谐振功放工作原理
高频谐振功率放大器的基本工作原理

高频谐振功率放大器的基本工作原理高频谐振功率放大器是一种常用于无线通信和射频系统中的放大器,其基本工作原理是通过谐振电路和功率放大器的相互配合来实现信号的放大。
本文将介绍高频谐振功率放大器的基本构成和工作原理。
一、高频谐振功率放大器的构成高频谐振功率放大器主要由三个部分组成:输入谐振电路、功率放大电路和输出谐振电路。
输入谐振电路是用来接收输入信号并将其滤波、匹配到功率放大器的。
它通常由电容和电感组成的谐振回路构成,能够选择性地传输特定频率的信号。
功率放大电路是用来放大输入信号的。
它通常采用晶体管或管子放大器等器件,通过输入电压的调节来实现信号的放大,同时也可以调节放大器的增益和输出功率。
输出谐振电路是用来匹配和传输已放大的信号到输出负载的。
它通常也由谐振回路组成,能够将功率放大后的信号传输到负载上。
二、高频谐振功率放大器的工作原理高频谐振功率放大器的工作原理基于谐振电路的特性和功率放大器的线性放大特性。
首先,输入信号经过输入谐振电路后,可以选择性地通过特定频率的谐振回路,其他频率的信号会被滤波掉。
这样就能保证只有特定频率的信号能够进入功率放大器进行放大。
然后,经过谐振回路的输入信号进入功率放大电路。
功率放大电路通常采用线性放大器,其输入电压的大小决定了输出信号的放大倍数。
通过调节输入电压的大小,就可以实现对输出信号的放大程度的控制。
最后,放大后的信号经过输出谐振电路,并传输到输出负载上。
输出谐振回路起到了匹配和传输的作用,能够将功率放大后的信号有效地传输给负载。
三、高频谐振功率放大器的优势高频谐振功率放大器具有以下优势:1. 高效性:通过谐振电路的匹配和能量传输,以及功率放大器的线性放大特性,高频谐振功率放大器能够实现高效率的信号放大,提高系统的整体效能。
2. 稳定性:谐振回路能够选择性地传输特定频率的信号,并且能够稳定地工作在谐振状态下,使得输出信号的幅度和频率更加稳定。
3. 可调性:通过调节输入信号的电压,可以实现对输出信号的放大倍数和功率的可调。
高频谐振功率放大器的工作原理

高频谐振功率放大器的工作原理
嘿,咱今儿来唠唠高频谐振功率放大器的工作原理哈!这玩意儿就好比是一场音乐会,晶体管就是那个舞台上的明星主唱。
在这个音乐会里呀,信号源就像是给主唱提供的歌曲,它把要表演的内容送过来。
而直流电源呢,就像是给主唱提供能量的大力水手菠菜,让晶体管有足够的力气放声歌唱。
然后呢,晶体管这个主唱呀,会根据信号源的指示,该大声唱的时候大声唱,该小声哼的时候小声哼。
这时候,谐振回路就登场啦!它就像是一个超级厉害的调音师,能把主唱的声音调得特别好听,把那些不和谐的音给过滤掉,只留下最精彩的部分。
你说这谐振回路神奇不神奇?它能让放大器输出的功率更大,效率更高呢!就好像一个魔法盒子,把普通的声音变得超级有魅力。
那它是怎么做到的呢?嘿嘿,这就像是在一个大合唱里,大家一起发声,但只有某个特定频率的声音最响亮,其他的声音都被弱化了。
谐振回路就是能抓住那个最关键的频率,让它闪闪发光。
而且哦,高频谐振功率放大器还有个特点,就是它能让信号变得特别强。
这就好比是把一个小小的火苗,变成了熊熊大火,照亮整个舞台!想想看,原本很微弱的信号,经过它这么一处理,变得超级强大,能传到很远很远的地方去。
咱再想想,如果没有高频谐振功率放大器,那很多信号不就传不远啦?那不就像在一个大雾天里说话,别人都听不清嘛!有了它,信号就能清清楚楚地传出去,多棒呀!
