来源、设备调整、工艺参数的确定等方面. 金属的状态可以分为液态、固态、气态和离子态,而气孔的产生通常是以直接和间接的方式,两者相结合从而产生了不同的制备工艺. 传统上可分为铸造法、金属烧结法、沉积法等.1. 1 铸造法铸造法分为熔融金属发泡法、渗流铸造法和熔模铸造法等.1. 1. 1 熔融金属发泡法熔融金属发泡法包括气体发泡法和固体发泡法. 此方法的关键措施是选择合适的增粘剂,控制金属粘度和搅拌速度,以优化气泡均匀性和样品孔结构控制的程度. 此法主要用于制备泡沫铝、泡沫镁、泡沫锌等低熔点泡沫金属. 对于熔融金属发泡法,当前研究较多的是泡沫铝. 李言祥对泡沫铝的制备工艺、泡沫结构特点及气孔率方面进行了深入的实验研究; 于利民等人根据采用此法生产泡沫铝在国内外泡沫金属的发展形势,总结并探讨了其制备工艺及优缺点.1) 气体发泡法气体发泡法指的是向金属熔体的底部直接吹入气体的方法. 为增加金属熔体的粘度,需要加入高熔点的固体小颗粒作为增粘剂,如Al2O3和SiC 等. 吹入的气体可选择空气或者像CO2等惰性气体. 虽然设备简单、成本低,但孔隙尺寸和均匀程度难以控制. 徐方明等用这种方法制备出了孔隙率为90!以上的闭孔泡沫铝; 覃秀凤等介绍了该方法原理,并研究了增粘剂、发泡气体流量和搅拌速度等工艺参数对实验结果的影响.2) 固体发泡法固体发泡法即向熔融金属中加入金属氢化物的方法. 发泡剂之所以为金属氢化物,是因为它会受热分解,生成的气体逐渐膨胀致使金属液发泡,然后在冷却的过程中形成多孔金属. 增粘剂主要选择Ca粉来调节熔体粘度,发泡剂一般为TiH2 . 采用同样的方法原理,可以通过向铁液中加入钨粉末和发泡剂的方式生成泡沫铁,但很少有相关的文献报道.Miyoshi T等人采用这种方法制备出了泡沫铝.1. 1. 2 渗流铸造法和熔模铸造法两种方法的相似之处在于都是将液态金属注入装有填料的模型中,构成多孔金属的复合体,然后通过热处理等的方式将杂质除去,经过冷却凝固得到终产物多孔金属; 区别在于前者模型中填充的是固体可溶性颗粒( 如NaCl、MgSO4等) 或低密度中空球,后者铸模由无机或有机塑料泡沫( 如聚氨酯) 和良好的耐火材料构成.Covaciu M 等用渗流铸造法制备了开孔型和闭孔型的多孔金属材料,John Banhart用熔模铸造法制备了多孔金属,详细研究了产品结构、性能及应用. 用渗流铸造法制备的多孔金属,其孔隙率小于80!,常用来制备多孔不锈钢及多孔铸铁、镍、铝等合金,虽然用这种方法制备的多孔金属孔隙尺寸得到准确控制,但成本较高. 熔模铸造法制备的多孔金属成本也很高,孔隙率比前者高,但产品强度低.1. 2 金属烧结法金属烧结法包括粉末烧结法、纤维烧结法、中空球烧结法、金属氧化物还原烧结法、有机化合物分解法等.1. 2. 1 粉末烧结法粉末烧结法指的是金属粉末或合金粉末与添加剂按一定的配比均匀混合,压制成型,形成具有一定致密度的预制体,然后进行真空环境下高温烧结或钢模中加热的方式除去添加剂,最终得到多孔金属材料. 此法可用来制备多孔铝、铜、镍、钛、铁、不锈钢等材料. 通过粉末烧结法制备的多孔金属材料,其孔隙特性主要取决于采用的方法工艺和粉末的粒度.王录才等采用冷压、热压、挤压三种方式制备预制体,详细研究了铝在不同炉温下加热的发泡行为.根据所选添加剂的不同,粉末烧结法又分为粉末冶金法和浆料发泡法. 两者选用的添加剂分别为造孔剂和发泡剂.造孔剂分为很多种,如NH4HCO3、尿素等. 陈巧富等用NH4HCO3作造孔剂,经过低温加热和高温烧结的方式制备出了多孔Ti-HA 生物复合材料,孔径范围100 ~500 μm,抗压强度高达20 MPa,可作为人体骨修复材料. 国外David C. D 等用尿素作造孔剂制备出了具有一定孔隙率的泡沫钛; JaroslavCapek等以NH4HCO3为造孔剂,用粉末冶金法制备出了孔隙率为34 !