273位似(2)教案-广东省肇庆市高要区金利镇朝阳实验学校人教版九年级数学下册
人教版数学九年级下册27.3《位似》教案

-位似图形性质的理解:学生需要理解位似不仅仅是形状相似,还包括大小成比例,以及位似中心的概念;
-位似变换的灵活应用:学生在应用位似变换时,可能会难以把握变换的比例和方向;
-实际问题的转化:将现实生活中的问题转化为位似图形问题,学生可能会遇到从复杂情境中抽象出数学模型的困难;
-位似与相似的区别和联系:学生需要明确位似是相似图形在位置关系上的特殊表现,两者既有联系也有区别。
3.培养学生将位似变换应用于实际问题的解决,提高数学建模和数学应用能力;
4.引导学生通过探索位似图形的性质,培养几何直观和审美观念,激发对数学学科的兴趣。
三、教学难点与重点
1.教学重点
-位似图形的定义及其性质:位似图形的相似比、对应顶点的连线相交于一点(位似中心)的性质;
-位似图形的判定方法:通过对应边的比相等且对应角相等来判断两个图形是否位似;
实践活动方面,学生们在分组讨论和实验操作中表现得相当积极,但我也观察到一些小组在成果展示时表达不够清晰。我会在下一次的实践活动中加强学生表达能力的训练,指导他们如何更有效地展示自己的成果。
此外,我也在思考如何更好地利用课堂时间进行重难点的讲解。可能需要我在备课上下更多功夫,设计一些更有针对性的问题,引导学生逐步深入理解位似的概念和性质,而不是一次性灌输太多信息。
-位似变换的应用:理解位似变换在实际问题中的应用,如地图放大与缩小、相似图形的构造等;
-实际问题的解决:运用位似性质解决生活中的实际问题,如相似图形的面积和周长的计算。
举例:重点讲解位似图形的定义,通过具体图形的示例,让学生理解相似比的概念和位似中心的作用。强调位似图形的判定条件,并通过典型例题加深学生记忆。
(三)实践活动(用时10分钟)
人教版数学九年级下册27.3位似(第2课时)教学设计

(四)课堂练习
1.设计练习题:教师设计具有梯度的练习题,涵盖本节课的知识点,让学生巩固所学。
2.练习过程:学生独立完成练习题,教师巡回指导,针对学生的疑问进行解答。
3.反馈与评价:教师对学生的练习情况进行反馈,指出学生的优点和不足,引导学生自我评价和反思。
3.通过实际操作,让学生体验位似变换在现实生活中的应用,提高学生学以致用的能力。
4.引导学生运用数学方法,如代数运算、几何证明等,解决位似变换相关问题,培养学生严谨的数学思维。
(三)情感态度与价值观
1.激发学生对数学学科的兴趣,培养学生主动探究、积极思考的学习态度。
2.通过对位似变换的学习,让学生感受数学与现实生活的紧密联系,认识到数学在生活中的重要作用。
2.选做题:
(1)课本习题27.3第4、5题,难度适中,鼓励学有余力的学生挑战,提高解题技巧。
(2)小组合作完成一道拓展题,如研究位似变换在建筑设计、艺术创作等方面的应用,培养学生团队协作能力和创新思维。
3.思考题:
(1)位似变换与相似变换有什么联系和区别?
(2)在实际问题中,如何判断两个图形之间是否存在位似关系?
3.培养学生克服困难的勇气和毅力,增强学生的自信心,使学生体验到数学学习的成就感。
4.引导学生学会欣赏数学美,培养学生的审美情趣,提高学生的综合素质。
二、学情分析
九年级下册的学生已经具备了较为扎实的几何基础知识,对图形的相似、全等有了深入的了解。在此基础上,他们对位似图形的概念和性质的学习将更加得心应手。然而,学生在解决实际问题时,可能会对位似变换的应用感到困惑,需要教师引导和点拨。此外,学生在数学思维和逻辑表达能力方面仍有待提高,需要通过本章节的学习,进一步培养和锻炼。总体来说,学生对本章节的学习充满兴趣,但需要在教师的引导下,将理论知识与实际应用相结合,提高解决问题的能力。在这个过程中,教师要关注学生的个体差异,给予每个学生充分的关注和指导,帮助他们克服学习中的困难,增强自信心。
九年级数学下册-27.3位似(第2课时)教案