所以说呀,高频谐振功率放大器可真是个了不起的东西!它就像一个幕后英雄,默默地工作着,让我们的通信、广播等等变得更加精彩。
你说它是不是很厉害呢?咱可得好好感谢它为我们带来的便利呀!。
实验2双调谐回路谐振放大器

通信电路与系统实验实验2、10-18姓名:***学号:********专业:通信工程指导教师:***同组人员:张凡实验2 双调谐回路谐振放大器一、实验目的1.熟悉电子元器件和高频电线路实验系统;2.熟悉耦合电容对双调谐回路放大器幅频特性的影响;3.了解放大器动态范围的概念和测量方法。
二、基本原理1.双调谐回路谐振放大器原理双调谐回路是指有两个调谐回路:一个靠近“信源”端(如晶体管输出端),称为初级;另一个靠近“负载”端(如下级输入端),称为次级。
两者之间,可采用互感耦合,或电容耦合。
与单调谐回路相比,双调谐回路的矩形系数较小,即:它的谐振特性曲线更接近于矩形。
电容耦合双调谐回路谐振放大器原理图如图2-1所示。
与图1-1相比,两者都采用了分压偏置电路,放大器均工作于甲类,但图2-1中有两个谐振回路:L1、C1组成了初级回路,L2、C2组成了次级回路;两者之间并无互感耦合(必要时,可分别对L1、L2加以屏蔽),而是由电容C3进行耦合,故称为电容耦合。
2.双调谐回路谐振放大器实验电路双调谐回路谐振放大器实验电路如图2-2所示,其基本部分与图2-1相同。
图中,2C04、2C11用来对初、次级回路调谐,2K02用以改变耦合电容数值,以改变耦合程度。
2K01用以改变集电极负载。
2K03用来改变放大器输入信号,当2K03往上拨时,放大器输入信号为来自天线上的信号,2K03往下拨时放大器的输入信号为直接送入。
图2-2 双调谐回路谐振放大器实验电路三、实验内容1.双调谐回路谐振放大器幅频特性测量本实验仍采用点测法,即保持输入幅度不变,改变输入信号的频率,测出与频率相对应的双调谐放大器的输出幅度,然后画出频率与幅度的关系曲线,该曲线即为双调谐回路放大器的幅频特性(如果有扫频仪,可直接测量其幅频特性曲线)。
⑴幅频特性测量①2K02往上拨,接通2C05(4.5P)。
高频信号源输出频率6.3MHZ(用频率计测量),幅度300mv,然后用铆孔线接入双调谐放大器的输入端(IN)。
谐振放大器工作原理

谐振放大器工作原理
谐振放大器是一种电子放大器,可以放大特定频率下的输入信号。
它的工作原理基于谐振现象和正反馈的效应。
谐振放大器通常由一个谐振电路和一个放大器组成。
谐振电路由一个电感和一个电容组成,形成一个谐振回路。
当输入信号的频率与谐振回路的共振频率相匹配时,谐振电路会呈现出较大的阻抗,从而使输入信号更容易通过电路。
放大器主要负责增大信号的幅度。
当输入信号进入谐振放大器时,放大器会对信号进行放大,并且通过正反馈作用反馈到谐振电路中。
正反馈会使得谐振电路的阻抗增大,从而使得放大效果更加明显。
通过谐振电路和放大器的相互作用,谐振放大器能够放大特定频率范围内的信号。
当输入信号的频率与谐振回路的共振频率完全匹配时,谐振放大器可以实现最大的增益。
需要注意的是,谐振放大器在工作过程中需要保持输入信号的频率与谐振回路的共振频率匹配。
如果频率不匹配,放大效果将会大大降低。
总之,谐振放大器通过谐振电路和放大器的协同作用,能够放大特定频率范围内的输入信号。
这种放大器在无线通信、音频放大和信号处理等领域有着广泛的应用。
高频功率放大器(8)

应用 低频 低频,高频 低频 高频 高频
谐振功率放大器通常用来放大窄带高频信号,其工作状态通常选为丙类工 作状态(c<90),为了不失真的放大信号,它的负载必须是谐振回路。
非谐振功率放大器可分为低频功率放大器和宽带高频功率放大器。低频功 率放大器的负载为无调谐负载,工作在甲类或乙类工作状态;宽带高频功率放 大器以宽带传输线为负载。
作,因此可近似等效为一个线性元件。小信号电压放大器瞬时工作点的
轨迹就是负载线,是一条直线。
•
谐振功率放大器是非线性工作,各个区域的特性曲线方程
不同,因此各个区域工作点的移动规律也不同,所以称其为动特性曲线,
以示与负载线的区别。
•
2、画法
•
(1)在放大区
iC gm (EB Ubm cost UB )
谐振功率放大器的分析方法:图解法,解析法
