振幅调制与解调原理详解
高频电子线路第6章振幅调制解调及混频

Pmax Pc (1 m)2 Pmin Pc (1 m)2
(6―14)
《高频电路原理与分析》
第6章振幅调制、 解调及混频
2.
在调制过程中,将载波抑制就形成了抑制载波双边 带信号,简称双边带信号。它可用载波与调制信号相乘 得到,其表示式为
uDSB (t) kf (t)kf (t)uC 在单一正弦信号uΩ=UΩcosΩt调制时,
uAM(t)=UM(t)cosωct=UC(1+mcosΩt)cosωct (6―5)
上面的分析是在单一正弦信号作为调制信号的情
况下进行的,而一般传送的信号并非为单一频率的信号,
例如是一连续频谱信号f(t),这时,可用下式来描述调
幅波:
uAM (t) UC[1 mf (t)]cosct
(6―6 )
u
0
t
uC
(a)
0
t
(b) u AM (t)
mUc
m< 1
Uc
0
t
(c) u AM (t)
m= 1
0
t
uAM (t)
(d)
m> 1
0
t
(e)
《高频电路原理与分析》
u
0
t
uC
(a)
0
t
(b) u AM (t)
mUc
m< 1
Uc
0
t
(c) u AM (t)
m= 1
0
t
uAM (t)
(d)
m> 1
0
t
图6―1 AM调制过程中的信号波形
Um(t)=UC+ΔUC(t)=UC+kaUΩcosΩt
=UC(1+mcosΩt)
振幅调制与解调

vCE
+ vBE
vc L C
– VcT
+–
– –
+ v +
VBB
–+
– Vc(t) +
集电极调幅电路
第287页/共46页
集电极调幅在调制信号一周期内的各平均功率为:
调制信号频率变化对输出波形的影响
第98页/共46页
4. 普通调幅波的功率关系
将 v(t) Vo(1 ma co作s 用t) c在os 负ot载电阻R上
载波功率 PoT
1 2
Vo2 R
每个边频功率(上边频或下边频)
PSB1
PSB2
1 2
1 2
ma Vo 2 R
ห้องสมุดไป่ตู้
1 4
ma 2 PoT
在调幅信号一周期内,AM信号的平均输出功率是
普通调幅波的高频振荡是连续的,可是双 边带调幅波在调制信号极性变化时,它的高频 振荡的相位要发生180的突变,这是因为双边 带波是由v0和v相乘而产生的。
第2109页/共46页
2. 环形调制器
在平衡调制器的基础上,再增加两个二极管,使电路中 4个二极管首尾相接构成环形,这就是环形调制器。
从其正负半周期的原理图 可知环形调制器输出电流的有 用分量
(2) 相移法 相移法是利用移相的方法,消去不需要的边带。如图所示
图中两个平衡调幅
调制信号
平 衡 V1=Vsintsin0t
器的调制信号电压和载
V0sint
调幅器 A V0sin0t 载 波
波电压都是互相移相90°。
振荡器
调制信号 90 载波 90
高频电子线路阳昌汉版第5章_振幅调制与解调

uc(t)
1 id K (ct )ud rd RL K (ct ) 为周期性的函数,可用傅立叶级数展开 1 2 2 2 K ct cosct cos3ct cos5ct ....... 2 3 5
K ( c t )
1 uc t 0 开关函数K (ct ) 0 uc t 0 1 2 2 2 K ct cosct cos3ct cos5ct ....... 2 3 5
设计时输出功率和效率不是主要指标。重点是提高调制的 线性度,减小不需要的频率分量和提高滤波性能。
高电平调幅电路: 在所需的功率电平上进行调制,调制与 功放合一,一般用于发射机的末级。 一般只能产生AM。 优点:整机效率高。 设计时必须兼顾输出功率、效率和调制线性的要求。
17
5.3.1 低电平调幅电路
通过相乘实现!
