仪表串级控制课件

合集下载

仪表串级控制 课件.ppt

仪表串级控制 课件.ppt
• 当出口温度发生变化时,温度控制器不断改变着流量控制器 的设定值,流量控制器就按照测量值与变化了的设定值之差 进行控制,直到炉出口温度重新恢复到设定值 。
先副回路, 后主回路
情况二:干扰来自原料油方面,使炉出口温度升高
• 出口温度
温度控制器输出
流量控制器设定值 。
• 燃料油流量为适应温度控制的需要而不断变化。
二、串级控制系统的工作过程(参见P198)
仍以管式加热炉出口温度控制为例,分析温度-流量串级控 制系统克服干扰的过程。
调节阀:气开式 温度调节器、流量调节器:反作用
情况一:干扰来自燃料油流量的变化
• 初始阶段,出口温度不变,温度控制器的输出不变,流量控 制器就按照变化了的测量值与没变的设定值之差进行控制, 改变执行阀的原有开度,使燃料油向原来的设定值靠近。
第六章 串级控制系统设计
§6.1 串级控制原理 §6.2 串级控制系统的特点 §6.3 串级控制系统的设计 §6.4 串级控制系统的参数整定 §6.5 串级控制系统的工业应用
返回
§6.1 串级控制原理
一、串级控制系统的组成
例 :管式加热炉是炼油厂经常采用的设备之一(如下所示),
其工艺要求是:炉出口温度保持恒定。
串级控制系统中常见的名词术语:
主、副变量,主、副控制器(调节器),主、副对象,主、 副检测变送器,主、副回路。
作用在主、副对象上的干扰分别为一、二次干扰。
串级控制系统的通用方框图:
二次扰动 一次扰动
设定值
主调节器
副调节器
执行阀
副检测变送器
副 对象
主 对象
副参数
主参数Leabharlann 主检测变送器内回路选取时应包含主要干扰,同时时间常数不宜过长。

化工仪表及自动化课件第13章

化工仪表及自动化课件第13章
22
第一节 串级控制系统
三、主、副控制器控制规律的选择 目的 为了高精度地稳定主变量。主控制器通常都选
用比例积分控制规律,以实现主变量的无差控 制。 副变量的给定值是随主控制器的输出变化而 变化的。副控制器一般采用比例控制规律。
23
第一节 串级控制系统
表13-1 主、副变量不同时应选用的控制规律
15
第一节 串级控制系统
2.系统的特性
(1)干扰作用于副回路 F2引起θ2变化,控制器T2C及时进行控制,使其很快稳 定下来; 如果干扰量小,经过副回路控制后,F2一般影响不到 温度θ1; 如果干扰量大,其大部分影响为副回路所克服, 波及到被控变量温度θ1再由主回路进一步控制, 彻底消除干扰的影响,使被控变量回复到给定值。
34
第二节 其他复杂控制系统 均匀控制的要求
(1)两个变量在控制过程中都应该是缓慢变化的。 (2)前后互相联系又互相矛盾的两个变量应保持在所允许 的范围内波动。
图13-8 前一设备的液位和后一设备的进料量之关系 1—液位变化曲线;2—流量变化曲线
35
第二节 其他复杂控制系统
2.均匀控制方案
(1)简单均匀控制
24
第一节 串级控制系统
四、主、副控制器正反作用的选择
1.副控制器作用方向的选择
串级控制系统中的副控制器作用方向的选择,根据工 艺安全等要求,选定执行器的气开、气关形式后,按照 使副控制回路成为一个负反馈系统的原则来确定。
例如图13-2所示的管式加热炉温度-温度串级控制系统 中的副回路。
气源中断,停止供给燃料油时,执行器选气开阀, “正”方向。 燃料量加大时,炉膛温度θ2(副变量)增加,副对象 “正”方向。 为使副回路构成一个负反馈系统,副控制器T2C选择“反” 方向。

