2.计量资料的统计描述
统计描述与统计推断

统计描述与统计推断统计的主要工作就是对统计数据进行统计描述和统计推断。
统计描述是统计分析的最基本内容,是指应用统计指标、统计表、统计图等方法,对资料的数量特征及其分布规律进行测定和描述;而统计推断是指通过抽样等方式进行样本估计总体特征的过程,包括参数估计和假设检验两项内容。
(一)统计描述1.计量资料的统计描述计量资料的统计描述主要通过编制频数分布表、计算集中趋势指标和离散趁势指标以及统计图表来进行。
(1)集中趋势。
指频数表中频数分布表现为频数向某一位置集中的趋势。
集中趋势的描述指标:1)算术平均数。
直接法:x为观察值,n为个数加权法又称频数表法,适用于频数表资料,当观察例数较多时用。
f为各组段的频数。
2)几何平均数(geometric mean)。
几何平均数用符号G表示。
用于反映一组经对数转换后呈对称分布的变量值在数学上的平均水平。
直接法:加权法又称频数表法,当观察例数n较大时,可先编制频数分布表,用此法算几何平均数:3)百分位数(percentile )与中位数(median )。
百分位数是一种位置坐标,用符号x P 表示常用的百分位数有 2.5P 、5P 、50P 、75P 、95P 、97.5P 等,其中25P 、50P 、75P 又称为四分位数。
百分位数常用于描述一组观察值在某百分位置上的水平,多个百分位结合使用,可更全面地描述资料的分布特征。
中位数是一个特定的百分位数即50P ,用符号M 表示。
把一组观察值按从小到大(或从大到小)的次序排列,位置居于最中央的那个数据就是中位数。
中位数也是反映频数分布集中位置的统计指标,但它只由所处中间位置的部分变量值计算所得,不能反映所有数值的变化,故中位数缺乏敏感性。
中位数理论上可以用于任何分布类型的资料,但实践中常用于偏态分布资料和分布两端无确定值的资料。
其计算方法有直接法和频数表法两种。
直接法:当观察例数n 不大时,此法常用,先将观察值按大小次序排列,选用下列公式求M 。
2 计量资料的统计描述指标

⎜ ⎟ ⎝ 2 ⎠ ⎜ ⎟ ⎝ 2 ⎠
例 在上述 7名中年知识分子 SCL - 90 总分的基础上,又 测得一名中年知识分子该总分为171,试求其中位数。
⎞ 1⎛ ⎞ 1 1⎛ M = ⎜ X n + X n ⎟ = ⎜ X 8 + X 8 ⎟ = ( X 4 + X 5 ) = 93.5分 ( +1) ( +1) 2 ⎝ (2) ⎠ 2 ⎝ (2) ⎠ 2 2 2
1. 算术均数
适用于单峰对称分布的资料,特别是正态
分布或近似正态分布的资料。
由于均数易受到极端值的影响,故不适用
于偏态分布资料的描述。
2. 中位数
中位数(median,M):是将一组观察值
由小到大排列后位次居中的观察值。
2. 中位数
直接法:
n 为奇数时
M = X ⎛ n +1 ⎞
⎜ ⎟ ⎝ 2 ⎠
例
某研究者随机抽取温州市正常成年男子120名,其红细 胞计数值(×1012/L)的频数表资料如下,求均数。
表 1 某地 120 名正常成年男子红细胞频数表 组 段 频数 频率(%) 累积频数 3.20~ 2 1.7 2 3.50~ 5 4.2 7 3.80~ 10 8.3 17 4.10~ 19 15.8 36 4.40~ 23 19.2 59 4.70~ 24 20.0 83 5.00~ 21 17.5 104 5.30~ 11 9.2 115 5.60~ 4 3.3 119 5.90~6.20 1 0.8 120 合 计 120 100.0 - 累积频率(%) 1.7 5.8 14.2 30.0 49.2 69.2 86.7 95.8 99.2 100.0 -
统计概述计量描述习题

实习二计量资料的统计描述名词解释1. 均数答:均数是能反映全部观察值的平均水平的统计指标,适用于对称分布尤其是正态分布资料。
2. 标准差答:标准差是用于描述资料离散趋势的统计指标,适用于对称分布资料,尤其正态分布资料的。
标准差大,表明资料的变异度大,组内数据参差不齐的程度较明显。
填空题1 计量资料的分布特征有____和____。
答:集中趋势和离散趋势。
2 描述计量资料集中趋势的常用指标有____ 、____和____答:均数、几何均数和中位数。