5
二、单频调制
1、表达式
uΩ t U Ωm cos Ωt U Ωm cos 2Ft
u t U cm ka uΩ t cos ct
通常 c Ω
U cm kaU Ωm cosΩt cos ct U cm 1 ma cosΩt cos ct
主要用途:可产生AM、 DSB 、 SSB 单二极管开关状态调幅电路 二极管调幅电路 主要电路: 模拟乘法器调幅电路 二极管平衡调幅电路
二极管环型调幅电路
18
一、单二极管开关状态调幅电路 (1)什么是开关状态 当二极管在两个电压共同作用下,其中一个电压振幅足够 大,另一个电压振幅较小,二极管的导通和截止将完全受大 振幅电压的控制,可以近似认为二极管处于理想开关状态。 (2)调幅原理
振幅调制和解调电路

02
振幅调制原理
振幅调制定义
01
振幅调制是指将低频信号调制到 高频载波上,改变载波的幅度大 小的过程。
02
振幅调制是一种线性调制方式, 其原理是将输入信号的幅度变化 ,通过改变高频载波的幅度来实 现信号的传输。
01
03
同时,随着物联网、云计算、大数据等新兴技术的发 展,振幅调制和解调电路的应用领域也将不断拓展,
为人们的生活和工作带来更多的便利和价值。
04
未来发展方向包括采用新型的调制方式、提高调制效 率、降低解调误差率、增强抗干扰能力等。
THANKS
感谢观看
振幅调制优点与缺点
振幅调制的优点包括实现简单、抗干扰能力强、信道利用率 高等。
振幅调制的缺点包括对非线性失真敏感、对信道特性变化敏 感等。
03
振幅调制电路
模拟振幅调制电路
01
模拟振幅调制电路主要 由调制信号、载波信号 和调制器组成。
02
03
04
调制信号通常是音频信 号或低频信号,载波信 号是高频信号。
移动通信
在移动通信系统中,振幅调制用于传 输语音和数据信号。解调电路在接收 端将调制的信号还原为原始信号,以 便用户接收。
有线通信系统中的应用
有线电视
在有线电视系统中,振幅调制用于传 输多路电视信号。解调电路用于将各 个电视频道还原为原始信号,以便用 户选择观看。
DSL宽带接入
在DSL宽带接入中,振幅调制用于传 输高速数据信号。解调电路在接收端 将调制信号还原为原始数据信号,提 供互联网接入服务。
振幅调制与解调原理.ppt

由式(6.2.10)可以看出, 产生双边带调幅信号的最直接法 就是将调制信号与载波信号相乘。
由于双边带调幅信号的包络不能反映调制信号, 所以包络 检波法不适用, 而同步检波是进行双边带调幅信号解调的主要 方法。与普通调幅信号同步检波不同之处在于, 乘法器输出频 率分量有所减少。
设 双 边 带 调 幅 信 号 如 式 (6.2.10) 所 示 , 同 步 信 号 为 ur(t)=Urmcosωct, 则乘法器输出为:
设输入普通调幅信号uAM(t)如式(6.2.1)所示, 图6.2.5中非 线性器件工作在开关状态, 其特性可用第5章第5.3节式(5.3.5) 那样的单向开关函数来表示, 则非线性器件输出电流为:
io(t)=guAM(t)·K1(ωct)
=gUcm(1+MacosΩt)cosωct·
[1 2
(1)n1
6.2.3
单边带调幅方式是指仅发送上、下边带中的一个。如以发送 上边带为例, 则单频调制单边带调幅信号为:
uSSB(t)= kUmUcm cos(ωc+Ω)t (6.2.12) 2
由上式可见, 单频调制单边带调幅信号是一个角频率为 ωc+Ω的单频正弦波信号, 但是, 一般的单边带调幅信号波形却 比较复杂。不过有一点是相同的, 即单边带调幅信号的包络已 不能反映调制信号的变化。单边带调幅信号的带宽与调制信号 带宽相同, 是普通调幅和双边带调幅信号带宽的一半。
如果同步信号与发射端载波同频不同相, 有一相位差θ, 即 ur=Urmcos(ωct+θ),则乘法器输出中的Ω分量为 1
2
k2UcmUrmMacosθcosΩt。 若θ是一常数, 即同步信号与发射端载波 的相位差始终保持恒定, 则解调出来的Ω分量仍与原调制信号