串级控制系统课件

串级控制系统课件
C2 V mT C1
Gmp ( + )
GPP ( + ) G PT ( + ) → P ↑ → T ↑
f2
f1
设:反向干扰, f1 → T↓; f2 → P↑ 反向干扰, 动作过程
GmP ( + ) GC 2 ( + ) GV ( − ) 副:P ↑ → e 2 ↑ u2 ↑ q ↓ → → → P →T GmT ( + ) GC ( − ) 主:T ↓ → e1 ↓ u1 ↑→ e 2 ↓→ q ↑ →
等效副对象传递函数: 等效副对象传递函数:
( s) P2 G ′ ( s) = P2 1 + G ( s )G ( s )G ( s )G P2 m2 c2 v( s) G
①提高系统的工作频率----时间常数 提高系统的工作频率 时间常数
令:GC2 = KC2, GV = KV, Gm2 = Km2, 代入前式: 代入前式: K P 2 (TP 2 s + 1)
a.串级控制系统工作频率 串级控制系统工作频率
串级控制等效方框图
由等效方框图, 由等效方框图,得串级控制系统传递函数为
′ GP 1 ( s )GP 2 ( s )GV ( s )GC 2 ( s )GC 1 ( s ) G( s) = ′ 1 + GP 1 ( s )GP 2 ( s )GV ( s )GC 2 ( s )GC 1 ( s )Gm 1
2.1.2 精馏塔塔釜温度串级控制动作分析
1)系统设定 方块图
(-) (+) (-) (+) (+)
(+)
(+)
设定元件作用方式: 设定元件作用方式: 温度对象:正作用(+) 测量变送器:正作用(+) 温度对象:正作用(+) 测量变送器:正作用(+) 压力对象:正作用(+) 压力控制器:正作用(+) 压力对象:正作用(+) 压力控制器:正作用(+) 调节阀门:气关阀(-) 温度控制器:副作用(-) 调节阀门:气关阀(-) 温度控制器:副作用(-)

《串级控制系统》课件

《串级控制系统》课件

5 保证系统的可靠性
采取措施确保系统的可靠性,如备份控制器、 故障检测和自动切换等。
串级控制系统的实现1Fra bibliotek软件实现
2
串级控制系统的软件实现包括控制算法
的设计、编程和调试。
3
硬件组成
串级控制系统的硬件组成包括传感器、 执行器、控制器和通信设备。
实现过程
串级控制系统的实现包括系统设计、参 数调整和系统测试等多个步骤。
串级控制系统的应用领域
化工工业
串级控制系统在化工 工业中有广泛的应用, 能够稳定控制各种化 学过程。
食品工业
食品工业中的串级控 制系统能够确保食品 生产过程的高效、稳 定和安全。
制造业
制造业中的串级控制 系统能够提高产品的 质量和生产效率,实 现精细化生产。
冶金工业
冶金工业中的串级控 制系统能够优化冶金 过程,提高冶金产品 的质量和产量。
1 改善系统稳定性
串级控制系统能够减小系统的波动幅度,提 高系统的稳定性。
2 提高系统精度和可靠性
通过串级控制系统,我们能够降低系统的误 差,提高系统的精度和可靠性。
3 减小控制器的负担
串级控制系统能够分担控制器的负荷,使其 更加高效且稳定。
4 减小设备的故障率
串级控制系统能够有效减小设备故障的概率, 提高设备的可靠性和使用寿命。
设计原则
1 正确选择控制器
根据系统需求和特点,选 择合适的控制器类型和参 数。
2 合理设置控制参数
3 统一参考信号
根据系统需求和运行状况, 合理设置控制参数,以达 到最佳控制效果。
将所有控制器的输入信号 统一为相同的参考信号, 以保证系统的稳定性和一 致性。
4 建立完善的监测系统