~51!的多孔铁,并作出了多孔铁在骨科应用方面的设想.关于发泡剂的选择,TiH2或ZrH2常作发泡剂制备多孔铝、锌,而SrCO3常作为发泡剂制备多孔碳钢. 李虎等用H2O2作发泡剂,用浆料发泡法制备出了多孔钛,经过对其力学性能测试和碱性处理获得了有望成为负重骨修复的理想材料.1. 2. 2 纤维烧结法纤维烧结法指金属纤维经过特殊处理后经过压制、成型、高温烧结的过程形成的多孔金属. 运用这种方法制备的多孔金属材料,其强度高于烧结法.1. 2. 3 中空球烧结法中空球烧结法指金属空心球粘结起来进行烧结,从而得到多孔金属材料的方法. 常用来制备多孔镍、钛、铜、铁等,制得的金属兼具闭孔和开孔结构.其中金属空心球的制备方法是: 用化学沉积或电沉积的方法在球形树脂表面镀一层金属,然后除去球形树脂. 特别的是,多孔金属的孔隙尺寸可以通过调整空心球的方式来进行控制.1. 2. 4 金属氧化物还原烧结法该方法旨在氧化气氛中加热金属氧化物获得多孔的、透气的、可还原金属氧化物烧结体,再在还原气氛中且低于金属的熔点温度下进行还原,从而得到开口的多孔金属. 这种方法可用来制备多孔镍、钼、铁、铜、钨等. 因为很难找到制备高孔隙率的多孔铁的方法,Taichi Murakami 等用炉渣中的氧化物发泡,并采用氧化还原法制备出了多孔铁基材料.1. 2. 5 有机化合物分解法将金属的草酸盐或醋酸盐等进行成型处理后,再在合适的气氛下加热烧结. 如草酸盐分解反应式为Mx( COO) y→xM + YCO2式中: M 为金属·金属的草酸盐分解释放CO2,在烧结体中形成贯通的孔隙. 在制备过程中金属有机化合物可以成型后加热分解,再进行烧结.1. 3 沉积法此法是指通过采用物理或化学的方法,将金属沉积在易分解的且具有一定孔隙结构的有机物上,然后通过热处理方法或其他方法除去有机物,从而得到多孔金属. 沉积法一般分为电沉积法、气相沉积法、反应沉积法等.1. 3. 1 电沉积法该法是以金属的离子态为起点,用电化学的方法将金属沉积在易分解的且有高孔隙率三维网状结构的有机物基体上,然后经过焙烧使有机物材料分解或用其他的工艺将其除去,最终得到多孔金属. 具体操作步骤为: 预处理、基体导电化处理、电镀、后续处理. 常用来制备多孔铜、镍、铁、钴、金、银等.国外Badiche X 等用这种方法对泡沫镍的制备及性能进行了深入研究; 单伟根等电沉积法制备了泡沫铁,确定了基体的热解方式对泡沫铁的结构性能方面造成不同的影响,并且确定了最佳实验条件. Nina Kostevsek 等研究了平板电极上和多孔氧化铝模板上的铁钯合金,并对二者的电化学沉积动力学进行了比较.1. 3. 2 气相沉积法该法是在真空状态下加热液态金属,使其以气态的形式蒸发,金属蒸气会沉积在固态的基底上,待形成一定厚度的金属沉积层后进行冷却,然后采用热处理方法或化学方法去除基底聚合物,从而得到通孔泡沫金属材料. 蒸镀金属可以为Al、Zn、Cu、Fe、Ti 等.1. 3. 3 反应沉积法反应沉积法,顾名思义指的是金属化合物通过发生反应,然后沉积在基体上的过程. 具体操作环节是,首先将泡沫结构体放置在含有金属化合物的装置中,加热使金属化合物分解,分解得到的金属沉积在多孔泡沫基体上,然后进行烧结去除基底,得到多孔金属. 通常情况下,金属化合物为羟基金属,在高温条件下发生分解反应,如制备多孔铁、镍等.2 多孔金属材料的性能及应用多孔金属材料可作为结构材料,也可作为功能材料. 同时结构决定性能,对于多孔金属而言,它的结构特点表现为气孔的类型( 开孔或闭孔) 、大小、形状、数量、分布、比表面积等方面. 