PIN二极管的原理和应用

PIN二极管的原理和应用
PIN二极管的原理和应用

PIN二极管的原理和应用

一、PIN二极管的原理和结构

一般的二极管是由N型杂质掺杂的半导体材料和P型杂质掺杂的半导体材料直接构成形成PN结。而PIN二极管是在P型半导体材料和N型半导体材料之间加一薄层低掺杂的本征(Intrinsic)半导体层。

PIN二极管的结构图如图1所示,因为本征半导体近似于介质,这就相当于增大了P-N 结结电容两个电极之间的距离,使结电容变得很小。其次,P型半导体和N型半导体中耗尽层的宽度是随反向电压增加而加宽的,随着反偏压的增大,结电容也要变得很小。由于I层的存在,而P区一般做得很薄,入射光子只能在I层内被吸收,而反向偏压主要集中在I区,形成高电场区,I区的光生载流子在强电场作用下加速运动,所以载流子渡越时间常量减小,从而改善了光电二极管的频率响应。同时I层的引入加大了耗尽区,展宽了光电转换的有效工作区域,从而使灵敏度得以提高。

图1 PIN二极管的结构示意图

PIN二极管的基本结构有两种,即平面的结构和台面的结构,如图2所示。对于

Si-pin133结二极管,其中I层的载流子浓度很低(约为10cm数量级)电阻率很高、(约为k-cm数量级),厚度W一般较厚(在10~200m之间);I层两边的p型和n型半导体的掺杂浓度通常很高。

平面结构和台面结构的I层都可以采用外延技术来制作,高掺杂的p+层可以采用热扩散或者离子注入技术来获得。平面结构二极管可以方便地采用常规的平面工艺来制作。而台面结构二极管还需要进行台面制作(通过腐蚀或者挖槽来实现)。台面结构的优点是:①去掉了平面结的弯曲部分,改善了表面击穿电压;②减小了边缘电容和电感,有利于提高工作频率。

图2 PIN二极管的两种结构

二、PIN二极管在不同偏置下的工作状态。

○1正偏下:

PIN二极管加正向电压时,P区和N区的多子会注入到I区,并在I区复合。当注入载流子和复合载流子相等时,电流I达到平衡状态。而本征层由于积累了大量的载流子而电阻

变低,所以当PIN二极管正向偏置时,呈低阻特性。正向偏压越大,注入I层的电流就越大,I层载流子越多,使得其电阻越小。图3是正偏下的等效电路图,可以看出其等效为一个很小的电阻,阻值在0.1Ω和10Ω之间。

图3 正向偏压下PIN二极管的等效电路图

○2零偏下:

当PIN二极管两端不加电压时,由于实际的I层含有少量的P型杂质,所以在IN交界面处,I区的空穴向N区扩散,N区的电子向I区扩散,然后形成空间电荷区。由于I区杂质浓度相比N区很低,多以耗尽区几乎全部在I区内。在PI交界面,由于存在浓度差(P 区空穴浓度远远大于I区),也会发生扩散运动,但是其影响相对于IN交界面小的多,可以忽略不计。所以当零偏时,I区由于存在耗尽区而使得PIN二极管呈现高阻状态。

○3反偏下:

反偏情况跟零偏时很类似,所不同的是内建电场会得到加强,其效果是使IN结的空间电荷区变宽,且主要是向I区扩展。此时的PIN二极管可以等效为电阻加电容,其电阻是剩下的本征区电阻,而电容是耗尽区的势垒电容。图4是反偏下PIN二极管的等效电路图,可以看出电阻范围在1Ω到100Ω之间,电容范围在0.1pF到10pF之间。当反向偏压过大,使得耗尽区充满整个I区,此时会发生I区穿通,此时PIN管不能正常工作了。

图4 反向偏压下PIN二极管的等效电路图

三、PIN二极管作为射频开关

3.1 工作原理

因为 PIN二极管的射频电阻与直流偏置电流有关,所以它可以用作为射频开关和衰减器。串联射频开关电路:当二极管正偏时,即接通(短路);当二极管零偏或者反偏时,即可把带宽:不仅开关的最高工作频率会受到限制,最低工作频率也会受到限制,如PI N 管就不能控制直流或低频信号的通断。受管子截止频率的影响,开关还有一个上限工作频率。要求开关的频带尽量宽,因为信号源的频带越来越宽。

3.2 性能参数

插入损耗和隔离度:插入衰减定义为信号源产生的最大资用功率P

A

与开关导通时负载

获得的实际功率P

LD 之比P

A

/ P

LD

。若开关在关断时负载上的实际功率为P

LD

,则表

示隔离度,写成分贝的形式:

根据网络散射参量的定义,有:

理想开关,在断开时衰减无限大,导通时衰减为零,一般只能要求两者比值尽量大。由于PI N 管的阻抗不能减小到零,也不能增大至无限大,所以实际的开关在断开时衰减不是无限大,导通时也不是零,一般只能要求两者的比值应尽量大,开关的导通衰减称插入损耗,断开时的衰减称为隔离度,插入损耗和隔离度是衡量开关质量优劣的基本指标。目标是设计低插入损耗和高隔离的开关。

功率容量:所谓开关的功率容量是指它能承受的最大微波功率。PIN二极管的功率容量主要受到以下两方面的限制,管子导通时所允许的最大功耗;管子截止时所能承受的最大反向电压,也就是反向击穿电压。如果开关工作的时候超过了这些限制,前者会导致管内温升过高而烧毁;后者会导致I区雪崩击穿。它由开关开、关状态下允许的微波信号功率的较小者决定。大功率下的非线性效应(IIP3 )也是开关的承受功率的一个主要因素,特别是在移动通信基站中。

驱动器的要求:PI N 管开关和FET 开关的驱动电路是不同的,前者需要提供电流偏置,后者则要求有偏压,驱动器好坏是影响开关速度的主要因素之一。

开关速度:指开关开通和关断的快慢,在快速器件中是一个很重要的指标。可以列出I 区中的电流方程如下:

开关速度提高到ns量级,通常采用I层很薄的PIN管,因为薄I层中贮存的载流子数量很少,开关时间大大缩短,这种情况下开关时间基本取决于载流子渡越I层的时间,而与载流子寿命无关。提高开关速度也可选用载流子寿命短的管子,增大控制电流的脉冲幅度,但后者受到PIN管最大功率和反向击穿电压的限制。

电压驻波比(VSWR):任何在高频信号通道上的元器件不仅会产生插入损耗,也会导致信号传输线上的驻波的增加。驻波是由传送电磁波与反射波干涉而形成的,这种干涉经常是系统中不同部分的阻抗不匹配或者是系统中连接点的阻抗不匹配造成的。