振幅调制与解调实验报告

振幅调制与解调实验报告一、实验目的二、实验原理1. 振幅调制原理2. 振幅解调原理三、实验器材与仪器1. 实验器材2. 实验仪器四、实验步骤1. 振幅调制步骤2. 振幅解调步骤五、实验结果与分析1. 振幅调制结果及分析2. 振幅解调结果及分析六、实验心得体会一、实验目的本次振幅调制与解调实验的主要目的是了解振幅调制与解调的基本原理,掌握振幅调制和解调的方法,进一步加深对通信原理的认识。
二、实验原理1. 振幅调制原理振幅调制是指将模拟信号的振幅变化转换成载波信号的振幅变化。
在振幅调制中,被传输信息信号称为基带信号,载波信号称为高频信号。
通过将基带信号与高频载波进行线性叠加,即可得到一个新的复合波形,其包含了被传输信息和高频载波两部分内容。
2. 振幅解调原理振幅解调是指将调制信号中的信息信号从高频载波中分离出来的过程。
在振幅解调中,需要使用一个解调器,它会将接收到的带有信息信号的复合波形进行处理,将其分离为基带信号和高频载波两部分。
三、实验器材与仪器1. 实验器材本次实验所需要使用的器材主要包括:(1)信号发生器;(2)示波器;(3)电阻箱。
2. 实验仪器本次实验所需要使用的仪器主要包括:(1)振幅调制解调实验箱;(2)万用表。
四、实验步骤1. 振幅调制步骤(1)连接好各个设备,并打开电源。
(2)设置信号发生器输出正弦波,并通过电阻箱设置合适的基带信号电平。
(3)设置振幅调制解调实验箱,将信号发生器和示波器分别连接到相应的接口上。
(4)通过示波器观察振幅调制后的波形,并记录下相关数据。
2. 振幅解调步骤(1)连接好各个设备,并打开电源。
(2)设置振幅调制解调实验箱,将信号发生器和示波器分别连接到相应的接口上。
(3)通过示波器观察振幅调制后的波形,并记录下相关数据。
(4)将解调器与示波器相连,并通过万用表测量解调输出电压。
五、实验结果与分析1. 振幅调制结果及分析在进行振幅调制实验时,我们可以通过观察示波器上的波形来验证振幅调制是否成功。
振幅调制与解调详解演示文稿

u (t) AM
包络
U m min Um max
现在是21页\一共有46页\编辑于星期二
7.2 调幅波的性质
(a) 调制信号为单频余弦波
V m (t) V 0(1 m aco t)s
VmaxVo(1ma)
Vo
VminVo(1ma)
ma
1 2
(Vmax
Vmin)
V0
V max V 0 V0
V 0 V min V0
1. 普通调幅波的数学表示式 由振幅调制信号的定义,已调信号的振幅与调制信号uΩ成正比.
(a)设调制信号为单频余弦信号
载波信号
u (t)U co ts
uc(t)U ccoc st
则已调信号振幅
U m (t)U cK a U co ts Uc(1KUaUcco st)
Uc(1mco st)
式中,m称为调制度:
ma 20%~30% ,因而整机效率低。这是调幅制的缺点。
m a 0 .2 5 0 .5 0 .3 5 1 .0 0
3 % 11% 22% 33%
现在是29页\一共有46页\编辑于星期二
5. 普通调幅波的产生原理框图
uAM(t)1U kfcUcos tUccosct Uccosctkf Ucos tUccosct
4. 普通调幅波的功率关系
PavPcPDS B(11 2m2)Pc
当m=1时,Pc=(2/3)Pav ;
V0
ma 2
V0
ma 2
V0
当m=0.5时,Pc=(8/9)Pav ;
0
0
0
0
ω
在调幅波中,只有旁频(或边带)才是有用的信息量。而载波分量
仅是起到频谱搬移的作用,不反映调制信号的变化规律。 载波本身并不包含信号,但它的 功率却占整个调幅波功率的绝大部分。
振幅调制与解调电路

vO
Vm
t
≥
t t1
t tt1
(a)
(b)
图 4-4-9 惰性失真
(a)不产生惰性失真