13串级控制系统1 自动化仪表 教学课件

13串级控制系统1 自动化仪表 教学课件

400 450 500
副回路(副环):由副变量检测变送器、副控制器、调节阀、 副对象组成的回路。处在串级控制系统内部的,在控制过程中 起着“粗调”的作用。
主回路(主环):由副回路、主控制器、主对象、主变量检测 变送器组成的回路,在控制系统中起着“细调”的作用。
一次干扰:进入主回路的干扰 二次干扰:进入副回路的干扰
第七章之一 串级控制系统 《化工过程自动化技术》
第七章之一 串级控制系统 《化工过程自动化技术》
串级控制系统的设计原则
单回路控制不能满足性能要求; 有反映系统主要干扰的可测副参数; 调节阀与副参数之间具有因果关系; 副参数的选择应使副对象的时间常数比主对象的时间常数 小,调节通道短,反应灵敏; 尽可能将带有非线性或时变特性的环节包含于副回路中。
具有两个回路。
两套检测变送器、两个调节器、两个被控对象、和一个调节阀组成, 其中的调节器串联工作,前一个调节器的输出为后一个调节器的给定值, 后一个调节器的输出送往调节阀。
第七章之一 串级控制系统 《化工过程自动化技术》
三、常用术语:
主变量:主要目标 副变量:被控对象引出的中间变量 副对象:副变量与操纵变量之间的通道特性 主对象:主变量与副变量之间的通道特性 副控制器:接受副变量的偏差,其输出控制阀门 主控制器:接受主变量的偏差,其输出是副控制器的设定值
第七章之一 串级控制系统 《化工过程自动化技术》 加热炉温度单回路控制响应曲线
Temperature (°C)
69 68 67 66 65 64 63 62 61 60
0
D2 response
D1 response
不太好! 什么原因

50 100
150 200 250 300 350 Time(min)

仪表串级控制课件

仪表串级控制课件

双容对象的串级控制系统如下图所示:
W(2 S)
X1(S)
X 2 (S )
K c1
Kc2
K2 1T02S
Y2 (S)
K1
1T01S
Y1(S)
则:W(2 S)
T02
Kc2K2 (Kc2K2 1)
T02
S 1
(Kc2K2 1)
K 2
同理可得:
d 2 02
122
T01 T02 T01T02
其பைடு நூலகம்: T02
二、串级控制系统的工作过程(参见P198)
仍以管式加热炉出口温度控制为例,分析温度-流量串级控 制系统克服干扰的过程。
调节阀:气开式 温度调节器、流量调节器:反作用
情况一:干扰来自燃料油流量的变化
• 初始阶段,出口温度不变,温度控制器的输出不变,流量控 制器就按照变化了的测量值与没变的设定值之差进行控制, 改变执行阀的原有开度,使燃料油向原来的设定值靠近。
X (S)
Kc
K2 1T02S
K1 1T01S
Y (S )
其特征方程式为:
T01T02S 2 (T01 T02 )S (1 Kc K1K2 ) 0
则:
2 1 01
T01 T02 T01T02
阻尼比
阻尼振荡频率为:
自然振 荡频率
d1 01
1 12
T01 T02 T01T02
1 12 21
E1 (s)
Wc1 (s)
X 2 (s) +
-
E2 (s) Wc2 (s) + -
Z1(s)
Z2 (s)
F2 (s) +
WV (s)
W02 (s)

第4章(串级控制)过程控制课件

副回路为正作用; 最后可选温度控制器为反作用.
下面分析串级控制系统的工作过程.
R1 (s) E1 (s)
Z1 (s)
温度控制器
R2 (s) E2 (s)
Z 2 ( s)
“-”
流量控制器
“+”
控制阀
流量检测变送器 温度检测变送器
流量对象
D2 (s) Y2 (s)
温度对象
D1 (s) Y1 (s)
“-”
控制阀 原料油
降到最低程度. 此方案的缺点是出口
温度不是被控量, 燃料油流量是间接被控量, 这就要求燃料 油流量对出口温度有足够的灵敏度且两者间有一一对应的 关系. 但影响出口温度的还有燃料油的热值﹑炉膛的压力
(影响燃烧所需的空气含氧量)﹑原料油入口温度及入口 流量等诸多因素, 且当上述因素引起出口温度变化时, 由 于出口温度未反馈到系统的输入端, 故此方案无法克服上 述因素的干扰将温度调节到理想状态. 上面两种方案各有优缺点, 下图是把两种方案结合 在此方案中, 用温度控制器的 起来的一种控制方案. 温度变送器 输出作为流量控制器的设定值 TC 温度测量值 由流量控制器的输出去调节 温度设定值 燃料油的流量. 从结构上 流量测量值 QC 看, 其特点是 出口温度 两个控制器串 控制量 流量变送器 接使用故此方 燃料油 案可叫加 控制阀 热炉出口温度与
Z1 (s)
Wc1 (s)Wc 2 (s)Wv (s)
R2 ( s)
'
Wo 2 (s)
'
Y2 (s)
Wo1 (s)
Y1 (s)
Hm1 (s)
1 Wc1 (s)Wc 2 (s)Wv (s)Wo 2 ' (s)Wo1 (s) Hm1 (s) 0