2.2 谐振功率放大器的工作原理
1、电路组成 (1)晶体管的作用是在将供电电源的直流 能量转变为交流能量的过程中起开关控 制作用。
(2)谐振回路LC是晶体管的负载
iC
+
iB uCE
-
V +
-C
Re uc L
RL
ub
+
-
(3)电路工作在丙类工作状态
+ EB-
- EC +
t
4、高频功率放大器与低频功率放大器的异同之处 相同之处:都要求输出功率大和效率高。 功率放大器实质上是一个能量转换器,把电源供给的直流能量转化 为交流能量,能量转换的能力即为功率放大器的效率。 功率放大器的主要技术指标是输出功率与效率。
不同之处:工作频率与相对频宽不同; 放大器的负载不同; 放大器的工作状态不同。
2 sin 2 (1 cos )
谐振功率放大器的工作原理

谐振功率放大器的工作原理
1.谐振电路:谐振功率放大器通常由一个谐振电路和一个放大器组成。
谐振电路是一个能够在谐振频率上有较高阻抗、在其他频率上有较低阻抗
的电路。
它可以由电感器和电容器等元件组成。
谐振电路的谐振频率通常
与输入信号的频率相匹配。
2.输入信号:输入信号首先进入谐振电路,如果输入信号的频率与谐
振电路的谐振频率不匹配,谐振电路会对输入信号的通过产生阻抗。
仅当
输入信号的频率与谐振电路的谐振频率一致时,谐振电路的阻抗才会较低,从而使信号得以通过。
3.放大器:通过谐振电路的筛选,只有与谐振电路的谐振频率相匹配
的信号得以通过,进入放大器。
放大器会对输入信号进行放大处理。
放大
器可以采用不同的工作原理,例如晶体管、场效应管等。
它能够将输入信
号的幅度进行放大,使得输出信号的功率大于输入信号的功率。
4.输出信号:经过放大器放大后的信号被输出。
由于输入信号已经通
过谐振电路的筛选,使得仅有与谐振频率匹配的信号得以通过放大器,所
以输出信号的频率与输入信号的频率是相同的。
不同的是输出信号的幅度
更大,即实现了信号的放大。
总的来说,谐振功率放大器的工作原理就是通过谐振来选择输入信号
中与谐振频率匹配的信号,然后经过放大器进行放大处理,最终输出信号。
这种放大方式适用于对特定频率的信号进行放大,具有较高的放大效率和
较低的失真。
在一些需要对特定频率信号进行放大的应用中,如无线通信、射频放大等,谐振功率放大器得到了广泛的应用。
高频谐振功放计算

高频谐振功放计算谐振功放是一种广泛应用于无线通信、雷达、无线电广播等领域的射频功率放大器。
谐振功放的工作原理是在谐振频率附近提供最大的放大增益,并且能够有效抑制其他频率的信号。
谐振功放的设计需要考虑一系列参数,包括谐振频率、增益、功率输出等。
以下是一些常见的谐振功放设计参数及其计算方法:1. 谐振频率(Resonant Frequency):谐振频率是功放能够最有效工作的频率。
谐振频率的计算通常通过谐振电路的电感和电容值来确定。
谐振频率的计算公式如下:f = 1 / (2 * π * sqrt(L * C))其中,f为谐振频率,L为电感值,C为电容值。
2. 种类和尺寸:谐振功放的尺寸和种类也会影响其工作性能。
通常,功放的尺寸较大可以提供更高的功率输出,但也会增加功放的重量和成本。
不同种类的功放器件具有不同的性能特点,如功率增益、线性度等,需要根据具体需求进行选择。
3. 增益(Gain):增益是功放器件将输入信号放大的比例。
谐振功放的增益通常通过参数S21来表示,即输入信号功率与输出信号功率的比值。
功放的增益可以通过测量输入和输出信号的功率来计算。
4. 功率输出(Power Output):功率输出是谐振功放能够提供的最大输出功率。
功率输出通常由功放器件的最大电流和电压来决定。
功率输出的计算公式如下:Pout = V^2 / R其中,Pout为功率输出,V为功放器件的电压,R为功放器件的负载阻抗。
5. 线性度(Linearity):线性度是谐振功放在放大过程中保持输入信号的线性特性的能力。
线性度通常通过参数IP3(第三阶截止点)或P1dB(1dB压缩点)来表示。
这些参数可以通过测量功放器件的输入功率和输出功率来计算。
6. 效率(Efficiency):效率是谐振功放将输入功率转化为输出功率的比例。
效率的计算可以通过测量输入和输出功率以及功放器件的电流来进行。