开关比:一个PIN管,在不考虑封装寄生参量时,其正向状态可用正向电阻R1表示,反向状态可以用反向串联电阻R2和I层容抗jXc,串联表示。由于Xc>>R2,,故反向状态可近似以jXc表示,我们称正反两种状态下阻抗的比值Xc/R1为开关比,用以衡量PIN开关的优劣。如要使开关比增大,则C和R2必须比较小,可以看出,当频率提高时,开关性能降低。

四、总结

本文介绍了PIN二极管的结构和工作原理,同时分析了其在各种偏压下的工作状态以及等效电路,最后对PIN二极管作为射频开关进行了系统的介绍。PIN二极管相比于普通二极管增加了一层本征层(I层),使得其用途及其广泛,尤其是在射频领域和光电探测方面。因此,深入研究PIN二极管的原理和特性是很有意义的。

齐纳二极管(稳压二极管)工作原理及主要参数

齐纳二极管(稳压二极管)工作原理及主要参数 齐纳二极管也叫稳压二极管.一般二极管处于逆向偏压时,若电压超过PIV(逆向峰值电压)值时二极管将受到破坏,这是因为一般二极管在两端的电位差既高之下又要通过大量的电流,此时所产生的功率所衍生的热量足以使二极管烧毁。 齐纳二极管就是专门被设计在崩溃区操作,是一个具有良好的功率散逸装置,可以当做电压参考或定电压组件。若利用齐纳二极管作为电压调节器,将使附载电压保持在Vz附近且几乎唯一定值,不受附载电流或电源上电压变动影响。一般二极管之崩溃电压,在制作时可以随意加以控制,所以一般齐纳二极管之崩电压(Vz)从数伏特至上百伏特都有。一般齐纳二极管在特性表或电路上除了标住Vz外,均会注明Pz也就是齐纳二极管所能承受之做大功率,也可由Pz=Vz*Iz 换算出奇纳二极管可通过最大电流Iz。dz3w上有个在线计算器,电路设计时可以用来计算稳压二极管的相关参数. 齐纳二极管工作原理 齐纳二极管主要工作于逆向偏压区,在二极管工作于逆向偏压区时,当电压未达崩溃电压以前,二极管上并不会有电流产生,但当逆向电压达到崩溃电压时,每一微小电压的增加就会产生相当大的电流,此时二极管两端的电压就会保持于一个变化量相当微小的电压值(几乎等于崩溃电压),下图为齐纳二极管之电压电流曲线,可由此应证上述说明。 齐纳二极管(又叫稳压二极管)它的电路符号是:此二极管是一种直到临界反向击穿电压前都具有很高电阻的半导体器件.在这临界击穿点上,反向电阻降低到一个很少的数值,在这个低阻区中电流增加而电压则保持恒定,稳压二极管是根据击穿电压来分档的,因为这种特性,稳压管主要被作为稳压器或电压基准元件使用.其伏安特性,稳压二极管可以串联起来以便在较高的电压上使用,通过串联就可获得更多的稳定电压。 在通常情况下,反向偏置的PN结中只有一个很小的电流。这个漏电流一直

肖特二极管的工作原理是什么.doc

肖特二极管的工作原理是什么 SBD是肖特基势垒二极管(Schottky Barrier Diode,缩写成SBD)的简称。SBD不是利用P型半导体与N型半导体接触形成PN结原理制作的,而是利用金属与半导体接触形成的金属-半导体结原理制作的。因此,SBD也称为金属-半导体(接触)二极管或表面势垒二极管,它是一种热载流子二极管。 肖特基二极管是近年来问世的低功耗、大电流、超高速半导体器件。其反向恢复时间极短(可以小到几纳秒),正向导通压降仅0.4V左右,而整流电流却可达到几千毫安。这些优良特性是快恢复二极管所无法比拟的。中、小功率肖特基整流二极管大多采用封装形式。 肖特基二极管是贵金属(金、银、铝、铂等)A为正极,以N型半导体B为负极,利用二者接触面上形成的势垒具有整流特性而制成的金属-半导体器件。因为N型半导体中存在着大量的电子,贵金属中仅有极少量的自由电子,所以电子便从浓度高的B中向浓度低的A中扩散。显然,金属A中没有空穴,也就不存在空穴自A向B的扩散运动。随着电子不断从B扩散到A,B表面电子浓度逐渐降低,表面电中性被破坏,于是就形成势垒,其电场方向为B→A。但在该电场作用之下,A中的电子也会产生从A→B的漂移运动,从而消弱了由于扩散运动而形成的电场。当建立起一定宽度的空间电荷区后,电场引起的电子漂移运动和浓度不同引起的电子扩散运动达到相对的平衡,便形成了肖特基势垒。 典型的肖特基二极管基整流管的内部电路结构是以N型半导体为基片,在上面形成用砷作掺杂剂的N-外延层。阳极使用钼或铝等材料制成阻档层。用二氧化硅(SiO2)来消除边缘区域的电场,提高管子的耐压值。N型基片具有很小的通态电阻,其掺杂浓度较H-层要高100%倍。在基片下边形成N+阴极层,其作用是减小阴极的接触电阻。通过调整结构参数,N型基片和阳极金属之间便形成肖特基势垒,当在肖特基势垒两端加上正向偏压(阳极金属接电源正极,N型基片接电源负极)时,肖特基势垒层变窄,其内阻变小;反之,若在肖特基势垒两端加上反向偏压时,肖特基势垒层则变宽,其内阻变大。 综上所述,肖特基整流管的结构原理与PN结整流管有很大的区别通常将PN结整流管称作结整流管,而把金属-半导管整流管叫作肖特基整流管,近年来,采用硅平面工艺制造的铝硅肖特基二极管也已问世,这不仅可节省贵金属,大幅度降低成本,还改善了参数的一致性。 肖特基二极管是贵金属(金、银、铝、铂等)A为正极,以N型半导体B为负极,利用二者接触面上形成的势垒具有整流特性而制成的金属-半导体器件。因为N型半导体中存在着大量的电子,贵金属中仅有极少量的自由电子,

PIN二极管结构及工作原理

一、PIN二极管的结构 PIN二极管的基本结构有两种,即平面的结构和台面的结构,如图2所示。对于Si-pin133结二极管,其中I层的载流子浓度很低(约为10cm数量级)电阻率很高、(约为k-cm数量级),厚度W一般较厚(在10~200m 之间);I层两边的p型和n型半导体的掺杂浓度通常很高。 平面结构和台面结构的I层都可以采用外延技术来制作,高掺杂的p+层可以采用热扩散或者离子注入技术来获得。平面结构二极管可以方便地采用常规的平面工艺来制作。而台面结构二极管还需要进行台面制作(通过腐蚀或者挖槽来实现)。台面结构的优点是: ①去掉了平面结的弯曲部分,改善了表面击穿电压; ②减小了边缘电容和电感,有利于提高工作频率。 图2 PIN二极管的两种结构 二、PIN二极管在不同偏置下的工作状态 1、正偏下 PIN二极管加正向电压时,P区和N区的多子会注入到I区,并在I区复合。当注入载流子和复合载流子相等时,电流I达到平衡状态。而本征层由于积累了大量的载流子而电阻变低,所以当PIN二极管正向偏置时,呈低阻特性。正向偏压越大,注入I层的电流就越大,I层载流子越多,使得其电阻越小。图3是正偏下的等效电路图,可以看出其等效为一个很小的电阻,阻值在0.1Ω和10Ω之间。