(b)产生惰性失真
单音调制时不产生惰性失真的充要条件:
(3) 分析
RLC ≤
1 - Ma2 ΩMa
Ma和 越大,包络的下降速度越快,不产生惰性失真
所要求的 RLC 值必须越小。
多音调制时,作为工程估算, 和 Ma 应取其中的最大 值。一般按 maxRLC ≤ 1.5 计算 。
若
Vrm
V>rmV(m10,VVmrMm0 aco<s
t)cosct
1,合成了不失真的调幅信号,可
通过包络检波器检波。
4.同步检波的关键:产生与载波同频同相的同步信号
① 对双边带,可从已调波信号取出 例:双边带调制信号
vS (t) kav (t)cosct
取平方,vS2 (t ) ka2v2 (t ) cos 2 ct ,取角频率为 2c 的分量
(2)小信号检波 ① 条件:vS 振幅 Vm 足够小(几至十几毫伏),此时,二 极管应设有很小的偏置电流。
五、二极管包络检波电路中的失真
设: vS(t) =Vm0(1+Macos t)cosct,要求:
(1)
Vm0(1 - Ma) ≥ 500 mV
(2)RLC 的低通滤波器带宽应大于 Fmax。
1.惰性失真
RLC C 向 RL的放电速度 C 的泄放电荷量 D 导通时间 锯齿波动 vAV 增大。
为提高检波性能,RLC
取值应足够大。当满足
RL
1
cC
和 RL>> RD 的条件时,可以认为,VAV Vm,即检波电压传
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
调幅方法
平方律调幅 平衡调幅 低电平调幅 环型调幅 斩波调幅 集电极调幅 高电平调幅 基极调幅 发射极调幅
多重调制
1. 普通调幅波的数学表示式 首先讨论单音调制的调幅波。
载波信号:v 0 V0 cosω 0 t 调制信号:vΩ VΩcosΩ t 调 幅信号(已调波): vAM Vm (t)cosω0t
高频振荡
调制 缓冲 倍频
声音
话筒
高频放大
音频放大
发
调制
射 天
线
2. 调制的方式和分类
调制可分为连续波调制和脉冲调制。
调制
调幅 连续波调制 调频
调相
脉冲调幅 PAM 脉冲波调制 脉宽调制 PWM
脉位调制 PPM 编码调制 PCM
3. 调制的原因
从切实可行的天线出发; 为使天线能有效地发送和接收电磁波,天线的几何
2. 普通调幅波的波形图
Vm ( t ) V0 ( 1 ma cos t )
v AM V0 ( 1 ma cos t )cos0 t
v V cos t
Vmax Vo ( 1 ma ) v0 V0 cos 0 t
Vo
Vmin Vo ( 1 ma )
ma
1 2
(Vmax
Vmin )
cos 1
2
t) cos ot maVo cos(o
)t
1 2
ma Vo
cos(o
)t
调制信号
Ω
载波
调幅波
下边频
ω0
上边频
ω0-Ω ω0+Ω
单音调制的调幅波的频谱
频带宽度B=2
限带信号(多音频的调制信号)的调幅波
VAM V0 1
mn
cos
nt
cos0 t
n
V0
cos
0
t
n
1 2
mn
cos( 0
尺寸必须和信号波长相比拟,一般不宜短于1/4波长。 音频信号: 20Hz~20kHz 波长:15 ~15000 km 天线长度: 3.75 ~3750km
3. 调制的原因
便于不同电台相同频段基带信号的同时接收;
c1
c 2
频谱搬移
3. 调制的原因
可实现的回路带宽;
基带信号特点:频率变化范围很大。
低频(音频): 20Hz~20kHz
f f0
f f1
0 Fmax f1
f 2f1
0 Fmax
f
本振
f f0 非线性
器件
高放
带通 到中放
fi, 2Fmax
fi=fO-fS
பைடு நூலகம்
(c) 检波原理
…
f fS
fi
f
fi
f
(b) 混频原理
频谱搬移电路的特性
1) 它们的实现框图几乎是相同的,都是利用非线性器件 对输入信号频谱实行变换以产生新的有用频率成分后, 滤除无用频率分量。