除了以上参数外,谐振功放的设计还需要考虑功放器件的热稳定性、频率稳定性、功率供应等方面的因素。
第二章 谐振功率放大器

(2-2-1)
① 由式 2-2-1 确定 vBE 和 vCE: 先设定VBB、Vbm、VCC、Vcm 四个电量数值,并将ωt 按等间隔 (ωt = 0º ,±15º ,±30 º,……) 给定不同的数 值,则 vBE 和 vCE 便确定(图 a)。
②由输出特性画 iC:根据不同间隔上的 vBE 和vCE 值, 在输出特性曲线上(以 vBE 为参变量)找到对应的动态 点,由此可以确定 iC 值的波形,其中动态点的连线称为 谐振功率放大器的动态线。
③ 后果:加到基极 上的最大反向电压(VBB -Vbm)可能使功率管发 射结反向击穿。
在维持输出功率 的条件下,一味地减 管子导通时间来提高 可采用开关工作的谐振功率放大器——丁类。
集电极效率的做法往往是不现实的。为进一步提高效率,
2.1.2 丁类和戊类谐振功率放大器
1. 丁类简介 (1) 电路 Tr 次级两绕组相同,极性相反。 T1 和 T2 特性配对,为同型管。
用途:对载波或已调波进行功率放大
2.1 谐振功率放大器的工作原理
在谐振功率放大器中,它的管外电路由直流馈电电 路和滤波匹配网络两部分组成。
2.1.1 丙类谐振功率放大器
1. 电路组成
ZL —— 外接负载,呈阻抗性,用 CL 与 RL 串联等 效电路表示。 Lr 和 Cr ——匹配网络,与 ZL 组成并联谐振回路。 调节 Cr 使回路谐振在输入信号频率。 VBB——基极偏置电压,设置在功率管的截止区, 以实现丙类工作。
① 欠压状态:随 VCC 减小,集电极电流脉冲高度 略有减小,因而 IC0 和 Ic1m 也将略有减小,Vcm( = ReIc1m) 也略有减小。
② 过压状态:随 VCC 减小,集电极电流脉冲的高 度降低,凹深加深,因而 IC0、Ic1m、Vcm 将迅速减小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
谐振功率放大器通常工作于丙类
二、 谐振功放的电路组成
iC
+
ui –
iB
+
+
uBE
uCE
–
C
+ –– +
+
Luc
VBB使放大器工作于丙类。
RL
–
LC回路调谐于输入信号
的中心频率,构成滤波匹配
VBB
VCC
网络。
谐振功放原理电路
三、谐振功放的工作原理
uBE VBB ui
VBB Uim cos t
0 ()
0.2
2()
0.1
0
20
40
3()
60 80 100 120 140 160 180
°
减小,g1( ) 增大,c 增大。但 40后,g1( )随 减小而增大 不明显,而1( )迅速减小使功率过小。一般取约70。
例 图3.1.1所示电路中,VCC = 24 V,Po = 5W, = 70 º, = 0.9, 求该功放的 C、 PD、PC、iCmax 和回路谐振阻抗Rp
(3.1.8)
利用式(3.1.8)可将式(3.1.7)改写为
iC gcUim (cos t cos )
(3.1.9)
当 t = 0 时,iC=iCmax ,由式(3.1.9)可得
iCmax gcUim (1 cos )
(3.1.10)
cost cos 因此,可 iC 表示为 iC iCmax 1 cos
uBE VBB Uim cos( t )
iC gc (uBE U BE(on) ) uBE UBE(on)
iC 0
uBE U BE(on)
iC gc (VBB Uim cos t UBE(on) ) (3.1.7)
当电t流=脉 冲时的,近iC似=分0,析则
cos
UBE(on) VBB Uim
3.1 谐振功率放大器的工作原理
主要要求:
理解谐振功放的电路组成,掌握其工作原理 掌握丙类谐振功放输出功率、管耗和效率 的计算。
3.1.1 基本工作原理
一、 放大器工作状态的选择
2θ
甲类( θ=180◦)
2θ
乙类( θ=90◦)
2θ
丙类( θ<90◦)
PC
1
2
2
0 iC uCE d(t )
故θ越小,效率越高
解:
C
1 2
1( ) 0 ( )
Ucm VCC
1 2
g1 (
)
1 2