图3 正向偏压下PIN二极管的等效电路图 正向偏压电流与正向阻抗特性曲线图 2、零偏下 当PIN二极管两端不加电压时,由于实际的I层含有少量的P型杂质,所以在IN交界面处,I区的空穴向N区扩散,N区的电子向I区扩散,然后形成空间电荷区。由于I区杂质浓度相比N区很低,多以耗尽区几乎全部在I区内。在PI交界面,由于存在浓度差(P区空穴浓度远远大于I区),也会发生扩散运动,但是其影响相对于IN交界面小的多,可以忽略不计。所以当零偏时,I区由于存在耗尽区而使得PIN二极管呈现高阻状态。 3、反偏下 反偏情况跟零偏时很类似,所不同的是内建电场会得到加强,其效果是使IN结的空间电荷区变宽,且主要是向I区扩展。此时的PIN二极管可以等效为电阻加电容,其电阻是剩下的本征区电阻,而电容是耗尽区的势垒电容。图4是反偏下PIN二极管的等效电路图,可以看出电阻范围在1Ω到100Ω之间,电容范围在0.1pF到10pF之间。当反向偏压过大,使得耗尽区充满整个I区,此时会发生I区穿通,此时PIN管不能正常工作了。 图4 反向偏压下PIN二极管的等效电路图和反向偏压电流与反向电容特性曲线 三、PIN二极管作为射频开关 3.1 工作原理

常见几种开关电源工作原理及电路图

一、开关式稳压电源的基本工作原理 开关式稳压电源接控制方式分为调宽式和调频式两种,在实际的应用中,调宽式使用得较多,在目前开发和使用的开关电源集成电路中,绝大多数也为脉宽调制型。因此下面就主要介绍调宽式开关稳压电源。 调宽式开关稳压电源的基本原理可参见下图。 对于单极性矩形脉冲来说,其直流平均电压Uo取决于矩形脉冲的宽度,脉冲越宽,其直流平均电压值就越高。直流平均电压U。可由公式计算, 即Uo=Um×T1/T 式中Um为矩形脉冲最大电压值;T为矩形脉冲周期;T1为矩形脉冲宽度。 从上式可以看出,当Um 与T 不变时,直流平均电压Uo 将与脉冲宽度T1 成正比。这样,只要我们设法使脉冲宽度随稳压电源输出电压的增高而变窄,就可以达到稳定电压的目的。 二、开关式稳压电源的原理电路 1、基本电路

图二开关电源基本电路框图 开关式稳压电源的基本电路框图如图二所示。 交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。 控制电路为一脉冲宽度调制器,它主要由取样器、比较器、振荡器、脉宽调制及基准电压等电路构成。这部分电路目前已集成化,制成了各种开关电源用集成电路。控制电路用来调整高频开关元件的开关时间比例,以达到稳定输出电压的目的。 2.单端反激式开关电源 单端反激式开关电源的典型电路如图三所示。电路中所谓的单端是指高频变换器的磁芯仅工作在磁滞回线的一侧。所谓的反激,是指当开关管VT1 导通时,高频变压器T初级绕组的感应电压为上正下负,整流二极管VD1处于截止状态,在初级绕组中储存能量。当开关管VT1截止时,变压器T初级绕组中存储的能量,通过次级绕组及VD1 整流和电容C滤波后向负载输出。

分析稳压二极管的工作原理及其限流电阻的公式推导

分析稳压二极管的工作原理及其限流电阻的公式推导 一、二极管主要参数 在实际应用中选择适当的二极管对电路的设计很重要,不同用途的二极管有不同的结构,有不同的参数要求:不同用途的二极管对二极管参数的要求也不同。二极管的主要参数如下: 1、最大整流电流;二极管的最大整流电流是指在规定测试温度下,二极管允许通过的最大平均大流。二极管在正常工作时,平均工作电流不应超过此值,二则会损坏二极管。 2、最大反向峰值电压:最大反向峰值电压是指在二极管工作时允许承受的最大反向电压 3、最大正向浪涌电流:最大正想浪涌电流时二极管允许流过的过量的正向电流,表示二极管承受非正常工作电流(浪涌电流不是经常出现,只是偶然出现)的能力。一般测试时,规定一个50Hz的浪涌电流。 4、反向电流:指二极管在未击穿是的反向电流(后续会介绍),一般规定在是温度25°C时进行测试。 5、反向恢复时间:当二极管两端电压从正向电压变为反向电压时,理想情况是电流能瞬时截止,但是实际要延迟一段时间,这段时间久成为反向恢复时间。 不同用途的二极管对各种参数的要求不同,表(1-1)和表(1-2)列出了二极管的参数,以供参考 二、极管的种类 二极管的种类有很多,出了普通的二极管和整流二极管外,还有利用特殊工艺制造的具有各种不同用途的二级管,如稳压管(齐纳二极管)、光敏二极管,发光二极管等。 下面,主要介绍的是在电路中最常见的二极管的一种——稳压二极管 三、稳压二极管及其工作原理 我们都知道,二极管加反响偏置电压时,如果反向电压达到UBR,则二极管会产生击穿。击穿时反向电流迅速增加,但是此时二极管两端的电压变化很小。稳压就是根据PN结的这一特性,经特殊工艺制造的。稳压管又称齐纳二极管。使用稳压管可以提供一个较为固定的稳定电压。

功率二极管结构和工作原理

功率二极管结构和工作原理 在本征半导体中掺入P型和N型杂质,其交界处就形成了PN结,在PN结的两端引出两个电极,并在外面装上管壳,就成为半导体二极管。如果一杂质半导体和金属形成整流接触,并在两端引出两个电极,则成为肖特基二极管。 二极管的结构和工作原理: PN结的形成及二极管的单向导电性描述如下: 如下图1所示,对于一块纯净的半导体,如果它的一侧是P区,另一侧为N区,则在P区和N区之间形成一交界面。N区的多子(电子)向P区运动,P区的多子(空穴)向N区运动,这种由于浓度差异而引起的运动称为“扩散运动”。扩散到P区的电子不断地与空穴复合,同时P区的空穴向N区扩散,并与N区中的电子复合。交界面两侧多子复合的结果就出现了由不能移动的带电离子组成的“空间电荷区”。N区一侧出现正离子区,P区一侧出现负离子区,正负离子在交界面两侧形成一个内电场。这个内电场对多子的扩散运动起阻碍作用的同时,又有利于N区的少子(空穴)进入P区,P区的少子(电子)进入N区,这种在内电场作用下少子的运动称为“漂移运动”。扩散运动有助于内电场的加强,内电场的加强将阻碍多子的扩散,而有助于少子的漂移,少子漂移运动的加强又将削弱内电场,又有助于多子的扩散,最终扩散运动和漂移运动必在一定温度下达到动态平衡。即在单位时间内P区扩散到N区的空穴数量等于由P区漂移到N区的自由电子数量,形成彼此大小相等,方向相反的漂移电流和扩散电流,交界面的总电流为零。在动态平衡时,交界面两侧缺少载流子的区域称为“耗尽层“,这就形成了PN结。