Vo
Vmax Vo Vo
Vo
Vmin Vo
ma 1
调制信号的变化和己调波在时域上的表现
波形特点:
(1)调幅波的振幅(包络)变化规律与调制信号波形一致;
(2)调幅度ma反映了调幅的强弱度;
ma 0时 ma 1时 ma 1时
未调幅 最大调幅(百分之百 ) 过调幅 ,包络失真 ,实际电路中必须避免
由非正弦波调制所得到的调幅波形
v
o t
v o Vmax t
(a) 调制信号
(b)已调波形
若调制信号为非对称信号,如图所示, 则此时调幅度分与上调幅度ma上和下调幅度ma下
m a上
Vmax Vo
Vo
m a下
V0
Vmin Vo
3. 调幅信号的频谱及带宽
将调幅波的数学表达式展开,可得到
v(t)
Vo(1 ma Vo cos ot
的频带宽度
B=2或B=2F (=2F),
对于多音频的调制信号,若其频率范围是Fmin---Fmax,
则已调信号的频带宽度等于调制信号最高频率的两倍 。
BAM
2Fmax
2( max 2
)(HZ)
4. 普通调幅波的功率关系
当频率变换前后,信号的频谱结构不变,只是 将信号频谱无失真的在频率轴上搬移,则称之为线 性频率变换,具有这种特性的电路称之为频谱搬移 电路。
频谱搬移电路的特性
f0 主振
f
非线性 器件
带通 f0, 2Fmax
中放来
非线性 器件
到功放 低通 Fmax
调制信号
0 fmax f
(a) 调幅原理
f f0 2f0
由于调 幅信号的振幅与调制信号成线性关系,即有:
Vm (t ) V0 k aV cos t ,式中 ka 为比例常数
即:V (t) AM
V0
(1
k aV V0
cos t ) cos 0 t
V0
(1
ma
cos t ) cos 0 t
式中ma为调幅度, ma
k a VΩ V0
表示调制深度的量, 0<ma<1
Chapter 6 调幅、检波与混频 ----频谱搬移电路
6.1 频谱搬移电路的特性 6.2 振幅调制原理 6.3 振幅调制方法与电路 6.4 振幅解调(检波)原理与电路 6.5 混频器原理与电路
6.1 频谱搬移电路的特性
非线性电路具有频率变换的功能,即通过非线 性器件相乘的作用产生与输入信号波形的频率不同 的信号。
fmax 1000 f m in
高频(射频): 高频窄带信号
AM广播信号: 535kHz~1605kHz,BW=20kHz
fmax 3 f m in
BW 20k 1 f0 1000 k 50
BW 20k 2
f0 10k
low 20 10k 20k
100k
频谱搬移
1000k high
4. 调幅的方法
2) 从频谱结构看,上述频率变换电路都只是对输入信 号频谱实行横向搬移而不改变原来的谱结构,因而都属 于所谓的线性频率变换。
3) 频谱的横向平移从时域角度看相当于输入信号与一个 参考正弦信号相乘,而平移的距离由此参考信号的频率 决定,它们可以用乘法电路实现。
1.定义:
6.2 振幅调制原理
将要传送的信息装载到某一高频 载频信号上去的过程。
上边频分量 0 :含传输信息 下边频分量 0 :含传输信息
Ωmax
下边带
上边带
ω0-Ωmax
o
ω0+Ωmax
由图看出调幅过程实际上是一种频谱搬移过程,即将调制信号
的频谱搬移到载波附近,成为对称排列在载波频率两侧的上、
下边频,幅度均等于
1 2
ma
Vo
已调幅波的频带宽度
对于单音信号调制已调幅波,从频谱图上可知其占据
n
)t
1 2
mn
cos( 0
n
)t
V0 cos0t
n
1 2
mn
cos( 0
n
)t
n
1 2
mn
cos( 0
n
)t
信号带宽 B 2 max
调制信号
载波
Ωmmaaxx
调幅波
ω0
下边带
上边带
ω0-Ωmax
o
ω0+Ωmax
调幅波并不是一个简单的正弦波,包含有三个频率分量:
载波分量 ( 0 ) : 不含传输信息