3 描述计量资料离散趋势的常用指标有____ 、_______和____答:极差、方差与标准差和变异系数是非题1. 频数表中组数越多越好。
(⨯)解释:频数表中组数不宜过多也不宜过少。
2. 对称分布资料理论上均数和中位数一致(∨)解释:对于对称分布的资料,两者的计算结果在理论上是相同的。
但在实际计算中往往也会存在一定偏差。
选择题1 有5人的血清滴度为:1:20,1:40,1:80,1:160,1:320则平均滴度是A.1:40B.1:80C.1:160D.1:320答:应选B。
描述平均滴度宜用几何均数。
2.一组变量值,其大小分别为10,12,9,7,11,其中位数是A.9B.7C.10D.11答:应选C。
先将观察值由小到大顺序排列,7,9,10,11,12。
n为奇数时,M=X3=103.一组变量值,其大小分别为10,12,9,7,11,39,其中位数是A.9B.7C.10.5D.11答:应选C。
先将观察值由小到大顺序排列,7,9,10,11,12,39。
n为偶数时,M=( X3 +X4)/2 =(10+11)/2=10.54. 某组资料共5例, ∑X2=190, ∑X=30, 则均数和标准差分别是1A.6 和1.29B.6.33和2.5C.3和6.78D.6和1.58答:应选D,计算步骤是先用 X除以5求得均数,数值为6。
再代入直接法求标准差公式,求得标准差为1.58。
统计背诵版(三份整合)

统计学资料背诵版一、单选题:第二章:计量资料的统计描述1、描述一组偏态分布资料的变异度,以四分位数间距指标较好。
2、用均数和标准差可以全面描述正态分布资料的特征。
3、各观察值均加(或减)同一数后标准差不变。
4、比较某地1~2岁和5~5.5岁儿童身高的变异程度,宜用变异系数。
5、偏态分布宜用中位数描述其分布的集中趋势。
6、各观察值同乘以一个不等于0的常数后,变异系数不变。
7、正态分布的资料,均数等于中位数。
8、对数正态分布是一种右偏态分布(说明:设X变量经Y=lgX变换后服从正态分布,问X变量属何种分布?)9、横轴上,标准正态曲线下从0到2.58的面积为49.5%10、当各观察值呈倍数变化(等比关系)时,平均数宜用几何均数。
第三章:总体均数的估计与假设检验1、均数的标准误反映了样本均数与总体均数的差异。
2、两样本均数比较的t检验,差别有统计学意义时,P越小,说明越有理由认为两总体均数不同。
3、甲乙两人分别从同一随机数字表抽得30个(各取两位数字)随机数字作为两个样本,求得X1和S 12、X2和S22,则理论上由甲、乙两样本均数之差求出的总体均数95%可信区间,很可能包括04、在参数未知的正态总体中随机抽样,丨X-μ丨≥t0.05/2,vS X的概率为5%5、某地1992年随机抽取100名健康女性,算得其血清总蛋白含量的均数为74g/L,标准差为4g/L,则其95%的参考值范围为74±1.96×46、关于以0为中心的t分布,叙述错误的是相同时,丨t丨越大,P越大。
7、在两样本均数比较的t检验中,无效假设为两总体均数相等。
8、两样本均数比较作t检验时,分别取以下检验水准,犯第二类错误概率最小的是α=0.309、正态性检验,按α=0.10水准,认为总体服从正态分布,此时若推断有错,其错误的概率等于β,而β未知。
10、关于假设检验,说法正确的是采用配对t检验还是两样本t检验是由试验设计方案所决定的。
统计学习题及答案(完整)2

第一部分计量资料的统计描述一、最佳选择题1、描述一组偏态分布资料的变异度,以()指标较好。
、全距B、标准差C、变异系数D、四分位数间距E、方差2.用均数和标准差可以全面描述()资料的特征。
.正偏态分布B.负偏态分布C.正态分布.对称分布E.对数正态分布3.各观察值均加(或减)同一数后()。
.均数不变,标准差改变B.均数改变,标准差不变.两者均不变D.两者均改变E.以上都不对4.比较身高和体重两组数据变异度大小宜采用()。
.变异系数B.方差C.极差D.标准差E.四分位数间距5.偏态分布宜用()描述其分布的集中趋势。
.算术均数B.标准差C.中位数D.四分位数间距E.方差6.各观察值同乘以一个不等于0的常数后,()不变。
.算术均数B.标准差C.几何均数D.中位数E.变异系数7.()分布的资料,均数等于中位数。