多孔金属材料在航空航天、化学工程、建筑行业、机械工程、冶金工业等行业得到了广泛的应用,此外,在医学和生物领域也具有广阔的发展潜力. Qin Junhua等对多孔金属材料性能和用途两方面的研究进展做了重要阐述,并提出针对当前的形势,需要拓展多孔金属材料其他方面用途的必要性.2. 1 结构材料多孔金属材料具有比重小、强度高、导热性好等特点,常用作结构材料. 可作汽车的高强度构件,如盖板等; 可作建筑上的元件或支撑体,如电梯、高速公路的护栏等; 也可作为航天工业上的支撑结构,如机翼金属外壳支撑体、光学系统支架,或用来制作飞行器等. 最常用的是多孔铝. 魏剑等提到了多孔金属材料可用来制作节能门窗、防火板材等,实现了其在建筑领域的应用价值.利用多孔金属材料的吸能性能,可制作能量吸收方面的材料,如缓冲器、吸震器等. 最常见的是多孔铝. 比如汽车的冲击区安装上泡沫铝元件,可控制最大能耗的变形; 还有将泡沫铝填充入中空钢材中,可以防止部件承受载荷时出现严重的变形. 与此同时,多孔铝兼具了吸音、耐热、防火、防潮等优势.2. 2 功能材料2. 2. 1 过滤与分离材料根据多孔金属的渗透性,由多孔金属材料制作的过滤器可用来进行气- 固、液- 固、气- 液、气-总第209 期李欣芳,等: 多孔金属材料的制备方法及应用研究13气分离. 多孔金属的渗透性主要取决于孔的性质和渗透流体的性质. 过滤器的原理是利用多孔金属的孔道对流体介质中粒子的阻碍作用,使得要过滤的粒子在渗透过程中得到过滤,从而达到净化分离的目的. 铜、不锈钢、钛等多孔金属常用来制作金属过滤器,多孔金属过滤器被广泛应用于冶金、化工、宇航工业、环保等领域.在冶金工业中,通常用多孔不锈钢对高炉煤气进行除尘; 回收流化床尾气中的催化剂粉尘; 在锌冶炼中用多孔钛过滤硫酸锌溶液; 熔融的金属钠所采用的是镍过滤器,此过程用于湿法冶炼钽粉等.在化工行业中,多孔不锈钢、多孔钛具有耐腐蚀性,常用作过滤器来进行过滤. 比如一些无机酸或有机酸,如硝酸、亚硝酸、硼酸、96!硫酸、醋酸、草酸;碱、氢氧化钠; 熔融盐; 酸性气体,如硫化氢、气态氟化氢; 一些有机物,如乙炔; 此外,还有蒸汽、海水等.在宇航工业中,航空器的净化装置采用的是多孔不锈钢,制导舵螺中液压油和自动料管路中气体的净化也是采用这种材料,此外还可用于碳氢化合工艺中催化剂的回收.在环保领域里,主要是利用过滤器来净化烟气、废气及污水处理等方面. 其中要实现气- 气分离,需要对多孔材料的尺寸有更精准的要求,涉及到纳米多孔金属材料的制备工艺及其具有的性能等问题.奚正平等对洁净煤、高温气体净化、汽车尾气净化等技术作了具体的阐述,使用这些技术有利于缓解当前的环保问题.此外,医学上常用多孔钛可过滤氯霉素水解物,也可作为医疗器械中人工心肺机的发泡板等.2. 2. 2 消音减震材料利用多孔金属材料的高孔隙率性能,可制作吸声材料. 在吸声的作用上,通孔材料明显优于闭孔材料. 通过改善声波的传播途径来达到消音的目的,这与多孔金属材料的材质和孔洞的结构密切相关. 因为多孔钛还具有良好的耐高温、高速气流冲刷和抗腐蚀性能,所以被应用到燃气轮机排气系统等一些特殊的工作条件中,这种排气消声装置轻质、高效率、使用寿命长.段翠云等介绍了吸声材料的分类及应用,探讨了空气流阻和孔隙结构对吸声特性的影响. 王月等制备了孔径为2 ~7 mm,孔隙率为80!~90!,平均吸声系数为0. 4 ~0. 52 的泡沫铝,结果表明孔径越小,孔隙率、厚度越大,吸声性能越好. Ashby MF 等在书中提到了利用泡沫金属的吸声性能可以生产消声器产品.利用多孔金属材料的抗冲击性,可用来制作减震材料. 多孔金属的应力- 应变( σ - ε) 曲线可以分为三个阶段,即弹性变形阶段、脆性破碎阶段和紧实阶段,进而可以划分为三个区域. 从曲线走势来分析,当多孔金属材料在受到冲击力时,应变滞后于应力,所以其在受到外界应力时首先变形的是它的骨架部分,随着外界应力的增大,骨架易发生破碎,当骨架受到挤压时,应变不再发生很大的变化. 