1.75 0.9
79%
PD
Po
C
5 6.3 (W) 0.79
PC PD Po 6.3 5 1.3 (W)
因 为Po
1 2
Ic1mUcm
1 2
iCmax1( )VCC
故
iCmax
2 Po
1( )VCC
1.05(A)
Rp
效率较高。
PC
1
2
2
0 iC uCE d(t )
uBE uBE(on) VBB
O
iC iCmax
O
uCE VCC
O
t
t
uc
t
谐振功放工作原理小结:
设置VBB< UBE(on) ,使晶体管工作于丙 类。当输入信号较大时,可得集电极余弦 电流脉冲。将LC回路调谐在信号频率上, 就可将余弦电流脉冲变换为不失真的余弦 电压输出。
0 ()
电流分解系数
0.2
2()
g1
(
)
1 0
( (
) )
0.1
0
20
40
3()
60 80 100 120 140 160 180
°
称为波形系数
3.1.2 输出功率与效率
Po
1 2
I c1mU cm
1 2
I
2 c1
mRp
U
2 cm
/
2Rp
PD IC0VCC
C
Po PD
1 2
I c1m I C0
Ucm Ic1m
VCC 1( )iCmax
46.5 ()
利用傅里叶级数,可将iC的脉冲序列展开为
iC IC0 Icnm cos n t
n1
IC0
1 2
iCdt
iCmax 0 ( )
Ic1m
…
1 2
iC
costdt
n()
iCmax 1 (
)
Icnm iCmax n ( ) n ( )称为余弦
0.6 0.5
1 () g1 ()
0.4 0.3
iC
+
ui –
iB
+
+
uBE
uCE
–
C
+ –– +
+
Luc
RL
–
VBB
VCC
谐振功放原理电路
谐振功放电路与
小信号谐振放大器 电路有何区别?
iC
+
ui –
iB
+
+
uBE
uCE
–
C
+ –– +
+
Luc
RL
–
VBB
VCC
谐振功放原理电路
3.1.2 余弦电流脉冲的分解
假设不考虑结电容, 略去uCE对iC的影响, 将转移特性折线化
第 3 章 高频功率放大器
第 3 章 高频功率放大器
作用:高效率地输出足够大的信号功率。 谐振功率放大器 放大固定频率信号或窄带信号。需调谐。 宽带高频功率放大器
用于放大需在很宽范围内变换频率的信 号或宽带信号。不需调谐。
第 3 章 高频功率放大器
谐振功率放大器的工作原理 谐振功率放大器的特性分析 谐振功率放大器电路 丁类谐振功率放大器 集成高频放大器及其应用 宽带高频功率放大器 本章小结
Ucm VCC
1 1( ) Ucm 2 0 ( ) VCC
1 2
(
)
集电极电压利用系数,在尽限使用时, 1
甲类工作状态: 180 乙类工作状态: 90 丙类工作状态: 设 60
C / 4 78.5% C 90%
n()
0.6 0.5
1 () g1 ()
0.4 0.3
–
C
+ –– +
+
Luc
RL
–
VBB
VCC
iBmax
O iC
iCmax
O
uCE VCC
t
ICti0c1 ic2 uc
O
t
谐振功放电流、电压波形
uc与 ui 反相 。 当uBE为uBEmax时,iC 为 iCmax ,而uCE为uCE min。 ic不仅出现时间短,而且 只在uCE很小的时段内出现, 因此集电极损耗很小,功放
iC IC0 Ic1m cos(t )
uBE
uBE(on)
VBB
O
t
Ic2m cos(2t ) ...
iB
Icnm cos(nt ) ... uc Rp Ic1m cos t
Ucm cos t
uCE VCC uc
VCC Ucm cioCs t
+
ui –
iB
+
+
uBE
uCE
解:
C
1 2
1( ) 0 ( )
Ucm VCC
1 2
g1 (
)
1 2
1.75 0.9
79%
n()
0.6 g1()
0.5 0.4 2.0
g1 ()
0.3
1 () 0 ()
0.21.0
2()
0.1
0
20
40
3()
60 80 100 120 140 160 180
°
例 图3.1.1所示电路中,VCC = 24 V,Po = 5W, = 70 º, = 0.9, 求该功放的 C、 PD、PC、iCmax 和回路谐振阻抗Rp