15串级控制系统 《过程控制系统及仪表》课件

工艺过程 催化裂化的流程包括三个部分:①原料油催化裂化;②催化剂再生;③产 物分离。原料经换热后与回炼油混合喷入提升管反应器下部,在此处与高温催化剂混 合、气化并发生反应。反应温度480~530℃,压力0.14MPa(表压)。反应油气与催化 剂在沉降器和旋风分离器(简称旋分器),分离后,进入分馏塔分出汽油、柴油和重质 回炼油。裂化气经压缩后去气体分离系统。结焦的催化剂在再生器用空气烧去焦炭后 循环使用,再生温度为600~730℃。
辽宁科技大学
四、串级系统的实施方案 主、副变量,主、副控制器选型确定之后,可考虑串级系统
的具体构成方案。 仪表选型; 主、副环是否单独运行,或选择遥控方案; 是否有积分饱和现象; 各种数据的显示、记录、报警; 系统维修方便,投资少。故障时,应能立即切入手动。
实例:图4 22、4 23。
辽宁科技大学
上式说明,频率的提高
与主、副对象的时间常
(4 - 16)
数比 To1 / To2
辽宁科技大学
辽宁科技大学
有关。 41见 。 8 图 可见 To1/T , o2较 在小串 时 /单 , 增长 较快, To1/而 To2较 在大时增长慢下来。
辽宁科技大学
系统设计时,希望 To 2小些,以使副回路灵敏 些,控制 作用快一点。但 To 2过小, To1 / To 2便增大,此时对提高系 统的工作频率意义已不 大。 To 2 过小将使副回路过于灵 敏 而不稳定。因此,在选 择副回路时,主、副回 路的时间常
主控制器: PI 或 PID 克服容量滞后,进一步 提高控制质量。 副控制器: P 作用。当 To2 较小, 较大时,可引入积分。 2. 工艺对主变量要求比较 高,对付变量要求也比 较高。 主控制器: PI; 副控制器: PI 。 注意:如主控制器输出 变化太剧烈,即使副控 制器有积分 作用,副变量也不能稳 定在工艺要求的数值上 。整定时应考 虑这一点。

串级控制系统资料课件

特点
串级控制系统具有较好的抗干扰能力和对负荷变化的适应性 ,能够提高系统的控制品质和降低对控制参数的敏感性。
串级控制系统基本组成
01
02
03
控制器
是系统的核心部分,负责 接收输入信号并输出控制 信号。
内回路
由控制器、测量变送器和 执行机构组成,负责将控 制器的输出信号转换为实 际的控制动作。
外回路
串级控制系统资料课件
目录
• 串级控制系统概述 • 串级控制系统的设计 • 串级控制系统的应用 • 串级控制系统的优化 • 串级控制系统的案例分析 • 串级控制系统的未来发展与挑战
01
串级控制系统概述
定义与特点
定义
串级控制系统是一种常用的工业控制系统,由两个或更多控 制器串联组成,每个控制器控制一个内回路,内回路的输出 作为下一级控制器的给定值,形成多级控制回路。
内回路的输出值作为 下一级控制器的给定 值,下一级控制器根 据给定值和实际测量 值的偏差计算出控制 信号,调整内回路的 执行机构;
通过多级控制回路的 协同作用,最终实现 系统输出值与目标值 的接近。
02
串级控制系统的设计
设计原则与步骤
01
确定系统结构
根据工艺要求和控制目标,确定 串级控制系统的主控制器和从控 制器。
算法优化
并行计算
利用多核处理器或分布式计算资源,加速控制算法的计算 过程,提高系统的实时性。
01
参数优化
通过智能优化算法,对控制算法的参数 进行优化,以获得更好的控制效果。
02
03
近似算法
在保证控制精度的前提下,采用近似 算法降低计算复杂度,提高系统的响 应速度。
系统结构优化
模块化设计