A.对数正态B.正偏态C.负偏态D.偏态E.正态8.对数正态分布是一种()分布。
(说明:设X变量经Y=lgX变换后服从正态分布,问X变量属何种分布?).正态B.近似正态C.左偏态D.右偏态E.对称9.最小组段无下限或最大组段无上限的频数分布资料,可用()描述其集中趋势。
.均数B.标准差C.中位数D.四分位数间距E.几何均数10.血清学滴度资料最常用来表示其平均水平的指标是()。
.算术平均数B.中位数C.几何均数D.变异系数E.标准差二、简答题1、对于一组近似正态分布的资料,除样本含量n外,还可计算,S和,问各说明什么?2、试述正态分布、标准正态分布及对数正态分布的某单位1999年正常成年女子血清联系和区别。
甘油三酯(mmol/L)测量结果3、说明频数分布表的用途。
4、变异系数的用途是什么?组段频数5、试述正态分布的面积分布规律。
0.6~ 1.7~ 3三、计算分析题0.8~ 91、根据1999年某地某单位的体检资料,116名正常0.9~ 13 成年女子的血清甘油三酯(mmol/L)测量结果如右表, 1.0~ 19请据此资料: 1.1~ 25 (1)描述集中趋势应选择何指标?并计算之。
计量资料和计数资料的统计方法

计量资料和计数资料的统计方法计量资料和计数资料是统计学中常见的两种数据类型,它们在统计分析中有着不同的处理方法和应用场景。
本文将分别介绍计量资料和计数资料的统计方法,并探讨其在实际问题中的应用。
一、计量资料的统计方法计量资料是指可以用数值表示的数据,例如身高、体重、温度等。
统计学中常用的计量资料分析方法有描述统计和推断统计。
1. 描述统计描述统计是对收集到的数据进行总结和描述的方法。
常用的描述统计量有平均值、中位数、众数、标准差、方差等。
平均值是计量资料最常用的描述统计量,它可以反映数据的集中趋势。
中位数和众数则可以反映数据的位置和分布情况。
标准差和方差则可以衡量数据的离散程度。
2. 推断统计推断统计是基于样本数据对总体进行推断的方法。
在推断统计中,常用的统计分析方法有假设检验和置信区间估计。
假设检验用于验证关于总体的某个参数的假设,例如总体均值是否等于某个特定值。
置信区间估计则可以给出总体参数的一个区间估计,例如总体均值的置信区间。
二、计数资料的统计方法计数资料是指不连续的、以计数形式出现的数据,例如人数、次数、事件发生次数等。
计数资料的统计方法主要包括频数分布、列联表分析和卡方检验。
1. 频数分布频数分布是计数资料最常用的分析方法之一,它将数据按照不同的取值进行分类,并统计每个类别的频数。
通过频数分布可以直观地了解数据的分布情况和特征。
2. 列联表分析列联表分析是用于分析两个或多个分类变量之间关系的方法。
通过构建列联表可以清晰地展示不同变量之间的交叉频数,并计算各个格子的期望频数和卡方值。
列联表分析可以帮助我们判断两个变量之间是否存在相关性。
3. 卡方检验卡方检验是用于检验两个或多个分类变量之间是否存在显著差异的统计方法。
卡方检验基于计数资料的频数分布和列联表,通过计算观察频数与期望频数的差异,并进行假设检验来判断变量之间是否独立。
三、计量资料和计数资料的应用计量资料和计数资料在实际问题中具有广泛的应用。
统计学各章节练习题

计量资料的统计描述练习题选择题:1、描述一组偏态分布资料的变异度,以()指标较好。
A、全距B、标准差C、变异系数D、四分位数间距E、方差2、用均数和标准差可以全面描述()资料的特征。
A、正偏态分布B、负偏态分布C、正态分布D、对称分布E、对数正态分布3、各观察值均加(或减)同一数后()。
A、均数不变B、几何均数不变C、中位数不变D、标准差不变E、变异系数不变4、比较某地1~2岁和5~6岁儿童身高的变异程度,宜用()。
A、极差B、四分位数间距C、方差D、变异系数E、标准差5、偏态分布宜用()描述其分布的集中趋势。
A、均数B、标准差C、中位数D、四分位数间距E、方差6、各观察值同乘以一个不等于0的常数后,()不变。
A、算术均数B、标准差C、几何均数D、中位数E、变异系数7、()分布的资料,均数等于中位数。
A、对数正态B、正偏态C、负偏态D、偏态E、正态9、横轴上,标准正态曲线下从0到2.58的面积为()。
A、99%B、45%C、99.5%D、47.5%E、49.5%10、当各观察值呈倍数变化(等比关系)时,平均数宜用()。