如图2所示,当PN结处于正偏,即P区接电源正端,N区接电源负端时,外加电场与PN 结内电场方向相反,内电场被削弱,耗尽层变宽,打破了PN结的平衡状态,使扩散占优势。多子形成的扩散电流通过回路形成很大的正向电流,此时PN结呈现的正向电阻很小,称为“正向导逋”。当PN结上流过的正向电流较小时,二极管的电阻主要是作为基片的低掺杂N区的欧姆电阻,其阻值较高且为常量,因而管压降随正向电流的上升而增加;当PN结上流过的正向电流较大时,注入并积累在低掺杂N区的少子空穴浓度将很大,为了维持半导体电中性条件,其多子浓度也相应大幅度增加,使得其电阻率明显下降,也就是电导率大大增加,这就是电导调制效应。电导调制效应使得PN结在正向电流较大时压降仍然很低,维持在1V左右,所以正向偏置的PN结表现为低阻态,为保护PN结,通常要在回路中串联一个限流电阻。

稳压二极管原理及应用.(DOC)

什么是稳压二极管稳压二极管(又叫齐纳二极管)它的电路符号是:,稳压二极管是一种用于稳定电压的单PN结二极管。此二极管是一种直到临界反向击穿电压前都具有很高电阻的半导体器件。在这临界击穿点上,反向电阻降低到一个很少的数值,在这个低阻区中电流增加而电压则保持恒定,稳压二极管是根据击穿电压来分档的,因为这种特性,稳压管主要被作为稳压器或电压基准元件使用。 稳压二极管可以串联起来以便在较高的电压上使用,通过串联就可获得更多的稳定电压。 稳压管的应用: 1、浪涌保护电路(如图2):稳压管在准确的电压下击穿,这就使得它可作为限制或保护之元件来使用,因为各种电压的稳压二极管都可以得到,故对于这种应用特别适宜。图中的稳压二极管D是作为过压保护器件。只要电源电压VS超过二极管的稳压值D就导通。使继电器J吸合负载RL就与电源分开。 2、电视机里的过压保护电路(如图3):EC是电视机主供电压,当EC电压过高时,D导通,三极管BG导通,其集电极电位将由原来的高电平(5V)变为低电平,通过待机控制线的控制使电视机进入待机保护状态。 3、电弧抑制电路如图4:在电感线圈上并联接入一只合适的稳压二极管(也可接入一只普通二极管原理一样)的话,当线圈在导通状态切断时,由于其电磁能释放所产生的高压就被二极管所吸收,所以当开关断开时,开关的电弧也就被消除了。这个应用电路在工业上用得比较多,如一些较大功率的电磁吸控制电路就 用到它。

4、串联型稳压电路(如图5):在此电路中。串联稳压管BG的基极被稳压二极管D钳定在13V,那么其发射 极就输出恒定的12V电压了。这个电路在很多场合下都有应用 国产稳压二极管产品的分类 二极管的击穿通常有三种情况,即雪崩击穿、齐纳击穿和热击穿。 (1)雪崩击穿 对于掺杂浓度较低的PN结,结较厚,当外加反向电压高到一定数值时,因外电场过强,使PN结内少数载流子获得很大的动能而直接与原子碰撞,将原子电离,产生新的电子空穴对,由于链锁反应的结果,使少数载流子数目急剧增多,反向电流雪崩式地迅速增大,这种现象叫雪崩击穿。雪崩击穿通常发生在高反压、低掺杂的情况下。 (2)齐纳击穿 对于采用高掺杂(即杂质浓度很大)形成的PN结,由于结很薄(如0.04μm)即使外加电压并不高(如4V),就可产生很强的电场(如)将结内共价键中的价电子拉出来,产生大量的电子一空穴对,使反向电流剧增,这种现象叫齐纳击穿(因齐纳研究而得名)。齐纳击穿一般发生在低反压、高掺杂的情况下。(3)热击穿 在使用二极管的过程中,如由于PN结功耗(反向电流与反向电压之积)过大,使结温升高,电流变大,循环反复的结果,超过PN结的允许功耗,使PN结击穿的现象叫热击穿。热击穿后二极管将发生永久性损坏。

逆变电路的基本工作原理

逆变电路的基本工作原理 1、S4闭合,S 2、S3断开时,负载电压uo为正S1;S 1、S4断开,S 2、S3闭合时,uo为负,把直流电变成了交流电。改变两组开关切换频率,可改变输出交流电频率。图5-1 逆变电路及其波形举例电阻负载时,负载电流io和uo的波形相同,相位也相同。阻感负载时,io滞后于uo,波形也不同(图5-1b)。t1前:S 1、S4通,uo和io均为正。t1时刻断开S 1、S4,合上S 2、S3,uo变负,但io不能立刻反向。io从电源负极流出,经S 2、负载和S3流回正极,负载电感能量向电源反馈,io逐渐减小,t2时刻降为零,之后io才反向并增大(2)换流方式分类换流电流从一个支路向另一个支路转移的过程,也称换相。开通:适当的门极驱动信号就可使其开通。关断:全控型器件可通过门极关断。半控型器件晶闸管,必须利用外部条件才能关断,一般在晶闸管电流过零后施加一定时间反压,才能关断。研究换流方式主要是研究如何使器件关断。本章换流及换流方式问题最为全面集中,因此在本章讲述

1、器件换流利用全控型器件的自关断能力进行换流(Device Commutation)。 2、电网换流由电网提供换流电压称为电网换流(Line Commutation)。可控整流电路、交流调压电路和采用相控方式的交交变频电路,不需器件具有门极可关断能力,也不需要为换流附加元件。 3、负载换流由负载提供换流电压称为负载换流(Load Commutation)。负载电流相位超前于负载电压的场合,都可实现负载换流。负载为电容性负载时,负载为同步电动机时,可实现负载换流。图5-2 负载换流电路及其工作波形基本的负载换流逆变电路:采用晶闸管,负载:电阻电感串联后再和电容并联,工作在接近并联谐振状态而略呈容性。电容为改善负载功率因数使其略呈容性而接入,直流侧串入大电感Ld, id基本没有脉动。工作过程:4个臂的切换仅使电流路径改变,负载电流基本呈矩形波。负载工作在对基波电流接近并联谐振的状态,对基波阻抗很大,对谐波阻抗很小,uo波形接近正弦。t1前:VT 1、VT4通,VT 2、VT3断,uo、io均为正,VT 2、VT3电压即为uot1时:触发VT 2、VT3使其开通,uo加到VT 4、VT1上使其承受反压而关断,电流从VT 1、VT4换到VT