串级控制系统课件

冶金行业
用于控制钢水温度、成分等参 数,实现高效、低耗的冶炼过
程。
02
串级控制系统的设计与实现
控制器设计
01
控制器类型选择
根据被控对象的特性,选择合适 的控制器类型,如PID控制器、 模糊控制器等。
02
控制器参数整定
03
控制器结构调整
根据系统性能要求,对控制器参 数进行整定,以获得良好的控制 效果。
升系统的决策能力。
人工智能技术
03
利用机器学习和深度学习技术,实现自适应学习和智能决策,
提高系统的自主性和智能化程度。
系统集成与优化
系统集成
将多个子系统进行集成,实现信息共享和协同工作,提高系统的 整体性能和效率。
系统优化
通过优化算法和智能技术,对系统进行性能分析和优化设计,提高 系统的稳定性和可靠性。
系统优化
根据调试结果,对系统设计进行优化,提高系统性能、降低能耗等。
03
串级控制系统的性能分析
稳定性分析
稳定性是控制系统的重要性能指标,它决定了 系统在受到扰动后能否回到原始状态的能力。
稳定性分析主要通过判断系统的极点和零点散 布来进行,极点越靠近虚轴,系统越不稳定; 零点越远离虚轴,对系统稳定性的影响越大。
主回路设计
主回路功能确定
明确主回路在系统中的作用,如保证主参数 稳定、克服主要扰动等。
主回路控制器选择
根据主回路功能要求,选择合适的主回路控 制器。
主回路参数整定
根据主回路控制效果,对主回路控制器参数 进行整定,以优化系统性能。
系统调试与优化
系统调试
在系统初步设计完成后,进行实际调试,检查系统各部分是否正常工作、控制效果是否到达预期。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在这个方案中,炉出口温度不是被控量,当来自原料入 口温度和初始温度等干扰因素使出口温度发生变化时,此间 接控制系统无法将变化了的温度调回来;
管式加热炉出口温度的间接控制(2)
期望炉膛 温度
方案三:加热炉出口温度与燃料流量的串级控制
用温度控制器的输出作为流量控制器的设定值,由流量 控制器的输出去控制燃料油管线的控制阀,可以抑制燃料 油流量的扰动 同样:加热炉出口温度与炉膛温度的串级控制可以抑制燃料油
第六章 串级控制系统设计
§6.1 串级控制原理 §6.2 串级控制系统的特点 §6.3 串级控制系统的设计 §6.4 串级控制系统的参数整定 §6.5 串级控制系统的工业应用
返回
§6.1 串级控制原理
一、串级控制系统的组成
例 :管式加热炉是炼油厂经常采用的设备之一(如下所示),
其工艺要求是:炉出口温度保持恒定。
流量的扰动和热值扰动。
温度-流量串级控制系统的方框图如下:
R(1 S) E(1 S) 温 度 调 R(2 S) E(2 S) 流 量 调
节器
节器
执行阀
D(2 S) D(1 S)
流量
流量
温度
对象
对象
原料出口温度
流量检测变送器
温度检测变送器
串级控制系统:就是由两个调节器串联在一起,控制一个执 行阀,实现定值控制的控制系统。
E1 (s)
Wc1 (s)
X 2 (s) +
-
E2 (s) Wc2 (s) + -
Z1(s)
Z2 (s)
F2 (s) +
WV (s)
W02 (s)
Y2 (s) +
F1 (s) +
W01 (s)
Wm2 (s)
Y1 (s)
Wm1 (s)
输出对于二次扰动的传递函数:
FY((12 SS)) 1
WV (s)W02 (s)W01(s) Wc1(s)Wc2 (s)WV (s)W02 (s)W01(s)Wm1(s) Wc2 (s)WV (s)W02 (s)Wm2 (s)
返回
§6.2 串级控制系统的特点
1、能迅速克服进入副回路的二次干扰 串级控制系统方框图如下:
X1(s) +
E1 (s)
Wc1 (s)
X 2 (s) +
-
E2 (s) Wc2 (s) + -
Z1(s)
Z2 (s)
F2 (s) +
WV (s)
W02 (s)
Y2 (s) +
F1 (s) +
W01 (s)
X(S)
F(2 S) Wc (S)
WV (S)
F(1 S) W02(S)
Y(S) W01(S)
Wm (S )
Y(S)
Wc (s)WV (s)W02 (s)W01(s)
X (S ) 1 Wc (s)WV (s)W02 (s)W01(s)Wm (s)
Y(S) F(2 S)
1
Wc
WV (s)W02 (s)W01(s) (s)WV (s)W02 (s)W01(s)Wm
若克服二次干扰的能力 用Y(1 S)/ X(1 S)来表示 Y(1 S)/ F(2 S)