A、均数B、几何均数C、中位数D、相对数E、四分位数1、算术均数和中位数相比,算数均数()A、抽样误差更大B、不易受极端值的影响C、更充分利用数据信息D、更适用于偏态分布资料E、更适用于分布不明确资料2、计算几何均数时,采用以e为底的自然对数ln(X)和采用以10为底的常用对数lg(X),所得的计算结果()A、相同B、不相同C、有时相同,有时不同D、只能采用ln(X)E、只能采用lg(X)3、在服从正态分布条件下,样本标准差S的值()A、与算术均数无关B、与个体的变异程度有关C、与样本量无关D、与集中趋势有关E、与量纲无关4、比较身高和体重两组数据的变异大小,宜采用()A、方差B、标准差C、全距D、四分位数间距E、变异系数5、变异系数CV的数值()A、一定大于等于1B、一定小于等于1C、一定比标准差小D、一定等于1E、可以大于1,也可以小于1概率分布1、正态分布曲线下方横轴上方,从μ到μ+2.58σ的面积占曲线下总面积的()A、99%B、95%C、47.5%D、49.5%E、90%2、在X轴上方,标准正态曲线下中间95%的面积所对应X的取值范围是()A、-∞~+1.96B、-1.96~+1.96C、-∞~+2.58D、-2.58~+2.58E、-1.64~+1.643、正态曲线上的拐点的横坐标为()A 、μ±2σB 、μ±σC 、μ±3σD 、μ±1.96σE 、μ±2.58σ 4、计算医学参考值范围最好是()A 、百分位数法B 、正态分布法C 、对数正态分布法D 、标准化法E 、结合原始数据分布选择计算公式5、根据200个人的发铅值(分布为偏态分布),计算正常人发铅值95%参考值范围应选择()A 、双侧正态分布法B 、双侧百分位数法C 、单上侧正态分布法D 、单下侧百分位数法E 、单上侧百分位数法 6、正态分布中,当μ恒定时,σ越大A 、曲线沿横轴向左移动B 、曲线沿横轴向右移动C 、观察值变异程度越大,曲线越扁平D 、观察值变异程度越小,曲线越细高E 、曲线位置和形状不变7、均数的标准误反映了()A 、个体变异程度的大小B 、个体集中趋势的位置C 、指标的分布特征D 、频数的分布特征E 、样本均数与总体均数的差异参数估计1、当样本含量增大时,以下说法正确的是()A 、标准差会变小B 、标准差会变大C 、样本均数标准误会变大D 、样本均数标准误会变小E 、以上都不对 2、区间x S x 58.2±的含义是()A 、99%总体观察值在此范围内B 、99%样本观察值在此范围内C 、总体均数99%置信区间D 、样本均数99%置信区间E 、以上都不对 3、通常可采用以下哪种方法来减小抽样误差()A 、减小样本标准差B 、增大样本标准差C 、减小样本量D 、增大样本量E 、以上都不对4、均数的标准误反映了()A 、个体变异程度的大小B 、个体集中趋势的位置C 、指标的分布特征D 、频数的分布特征E 、样本均数的与总体均数的差异假设检验1、两样本均数比较的t 检验,差别有统计学意义时,P 值越小,说明() A 、两样本均数差别越大B 、两总体均数差别越大C 、越有理由认为两总体均数不同D 、越有理由认为两样本均数不同E 、越有理由认为两总体均数不相同2、在参数未知的正态总体中随机抽样,≥-||μx ()的概率为5%。
第3讲 计量资料与计数资料的统计描述

1、计量资料 (measurement data)
用仪器、工具等测量方法获得的数据,又称数值变量。 特点:有计量单位,如患者的身高(cm),体重(kg),血压(kPa)等.
2、计数资料 (count data)
按某种属性分类计数后得到的数据,又称无序分类变量,有二分 类和多分类两种情形.
366
28 34
35
10
34
78
57
248
30 11
14
11
22
39
17
114
32 14
2
3
14
24
3
60
34
4
2
5
3
12
2
28
36
2
1
1
4
5
1
14
38
3
1
1
0
2
1
8
40
0
0
2
0
0
0
2
合计 207
141
102
208 537 206 1401
2、常用相对数指标
计数资料常用的数据形式是绝对数,如某病的出院人数,治愈人数 等.但绝对数不具可比性,需要计算相对数.