稳压二极管工作原理

稳压二极管工作原理 一、稳压二极管原理及特性 一般三极管都是正向导通,反向截止;加在二极管上的反向电压如果超过二极管的承受能力,二极管就要击穿损毁。但是有一种二极管,它的正向特性与普通二极管相同,而反向特性却比较特殊:当反向电压加到一定程度时,虽然管子呈现击穿状态,通过较大电流,却不损毁,并且这种现象的重复性很好;只要管子处在击穿状态,尽管流过管子的电在变化很大,而管子两端的电压却变化极小起到稳压作用。这种特殊的二极管叫稳压管。 稳压管的型号有2CW、2DW 等系列,它的电路符号如图5-17所示。 稳压管的稳压特性,可用图5一18所示伏安特性曲线很清楚地表示出来。 稳压管是利用反向击多区的稳压特性进行工作的,因此,稳压管在电路中要反向连接。稳压管的反向击穿电压称为稳定电压,不同类型稳压管的稳定电压也不一

样,某一型号的稳压管的稳压值固定在口定范围。例如:2CW11的稳压值是3.2伏到4.5伏,其中某一只管子的稳压值可能是3.5伏,另一只管子则可能是4,2伏。 在实际应用中,如果选择不到稳压值符合需要的稳压管,可以选用稳压值较低的稳压管,然后串联几只硅二极管“枕垫”,把稳定电压提高到所需数值。这是利用硅二极管的正向压降为0.6~0.7伏的特点来进行稳压的。因此,二极管在电路中必须正向连接,这是与稳压管不同的。 稳压管稳压性能的好坏,可以用它的动态电阻r来表示: 显然,对于同样的电流变化量ΔI,稳压管两端的电压变化量ΔU越小,动态电阻越小,稳压管性能就越好。 稳压管的动态电阻是随工作电流变化的,工作电流越大,动态电阻越小。因此,为使稳压效果好,工作电流要选得合适。工作电流选得大些,可以减小动态电阻,但不能超过管子的最大允许电流(或最大耗散功率)。各种型号管子的工作电流和最大允许电流,可以从手册中查到。 稳压管的稳定性能受温度影响,当温度变化时,它的稳定电压也要发生变化,常用稳定电压的温度系数来表示,这种性能例如2CW19型稳压管的稳定电压Uw= 12伏,温度系数为0.095%℃,说明温度每升高1℃,其稳定电压升高11.4毫伏。为提高电路的稳定性能,往往采用适当的温度补偿措施。在稳定性能要求很高时,需使用具有温度补偿的稳压,如2DW7A、2DW7W、2DW7C 等。 二、稳压二极管稳压电路图 由硅稳压管组成的简单稳压电路如图5- l9(a)所示。硅稳压管DW与负载Rfz,并联,R1为限流电阻。

功率二极管结构和工作原理

功率二极管结构和工作原理 功率二极管结构和工作原理 在本征半导体中掺入P型和N型杂质,其交界处就形成了PN结,在PN结的两端引出两个电极,并在外面装上管壳,就成为半导体二极管。如果一杂质半导体和金属形成整流接触,并在两端引出两个电极,则成为肖特基二极管。 二极管的结构和工作原理: PN结的形成及二极管的单向导电性描述如下:如下图1所示,对于一块纯净的半导体,如果它的一侧是P区,另一侧为N区,则在P区和N 区之间形成

一交界面。N区的多子(电子)向P 区运动,P区的多子(空穴)向N区运动,这种由于浓度差异而引起的运动称为"扩散运动”。扩散到P区的电子不断地与空穴复合,同时P 区的空穴向N区扩散,并与N区中的电子复合交界面两侧多子复合的结果就出现了由不能移动的带电离子组成的“空间电荷区”。N区一侧出现正离子区,P区一侧出现负离子区,正负离子在交界面两侧形成一个内电场。这个内电场对多子的扩散运动起阻碍作用的同时,又有利于N 区的少子(空穴)进入P区,P区的少子(电子)进入N区,这种在内电场作用下少子的运动称为"漂移运动”。扩散运动有助于内电场的加强,内电场的加强将阻碍多子的扩散,而有助于少子的漂移,少子漂移运动的加强又将削弱内电场,又有助于多子的扩散,最终扩散运动和漂移运动必在一定

温度下达到动态平衡。即在单位时间内P区扩散到N 区的空穴数量等于由P区漂移到N区的自由电子数量,形成彼此大小相等,方向相反的漂移电流和扩 散电流,交界面的总电流为 零。在动态平衡时,交界面两侧缺少载流子的区 域称为“耗尽层“,这就形成了PN结。 囹!PN结空间电荷区 如图2所示,当PN结处于正偏,即P区接电源正端,N区接电源负端时,外加电场与PN结内电场方向相反,内电场被削弱,耗尽层变宽,打破了PN 结的平衡状态,使扩散占优势。多子形成的扩散电流通过回路形成很大的正向电流,此时PN结呈现的正向电阻很小,称为“正向导逋”。当PN结上流过