其中破碎阶段的起点为多孔材料的屈服强度. 当受到外加载荷时,孔的变形和坍塌会消耗大量能量,从而使得在较低的应力水平上有效地吸收冲击能. 中间部分区域表现出它的能量吸收能力,左边部分区域面积表现出它的抗冲击能力,面积越大,它所属的性能越好.2. 2. 3 电极材料由于多孔金属材料具有高孔隙率、比表面积大等优点,因此常用来制作电极材料,常用的有多孔铅、镍等. 刘培生等结合多孔金属电极的类型和特点,阐述了其制备工艺和性能强化的必要性,值得深思.多孔铅可用作铅酸电池中反应物的载体,可以填充更多的活性物质,减轻了电池重量,也可以用作良好的导电网络以降低电池内电阻. 轻质高孔隙率的泡沫基板和纤维基板,与传统的烧结镍基板相比有明显的优势,前者有高能量密度、良好的耐过充放电能力、低成本,满足了氢镍、镉镍等二次碱性电池的技术要求. 多孔镍在化学反应工程中用作流通性和流经型多孔电极,因为它除具有上述优点外,还可以促进电解质的扩散、迁移以及物质交换等. 此外,它还可用作电化学反应器.袁安保等具体分析了镍电极活性物质的结构、性质以及热力学和动力学,而且研究了它的制备工艺及应用,对MH-Ni 电池的开发具有重要意义.孔德帅等制备出了纳米多孔结构的镍基复合膜电极,结果表明,此复合膜在20A·g - 1 的冲放电流密度下,经过1 000 次充放电循环,电容保持率为94!. 近年来,对锌镍电池的研究受到了国内外的热切关注,费锡明等针对锌镍电池制作技术的进展,阐述了当前面临的诸多问题并提出了相应的解决方案,为新型化学电池的进一步研究提供了重要线索.2. 2. 4 催化载体材料泡沫金属韧性强、高传导、耐高温、耐腐蚀等性能,可制作催化载体材料. 由于载体本身的比表面积较小,为增大金属载体与催化剂活性组分之间的结合力,需预先在载体上涂上一层氧化物. 然后将催化剂浆料均匀涂抹在泡沫金属片的表面,经过压制成型,再将其置于高温环境中,可以使电厂废弃料得到有效妥善处理.2. 2. 5 生物医学材料多孔钛及钛合金在医学上作为修复甚至替代骨组织的材料,需要具有较好的生物相容性,否则会使人体产生不良反应. 而且要与需替代组织的力学性能相匹配. 一般通过控制孔隙的结构和数量来调整多孔钛的强度和杨氏模量. 多孔镁在生物降解和生物吸收上有很好的作用,也可作为植入骨的生物材料.此外,多孔金属材料具有良好的电磁波吸收性能,可以作电磁屏蔽材料; 对流体流量控制有较高的精准度; 具有独特的视觉效果,利润高,可以用作如珠宝、家具等装饰材料.3 多孔金属材料的研究现状及存在问题1) 近些年来对多孔金属的研究多为低熔点、轻金属,其中研究最多的为泡沫铝. 人们利用多孔金属的性能,将其运用到了实际生产和生活中,但对它的其他性能还有待研究和探索. 多孔金属的研究范围、应用领域还需要进一步扩展,如多孔金属在催化领域、电化学领域或其他领域的应用等.2) 在多孔金属材料的制备方法中,都存在孔隙在金属基体上的数量和分布等关键问题. 孔径尺寸、孔隙率的可控性和孔隙分布的均匀性等性质,以及多孔金属的作用机制还需要进一步探究和完善.3) 多孔金属材料作为冶金和材料科学的交叉领域,需要强化综合多方面的理论知识,而不是就单一方面进行研究. 在多孔金属材料课题研究过程中,需要在理论分析的基础上,在实践过程中尽可能降低成本,避免材料的浪费,简化工艺,缩短工序.4) 一些多孔金属材料的开发,还停留在实验室阶段,距工业中大规模生产和应用还存在着很大距离,需要研究者们共同努力,早日实现需求- 设计-制备- 性能- 应用一体化.本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意!。

相关文档
最新文档