Y(1 S)/ Y(1 S)/
XF((21 SS))
Wc1
(S
)Wc
2
(
S
)
K c1 K c 2
假设主、副调节器均采 用比例调节器,即 Wc1(S) Kc1,Wc2 (S) Kc2
单回路控制系统方框图如下:
二、串级控制系统的工作过程(参见P198)
仍以管式加热炉出口温度控制为例,分析温度-流量串级控 制系统克服干扰的过程。
调节阀:气开式 温度调节器、流量调节器:反作用
情况一:干扰来自燃料油流量的变化
• 初始阶段,出口温度不变,温度控制器的输出不变,流量控 制器就按照变化了的测量值与没变的设定值之差进行控制, 改变执行阀的原有开度,使燃料油向原来的设定值靠近。
情况三:一次干扰和二次干扰同时存在
➢ 主、副变量同向变化 主、副调节器共同作用,执行阀的开度大幅度变化,使得
炉出口温度很快恢复到设定值。 ➢ 主、副变量反向变化
两种干扰作用相互抵消,或燃料油流量只作很小的调整。
通过分析可知:副控制器具有“粗调”的作用,而主控制 器具有“细调”的作用,两者互相配合,控制质量必然高于单回 路控制系统。
串级控制系统中常见的名词术语:
主、副变量,主、副控制器(调节器),主、副对象,主、 副检测变送器,主、副回路。
作用在主、副对象上的干扰分别为一、二次干扰。
串级控制系统的通用方框图:
二次扰动 一次扰动
设定值
主调节器
副调节器
执行阀
副检测变送器
副 对象
主 对象
副参数
主参数
主检测变送器
内回路选取时应包含主要干扰,同时时间常数不宜过长。
X (S)
Kc
K2 1T02S
K1 1T01S
Y (S )
其特征方程式为:
T01T02S 2 (T01 T02 )S (1 Kc K1K2 ) 0
则:
2 1 01
T01 T02 T01T02
阻尼比
阻尼振荡频率为:
自然振 荡频率
干扰:
原料的流量、初始温度; 燃料的流量、燃料热值。
方案一:管式加热炉出口温度的单回路控制
温度检测 变送器
期望 温度
存在的问题:
温度控 制器
由于原料、燃料的流量等扰动导致控制作用不及时; 偏差大,控制质量差。
方案二:管式加热炉出口温度的间接控制(1)
流量检测 变送器
期望 流量
存度控制器不断改变着流量控制器 的设定值,流量控制器就按照测量值与变化了的设定值之差 进行控制,直到炉出口温度重新恢复到设定值 。
先副回路, 后主回路
情况二:干扰来自原料油方面,使炉出口温度升高
• 出口温度
温度控制器输出
流量控制器设定值 。
• 燃料油流量为适应温度控制的需要而不断变化。
Wm2 (s)
Y1 (s)
Wm1 (s)
输出对于输入的传递函数:
XY((11 SS)) 1
Wc1(s)Wc2 (s)WV (s)W02 (s)W01(s) Wc1(s)Wc2 (s)WV (s)W02 (s)W01(s)Wm1(s) Wc2 (s)WV (s)W02 (s)Wm2 (s)
X1(s) +
(s)
则:YY((SS))// XF((2 SS)) Wc (S) Kc
假设:Wc (S) Kc
一般
K
c
取值较大,
2
K c1
Kc
Kc1 Kc2 Kc
即:串级控制系统克服二次干扰的能力大于单回路控制系统 (约10~100倍)。
串级控制系统克服一次干扰的能力也比单回路控制系统强。
2、提高了系统的工作频率 双容对象的单回路控制系统如下图所示:
相关文档
最新文档