续流二极管作用及 工作原理

续流二极管作用及工作原理 续流二极管作用及工作原理续流二极管都是并联在线圈的两端线圈在通过电流时会在其两端产生感应电动势。当电流消失时其感应电动势会对电路中的原件产生反向电压。当反向电压高亍原件的反向击穿电压时会把原件如三极管等造成损坏。续流二极管并联在线两端当流过线圈中的电流消失时线圈产生的感应电动势通过二极管和线圈构成的回路做功而消耗掉。丛而保护了电路中的其它原件的安全。在电路中反向并联在继电器戒电感线圈的两端当电感线圈断电时其两端的电动势并丌立即消失此时残余电动势通过一个二极管释放起这种作用的二极管叫续流二极管。其实还是个二极管只丌过它在这起续流作用而以例如在继电器线圈两端反向接的那个二极管戒单向可控硅两端反向接的也都是为什么要反向接个二极管呢因为继电器的线圈是一个很大的电感它能以磁场的形式储存电能所以当他吸合的时候存储大量的磁场当控制继电器的三极管由导通变为截至时线圈断电但是线圈里有磁场这时将产生反向电动势电压可高达1000V以上很容易击穿推动三极管戒其他电路元件这是由亍二极管的接入正好和反向电动势方向一致把反向电势通过续流二极管以电流的形式中和掉从而保护了其他电路元器件因此它一般是开关速度比较快的二极管象可控硅电路一样因可控硅一般当成一个触点开关来用如果控制的是大电感负载一样会产生高压反电动势原理和继电器一样的。在显示器上也用到一般用在消磁继电器的线圈上。经常和储能元件一起使用防止电压电流突变提供通路。电感可以经过它给负载提供持续的电流以免负载电流突变起到平滑电流的作用在开关电源中就能见到一个由二极管和电阻串连起来构成的的续流电路。这个电路不变压器原边并联。当开关管关断时续流电路可以释放掉变压器线圈中储存的能量防止感应电压过高击穿开关管。一般选择快速恢复二极管戒者肖特基二极管就可以了用来把线圈产生的反向电势释放掉在图3中KR在VT导通时上面电压为上正下负电流方向由上向下。在VT关断时会KR中电流突然中断会产生感应电势其方向是力图保持电流丌变即总想保持KR电流方向为由下至下。这个感应电势不电源电压迭加后加在两端容易使出穿。为此加上将产生的感应电势短路掉电注是你所说的“顺时针方向在二极管和继电器所的小回路里面流动”从而保护。图中的、也是利用上电压丌能突变的原理来吸收感应电势。可见“续流二极管”并丌是一个实质的元件它只丌过在电路中起到的作用称做“续流”。续流二极管在正激开关电源的作用在正激开关电源中当MOS关断的时候变压器副边靠电感中储存的能量对外提供电流。为使电感在有负载时发挥这种作用在变压器的副边增加续流二极管。当MOS 关断时电感负载和续流二极管会产生通路将电感中的能量对外传递。只有在有外负载的情况下续流二极管中采用电流流过变流技术中续流二极管在电路里起什么作用在电子变流电路中整流部分单相桥式整流是实际应用最多的单相整流电路。而三相桥式整流是电力系统特别是发电机励磁系统应用最多的方式。这两种电路都要接入续流二极管。其作用大致是一样的以单相桥式电路为例说明当可控整流桥接入感性负载时由亍电感电流丌能突变在可控硅关断期内必须在负载两端接入续流二极管以保持电感电流的通路以防止可控硅关断时在电感负载两端产生危险的过电压和可控硅能够换相导通。然而发电机励磁系统应用较多的三相桥式整流电路有三相半控桥不三相全控桥电路之分。因此为了保证整流元件可靠换流半控桥需要在感性负载两端并联续流二极管而全控桥丌需要这样做。当导通角改变时半控桥的平均电压和线电流的变化较全控桥慢。在现如今使用较多的如变频器等设备中包含有整流和逆变等变流电路其中用到的续流二极管一般都是在变频器内部的直流母线上加续流二极管那是因为如果负载是电感元件时当母线上大容量的逆变器发生故障时直流母线上会产生巨大的反向浪涌能量此时我们需要给这些能量提供一个泻放通道否则巨大的能量将击穿戒烧毁小逆变器. 而这个通道就需要二极管来构成故应为续流二极管. 单向半波可控整流电路带大电感负载时为什么必须加续流二极管单向半波可控整流带大电感负载在负半周可控硅截止时电感负载会产生很高的反向感应电动势此反向电动势足以使可控硅击穿烧毁加续流

二极管入门知识二极管结构和工作原理

二极管入门知识二极管结 构和工作原理 This model paper was revised by the Standardization Office on December 10, 2020

在自然界中,根据材料的导电能力,我们可以将他们划分导体、绝缘体和半导体。常见的导体如铜 和铝、常见的绝缘体如橡胶、塑料等。什么是半导体呢半导体的导电能力介于导体和绝缘体之间,常见的半导体材料有硅(Si)和锗(Ge)。到此,请记住两种半导体材料:硅、锗。因为以后你会 听说硅管、锗管。意思很明显,说明这种二极管或三极管是用硅或锗作为基材的。 半导体硅原子结构图 半导体有几个特性有必要了解一下:热敏性、光敏性和掺杂性; 半导体的热敏性:半导体的导电能力受温度影响较大,当温度升高时,半导体的导电能力大大增强,被称为半导体的热敏性。利用半导体的热敏性可制成热敏元件,在汽车上应用的热敏元件有温度传感器,如水温传感器、进气温度传感器等。 半导体硅的空穴和自由电子示意图 半导体的光敏性:半导体的导体的导电能力随光照的不同而不同。当光照增强时,导电能力增强,称为半导体光敏性。利用光敏性可制成光敏元件。在汽车上应用的光敏元件有汽车自动空调上应用的光照传感器。 半导体的掺杂性:当在导体中掺入少量杂质,半导体的导电性能增加。 什么是本征半导体、P型半导体和N型半导体,有哪些区别 本征半导体:纯净的半导体称为本征半导体。 P型半导体:在本征半导体硅或锗中掺入微量的三价元素硼(B)或镓,就形成P型半导体。 P型半导体示意图-空穴是多数载流子 N型半导体:在本征半导体硅或锗中掺入微量的五价元素磷(P)就形成N型半导体。 N型半导体中自由电子是多数载流子 PN结和二极管 在半导体硅或锗中一部分区域掺入微量的三价元素硼使之成为P型,另一部分区域掺入微量的五价元素磷使之成为N型半导体。在P型和N型半导体的交界处就形成一个PN结。一个PN结就是一个二极管,P区的引线称为阳极,N区的引线称为阴极。 二极管结构图:P区引线成为阳极、N区引线成为阴极 二极管的单向导电性能 二极管具前单向导电性能, (1)正向导通:当PN结加上正向电压,即P区接蓄电池正级,N区接蓄电池负极时,PN结处于导通状态,如图所示,试灯有电流通过,点亮。 二极管正向导通示意图 注意二极管正向导通时存在着电压降,什么意思呢如果蓄电池电压是12V,则试灯上的电压一定小于12V,大约是吧,哪在那里呢在二极管上,这就是二极管的电压降。二极管的电压降取决于二极管采用的是锗管还是硅管:锗管的电压降是左右;而硅管的电压降是左右。如果蓄电池电压低

二极管工作原理学习

二级管工作原理(PN结原理)学习 0、小叙闲言 并没有进一步研究一下,今天写下这篇文章,主要是介绍二极管的工作原理,为后面的三极管和MOSFET工作原理的理解打下基础,然后,应该能理解放大器的工作原理,最后也就也能解决上两篇文章提出的问题了。 1、PN结形成 P(Positive)型和N(Negative)型可根据它们的载流子(载流子说得比较学术,其实就是导体里面能流动的带电粒子,为电子或者是空穴,空穴可以看作是带正电的电子)来区分。对半导体材料(一般应该是硅Si)参入不同的杂质,就可以形成P型半导体和N型半导体。P型半导体里面能够流动的粒子是空穴,N型半导体里面能够流动的粒子是电子。它们的结构如下图1所示,对于它们俩如何参杂以形成不同的半导体,我们可没必要再研究下去,

除非你是专门搞半导体材料的。P型半导体中的大红圆是负离子,由于材料的性质,它是不可移动的,而其中的小绿圆(空穴),是可移动的,这一点很重要,请务必记住;同理N型半导体,它里面的大绿圆(正离子)不可自由移动,而小红圆(电子)可自由移动。 图1 P型和N型半导体结构