2、三线表
表号 标题(包括何时、何地、何事)
横标目的 总标目 横标目
┋
总标目
纵标目 纵标目
××× ×××
××
××
总 标 目(单位)
纵标目
纵标目
××. ×× ××. ××
×. ×× ×. ××
┋ ┋ 合计
┋ ┋ ×××
┋ ┋ ×××
┋ ┋ ×:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1:2.5 1:10 1:40 1:160 1:640 合计
人数,f ⑵ 14 18 22 12 6 72
滴度倒数,X ⑶ 2.5 10.0 40.0 160.0 640.0
lgX ⑷ 0.3979 1.0000 1.6021 2.2041 2.8062
102.1032
变量y 服从
正态分布
5.06,5.20,4.79,5.93,求算术均数。
x (5.61 3.96 5.93)/9 4.83(mmol/ L)
2016/1/2
27
1.算术均数
计算方法
频数表法(weighting method)
当资料中相同观察值的个数较多时,可将相同观察值的个数, 即频数f,乘以该观察值x,以代替相同观察值逐个相加。
6
1. 频数表的编制步骤
(2)划分组段 确定组数: n>100,10~15组;n<100,8~10组 确定组距:
组距可以相等也可以不相等,一般采用等距分组, 组距=极差/组数 例8.1 1.99/10≈2,故组距=2mmol/L
2016/1/2
7
1. 频数表的编制步骤
(2)划分组段 确定各组段的上下限:
集中趋势和离散趋势是频数分布的两个重要侧面,从这两 方面就可全面的分析所研究的事物。
2016/1/2
18
4.频数分布的类型
频数分布又可分为对称分布和偏态分布
对称分布:集中位置在正中,左右两侧频数分布
大体对称
偏态分布:集中位置偏向一侧,频数分布不对称
正偏态分布:集中位置偏向年龄小的一侧 负偏态分布:集中位置偏向年龄大的一侧
离均差的平方和小于个观察值x与任何数α( α ≠
x )之差的平方和。
(x x ) ( x )
2
2016/1/2
2
32
1.算术均数
各离均差(即各观察值x与均数 x之差)的总和等于零。
(x x ) 0 论证: (x x ) (x x ) (x
第十一章 资料的描述性分析
第十一章 资料的描述性分析
第一节 第二节 统计图表 计量资料的统计描述方法 计数资料的统计描述方法
2016/1/2
2
第一节 计量资料的统计描述方法
常用的描述定量资料分布规律的统计方法 有两类:
统计图表:频数分布表/图 选用适当的统计指标:
• 集中趋势指标:均数、中位数 • 离散趋势指标:极差、标准差
每个组段的起点称为该组的下限(low limit), 终点称为上 限(upper limit), 上限=下限+组距; 第一组段必须包括最小值,因此其下限取包含最小值、较 为整齐的数值; 例8.1 第一组段下限为 3.60,上限为3.60+0.20=3.80 各组段不能重叠,每一组段均为半开半闭区间,即包括下 限,不包含上限。 例8.1 第一组段为3.60~ 即[3.60,3.80);以此类推。 最后一组段,须包括最大值,且要列出这一组段的下限和 上限,即5.40~5.60, [5.40,5.60]
计算方法
直接法:即将所有观察值x1,x2,x3,…,xn直接相加 再除以观察值的个数,写成公式
x1 x2 x3 ... xn xi x n n
x为样本均数
n为变量值个数, i为各变量值, Σ表示求和
2016/1/2
26
1.算术均数
例1 有9名健康成人的空腹胆固醇测定值 (mmol/L)为5.61,3.96,3.67,4.99,4.24,
2016/1/2
3
第一节 数值变量资料的频数分布
频数分布表( frequency distribution table ): 将变量值化分为若干个组段,清点并记录各组段 变量值的个数,称为频数表(frequency
table ) 。
2016/1/2
4
第一节 数值变量资料的频数分布
最小 值
最 大 值
2016/1/2
11
1. 频数表的编制步骤
(3)列表划记
计算出每个组段的 频率
每组的频数 样本含量
2016/1/2
12
1. 频数表的编制步骤
(3)列表划记
计算出每个组段的 累计频率 =本组段的频率+上 一组段的累计频率
2016/1/2
13
1. 频数表的编制步骤
2016/1/2
14
2.绘制频数分布直方图
22
5.频数表的用途
频数表可揭示资料的分布特征和分布类型 便于进一步计算统计指标和统计分析处理(第二节) 便于发现某些特大或特小可疑值,便于资料的校对。
2016/1/2
23
一、集中趋势指标
算术均数(arithmetic mean) 几何均数(geometric mean) 中位数和百分位数(median percentile) 以上统称为平均数(average)常用于描述一组 变量值的集中位置,代表其平均水平或是集中 位置的特征值。
观察值不能有0。因为0不能去对数,不能与任何其他数呈倍
数关系。 观察值不能同时有正值和负值。若全是负值,计算是可以把 负号去掉,得出结果后再加上负号。 同一组资料求得的几何均数小于算术均数。
2016/1/2
41
2.几何均数
若一组数值变量资料为偏态分布,变量为x,令y=lgx后, 变量y服从正态分布,请问变量x为什么样的偏态分布资料?