简单了解了P型半导体和N型半导体之后,我们常说的PN结是如何形成的呢,且看下方图2动图。当P型半导体和N型半导体接合在一起的时候,由于P型半导体中空穴浓度高,而N型半导体中电子浓度高,因此会形成一个扩散运动,P型半导体中空穴会向它浓度低的地方扩散,从而扩散到N型区,N型半导体的电子也会向它浓度低的地方扩散,从而扩散到P型区。这样一来,P型区剩下不能自由移动的负离子,而N型区剩下不能自由移动的正离子,一正一负,在PN结内部形成了一个从左往右的内电场,基本上这个内电场就体现PN结的工作特性。另外有一点要说明的是,PN结只是局部带电,即P型区呈负电,而N型区呈负电,但是它们俩一中和,整体上是呈中性的。

L298电路中续流二极管分析详解

本文出处: https://www.360docs.net/doc/6f10153969.html,/bbs/forum.php?mod=vi ewthread&tid=550764&page=1&from=space 电动直升机航模综合讨论区(论坛)转载请注明。 作者:wyfmx L298驱动模块续流二极管工作原理详解对某个电路中的电流流向的分析,千万不能单看局部电路(如你提供的电路图)。要从整个电路的工作原理、整个电路的框图、以及所使用的元器件特性来做全面、细致的解析。 因为,电路中有感性元件(直流马达是感性元件的一种),所以,要应用“楞次定律”来分析反向感生电压的方向。 为了便于解释你的疑惑,下面的附图1是L298内部的“电路框图”,附图2是L298的“双向直流电机控制”原理图。 我将辅以简要的电路工作原理说明(文字还是觉得多了一些。没办法啊!就让眼睛吃点亏吧!不然就没法彻底弄懂了。)和一些简要的图片,来帮你理解并找到泄放掉反电动势的回路。 第一部分电路分析 附图1:电路框图

注:为便于后续的分析,将以右半边的电路为例。同时,将标注有数字3的上面的门电路命名为Q;数字3下面的门电路命名为R;数字4上面的门电路命名为S;数字4下面的门电路命名为T。 由附图1可见: 1)、L298内部有两个完全相同的桥式驱动电路构成,分别驱动两个直流电机的正反转; 2)、组成桥式驱动的是四个大功率的NPN三极管,两路共8个;3)、控制每路四个功率管的则是四个Q\R\S\T门电路,两路共8个;4)、控制直流电动机正、反转的是由In1和In2,另一路是In3和In4; 5)、EnA和EnB是禁止输出控制。

附图2:双向直流电机控制 由附图2中左侧的典型应用电路图和右侧的真值表(这类表格,对电路工作状态的分析非常重要!)可见: 1)、当禁止端(Ven)为高电位、控制端In3(图中标注为“C”)和In4(图中标注为“D”)处于不同的电位时,相应的门电路驱动桥臂上的三极管,使马达分别工作于正转或反转状态; 2)、当禁止端仍处于高电位时,两个控制端处于相同的电位时,控制马达“快速停止”转动(原文是:Fast Motor Stop)。 请特别注意:这个状态分析和“快速”这个形容词,它将有助于分析后面的反电动势泄放回路! 3)、当禁止端处于低电位时,不论两个控制端处于何种电位、也不论

稳压二极管原理及故障

稳压二极管原理及故障 稳压二极管的稳压原理: 稳压二极管的特点就是击穿后,其两端的电压基本保持不变。这样,当把稳压管接入电路以后,若由于电源电压发生波动,或其它原因造成电路中各点电压变动时,负载两端的电压将基本保持不变。 稳压二极管在电路中常用“ZD”加数字表示,如:ZD5表示编号为5的稳压管。 故障特点: 稳压二极管的故障主要表现在开路、短路和稳压值不稳定。在这3种故障中,前一种故障表现出电源电压升高;后2种故障表现为电源电压变低到零伏或输出不稳定。 常用稳压二极管的型号及稳压值如下表: 型号1N47281N47291N47301N47321N47331N47341N47351N47441N47501N47511N4761 稳压值 3.3V 3.6V 3.9V 4.7V 5.1V 5.6V 6.2V15V27V30V75V 稳压管也是一种晶体二极管,它是利用PN结的击穿区具有稳定电压的特性来工作的。稳压管在稳压设备和一些电子电路中获得广泛的应用。我们把这种类型的二极管称为稳压管,以区别用在整流、检波和其他单向导电场合的二极管。如图画出了稳压管的伏安特性及其符号。 (1)稳定电压Uz Uz就是PN结的击穿电压,它随工作电流和温度的不同而略有变化。对于同一型号的稳压管来说,稳压值有一定的离散性。 (2)稳定电流Iz稳压管工作时的参考电流值。它通常有一定的范围,即Izmin——Izmax。 (3)动态电阻rz它是稳压管两端电压变化与电流变化的比值,如上图所示,即这个数值随工作电流的不同而改变。通常工作电流越大,动态电阻越小,稳压性能越好。

(4)电压温度系数它是用来说明稳定电压值受温度变化影响的系数。不同型号的稳压管有不同的稳定电压的温度系数,且有正负之分。稳压值低于4v的稳压管,稳定电压的温度系数为负值;稳压值高于6v的稳压管,其稳定电压的温度系数为正值;介于4V和6V之间的,可能为正,也可能为负。在要求高的场合,可以用两个温度系数相反的管子串联进行补偿(如2DW7)。 (5)额定功耗Pz前已指出,工作电流越大,动态电阻越小,稳压性能越好,但是最大工作电流受到额定功耗Pz的限制,超过P2将会使稳压管损坏。 选择稳压管时应注意:流过稳压管的电流Iz不能过大,应使Iz≤Izmax,否则会超过稳压管的允许功耗,Iz也不能太小,应使Iz≥Izmin,否则不能稳定输出电压,这样使输入电压和负载电流的变化范围都受到一定限制。下图示出了稳压管工作时的动态等效电路,图中二极管为理想二极管。

稳压二极管工作原理及故障特点

稳压二极管工作原理及故障特点

稳压二极管工作原理及故障特点 稳压二极管的稳压原理: 稳压二极管的特点就是击穿后,其两端的电压基本保持不变。这样,当把稳压管接入电路以后,若由于电源电压发生波动,或其它原因造成电路中各点电压变动时,负载两端的电压将基本保持不变。 稳压二极管在电路中常用“ZD”加数字表示,如:ZD5表示编号为5的稳压管。 故障特点: 稳压二极管的故障主要表现在开路、短路和稳压值不稳定。在这3种故障中,前一种故障表现出电源电压升高;后2种故障表现为电源电压变低到零伏或输出不稳定。 常用稳压二极管的型号及稳压值如下表: 型号 1N4728 1N4729 1N4730 1N4732 1N4733 1N4734 1N4735 1N4744 1N4750 1N4751 1N4761 稳压 值 3.3V 3.6V 3.9V 4.7V 5.1V 5.6V 6.2V 15V 27V 30V 75V 稳压管也是一种晶体二极管,它是利用PN结的击穿区具有稳定电压的特性来工作的。稳压管在稳压设备和一些电子电路中获得广泛的应用。我们把这种类型的二极管称为稳压管,以区别用在整流、检波和其他单向导电场合的二极管。如图画出了稳压管的伏安特性及其符号。

(1)稳定电压Uz Uz就是PN结的击穿电压,它随工作电流和温度的不同而略有变化。对于同一型号的稳压管来说,稳压值有一定的离散性。 (2)稳定电流Iz 稳压管工作时的参考电流值。它通常有一定的范围,即Izmin——Izmax。 (3)动态电阻rz 它是稳压管两端电压变化与电流变化的比值,如上图所示,即这个数值随工作电流的不同而改变。通常工作电流越大,动态电阻越小,稳压性能越好。 (4)电压温度系数它是用来说明稳定电压值受温度变化影响的系数。不同型号的稳压管有不同的稳定电压的温度系数,且有正负之分。稳压值低于4v的稳压管,稳定电压的温度系数为负值;稳压值高于6v的稳压管,其稳定电压的温度系数为正值;介于4V和6V之间的,可能为正,也可能为负。在要求高的场合,可以用两个温度系数相反的管子串联进行补偿(如2DW7)。 (5)额定功耗Pz 前已指出,工作电流越大,动态电阻越小,稳压性能越好,但是最大工作电流受到额定功耗Pz的限制,超过P2将会使稳压管损坏。 选择稳压管时应注意:流过稳压管的电流Iz不能过大,应使Iz≤Izmax,否则会超过稳压管的允许功耗,Iz也不能太小,应使Iz≥Izmin,否则不能稳定输出电压,这样使输入电压和负载电流的变化范围都受到一定限制。下图示出了稳压管工作时的动态等效电路,图中二极管为理想二极管。

极管入门知识:二极管结构和工作原理

在自然界中,根据材料的导电能力,我们可以将他们划分导体、绝缘体和半导体。常见的导体如铜和铝、常见的绝缘体如橡胶、塑料等。什么是半导体呢半导体的导电能力介于导体和绝缘体之间,常见的半导体材料有硅(Si)和锗(Ge)。到此,请记住两种半导体材料:硅、锗。因为以后你会听说硅管、锗管。意思很明显,说明这种二极管或三极管是用硅或锗作为基材的。 半导体硅原子结构图 半导体有几个特性有必要了解一下:热敏性、光敏性和掺杂性; 半导体的热敏性:半导体的导电能力受温度影响较大,当温度升高时,半导体的导电能力大大增强,被称为半导体的热敏性。利用半导体的热敏性可制成热敏元件,在汽车上应用的热敏元件有温度传感器,如水温传感器、进气温度传感器等。 半导体硅的空穴和自由电子示意图 半导体的光敏性:半导体的导体的导电能力随光照的不同而不同。当光照增强时,导电能力增强,称为半导体光敏性。利用光敏性可制成光敏元件。在汽车上应用的光敏元件有汽车自动空调上应用的光照传感器。 半导体的掺杂性:当在导体中掺入少量杂质,半导体的导电性能增加。 什么是本征半导体、P型半导体和N型半导体,有哪些区别 本征半导体:纯净的半导体称为本征半导体。 P型半导体:在本征半导体硅或锗中掺入微量的三价元素硼(B)或镓,就形成P型半导体。 P型半导体示意图-空穴是多数载流子 N型半导体:在本征半导体硅或锗中掺入微量的五价元素磷(P)就形成N型半导体。 N型半导体中自由电子是多数载流子

PN结和二极管 在半导体硅或锗中一部分区域掺入微量的三价元素硼使之成为P型,另一部分区域掺入微量的五价元素磷使之成为N型半导体。在P型和N型半导体的交界处就形成一个PN 结。一个PN结就是一个二极管,P区的引线称为阳极,N区的引线称为阴极。 二极管结构图:P区引线成为阳极、N区引线成为阴极 二极管的单向导电性能 二极管具前单向导电性能, (1)正向导通:当PN结加上正向电压,即P区接蓄电池正级,N区接蓄电池负极时,PN结处于导通状态,如图所示,试灯有电流通过,点亮。 二极管正向导通示意图 注意二极管正向导通时存在着电压降,什么意思呢如果蓄电池电压是12V,则试灯上的电压一定小于12V,大约是吧,哪在那里呢在二极管上,这就是二极管的电压降。二极管的电压降取决于二极管采用的是锗管还是硅管:锗管的电压降是左右;而硅管的电压降是左右。如果蓄电池电压低于二极管正常导通的电压降,则二极管将不能导通。这个原理的重要性在二极管你可能体会不到,但是到了三极管就显的非常重要了。 (2)反向截止:当PN结加上反正电压,即P区接蓄电池负极,N区接蓄电池正极时,PN结处于截止状态,如图所示,试灯没有电流通过,不能点亮。 二极管反向截止示意图 二极管接反向电压时,存在着一个耐压的问题:如果加在二极管的反向电压过高,二极管受不了,就会击穿,此时二极管不在处于截止状态,而是处于导通状态。如果我们设定一个击穿电压,当达到反向击穿电压时,二极管会击穿导通。如果现在电压又小于了

单相半波整流可控电路(纯电阻,阻感,续流二极管)

电力电子技术实验报告 实验名称:单相半波可控整流电路的仿真与分析班级:自动化091 组别: 08 成员: 职业技术学院信息工程学院 年月日

一. 单相半波可控整流电路(电阻性负载) ................................................ 错误!未定义书签。 1. 电路的结构与工作原理 (8) 2. 单相半波整流电路建模................................................................... 错误!未定义书签。 3. 仿真结果与分析 (5) 4. 小结 (8) 二. 单相半波可控整流电路(阻-感性负载) ............................................... 错误!未定义书签。 1. 电路的结构与工作原理................................................................... 错误!未定义书签。 2. 单相半波整流电路建模................................................................... 错误!未定义书签。 3. 仿真结果与分析............................................................................... 错误!未定义书签。 4. 小结................................................................................................... 错误!未定义书签。 三. 单相半波可控整流电路(阻-感性负载加续流二极管) ....................... 错误!未定义书签。 1. 电路的结构与工作原理................................................................... 错误!未定义书签。 2. 单相半波整流电路建模................................................................... 错误!未定义书签。 3. 仿真结果与分析............................................................................... 错误!未定义书签。 4. 小结:............................................................................................... 错误!未定义书签。 四. 总结:………………………………………………………………………………….错误!未定义书签。

相关文档
最新文档