2016/1/2
34
CASIO fx-3600P计算器统计功能 步骤 1. 2. 3. 键 盘 3 AC DATA DATA DATA 1(数字键) 3 (数字键) 3 (数字键) 1 (数字键) 说 明
4. 5. 6. 7.
MOOD SHIFT 2.35 4.21 3.32 SHIFT SHIFT Kout Kout
2016/1/2
17
3、频数分布的特征 从频数表可以看到频数分布的两个重要的特征
集中趋势(central tendency)
血糖值向中央部分(中等水平)集中,以中等水平的血糖值者居 多,是为集中趋势。
离散趋势(tendency of dispersion)
从中央部分到两侧(血糖值从中等水平到较低或较高水平)的频 数分布逐渐减少,是为离散趋势。
2016/1/2
进入SD统计功能 清除原有数据 输入数据
显示计算的 x 显示计算的S 显示计算的n 显示计算的
X
35
2.几何均数 (geometric mean) 定义:有些医学资料,如抗体滴度、细菌计数等,其频
数分布明显偏态,各观察值之间呈倍数变化(等比关系),
此时宜用几何均数反映其平均增减倍数。
7 lg 5 11lg10 ... 8 lg 80 G lg ( ) 7 11 22 12 8 lg 1 (1.3161 ) 20.705
1
60人的血清平均抗体效价为1:20.705
2016/1/2
40
2.几何均数
注意事项
等比资料,如:抗体的平均滴度、药物的平均效价、卫生事 业平均发展速度、人口的几何增长 对数正态分布:是右偏态分布
计算方法:
直接法 加权法
应用:等比资料或对数正态分布资料
2016/1/2
36
2.几何均数
计算方法: 直接法:直接将n个观察值( x1,x2,x3,…,xn )的乘积
开n次
公式
G=n x1 x2 x3 ..., xn
1
写成对数形式为
lg x1 lg x2 ... lg xn G lg ( ) n 几何均数: lg xi 变量对数值 1 lg ( ) 的算术均数 n 的反对数。
对于频数表资料,用各组段的频数作f,以相应的组中值 (class mid-value)作x。组中值=(下限+上限)/ 2 公式
f1 x1 f 2 x2 f 3 x3 ... f n xn x f1 f 2 f 3 ... f n fi为各组段的频数 xi为各组段的组中值
1
血清抗体的平均效价为1:16
2016/1/2
38
2.几何均数
计算方法: 加权法:当资料中相同观察值得个数f(即频数)
较多时,如频数表资料
写成公式
G lg
1
f lg x ( ) f
2016/1/2
39
2.几何均数
例4 有60人的血清抗体效价,分别为7人1:5,
11人 1:10,22人1:20,12人1:40,8人1:80,求 平均抗体效价。
2016/1/2
24
1.算术均数
(arithmetic mean)
又简称为均数(mean) 定义:是反映一组观察值在数量上的平均水平。 总体均数用希腊字母 表示,样本均数用 x 表示 计算方法:
直接法: 频数表法:
应用: 正态分布或近似正态分布资料
2016/1/2
25
1.算术均数
1 2
x ) ... ( xn x )
( x1 x2 ... xn ) nx x x n
i i
n
偶知道另一个也能 证明了!嘿嘿
0
2016/1/2
33
1.算术均数
均数的特征
1、最常用,特别是正态分布资料 2、均数对极值特别敏感, 极大值或极小值通常将均数拉向自 己
2016/1/2
21
4.频数分布的类型
正偏态分布:峰偏左,尾部向右侧延伸 如:以儿童为主的传染病发病人数的分布 右偏态
正偏态分布