27.3位似第二课时教案一、【教材分析】教学目标知识技能1.巩固位似图形及其有关概念.2.会用图形的坐标的变化来表示图形的位似变换,掌握把一个图形按一定大小比例放大或缩小后,点的坐标变化的规律.3.了解四种变换(平移、轴对称、旋转和位似)的异同,并能在复杂图形中找出这些变换.过程方法通过把实际问题转化成有关相似三角形的数学模型,进一步了解数学建模的思想,培养分析问题、解决问题的能力.情感态度通过学生观察、分析现实生活中的相似现象,使学生进一步体会三角形相似的应用价值和丰富内涵.逐步形成数学思想,认识数学价值,促进审美意识的发展.教学重点用图形的坐标的变化来表示图形的位似变换.教学难点把一个图形按一定大小比例放大或缩小后,点的坐标变化的规律.二、【教学流程】教学环节教学问题设计师生活动二次备课情景创设一、复习引入1.如图,△ABC三个顶点坐标分别为A(2,3),B(2,1),C(6,2),(1)将△ABC向左平移三个单位得到△A1B1C1,写出A1、B1、C1三点学生独立完成对应内容.通过创设情景,活跃气氛,激发学习兴趣..的坐标;(2)写出△ABC关于x轴对称的△A2B2C2三个顶点A2、B2、C2的坐标;(3)将△ABC绕点O旋转180°得到△A3B3C3,写出A3、B3、C3三点的坐标.2.在前面几册教科书中,我们学习了在平面直角坐标系中,如何用坐标表示某些平移、轴对称、旋转(中心对称)等变换,相似也是一种图形的变换,一些特殊的相似(如位似)也可以用图形坐标的变化来表示.引入新课,并说明本课要研究的问题.自主探究【探究1】(1)如图,在平面直角坐标系中,有两点A(6,3),B(6,0).以原点O为位似中心,相似比为31,把线段AB缩小.观察对应点之间坐标的变化,你有什么发现?(2)如图,△ABC三个顶点坐标分别为A(2,3),B(2,1),C(6,2),以点O为位似中心,相似比为2,将△ABC放大,观察对应顶点坐标的变化,你有什么发归纳小结:教师展示问题,学生观察猜想,鼓励学生积极发言讨论.先让学生独立思考,教师给学生一定的时间,尝试探究解决问题,有困难的进行组内交流位似变换中对应点的坐标的变化规律:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k . 【探究2】 (教材P 48的探究内容) 归纳小结:位似变换中对应点的坐标的变化规律:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k . 【探究3】 例1(教材P 49的例题)分析:略(见教材P 49的例题分析)解:略(见教材P 49的例题解答)问:你还可以得到其他图形吗?请你自己试一试! 解法二:点A 的对应点A ′′的坐标为(-6×)21(-,6×)21(-),即A ′′(3,-3).类似地,可以确定其他顶点的坐标.(具体解法与作图略) 例2(教材P 50)在右图所示的图案中,你能找出平移、轴对称、旋转和位似这些变换吗?分析:观察的角度不同,答案就不同.如:它可以看作是一排鱼顺时针旋转45°角,连续旋转八次得到的旋转图形;它还可以看作位似中心是图形的正中心,相似比是4∶3∶2∶1的位似图形,…….解:答案不惟一,略. 讨论.师引导作小结.教师给学生一定的时间组内交流讨论,自主探究的过程,并巡视解题情况.生展示成果,并适当时机进行追问,引发学生思考.生自主完成.师生共同展示.尝试应用1.教材P50.1、22.△ABO的定点坐标分别为A(-1,4),B(3,2),O(0,0),试将△ABO放大为△EFO,使△EFO与△ABO的相似比为2.5∶1,求点E和点F的坐标学生独立思考解答完成后师生间展评.对教材知识的加固强化运用补偿提高如图,△AOB缩小后得到△COD,观察变化前后的三角形顶点,坐标发生了什么变化,并求出其相似比和面积比.给学生充分时间独立思考解答完成后师生间展评.对内容的升华理解认识小结1.通过本节课的学习你有什么收获?2. 你还有哪些疑惑?学生独立思考,师生梳理本课的知识点及及注意问题.作业1.课本P51第4,5题.2.选做题如图△ABC以G点为位似中心,缩小为原来的一半,得到△A’B’C’,写出前后两个三角形各顶点的坐标.学生课下独立完成,教师批改.三、【板书设计】27.3位似四、【教后反思】位似变换中对应点的坐标的变化规律: 在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k . 例题。
初中九年级下册数学273 位似(第2课时)教案q

27.3 位似第2课时一、教学目标【知识与技能】1.巩固位似图形及其有关概念.2.会用图形的坐标的变化来表示图形的位似变换,掌握把一个图形按一定大小比例放大或缩小后,点的坐标变化的规律.【过程与方法】通过学生动手操作,探究坐标的变化,类比平移,轴对称,旋转(中心对称)等变换,提高学生的动手能力和归纳问题的能力.【情感态度与价值观】1.让学生经历探究过程,体会数与形的联系,激发学生探究用坐标的变化规律来表示位似的兴趣.2.渗透数形结合的数学思想,培养学生良好的学习习惯。
二、课型新授课三、课时第1课时共2课时四、教学重难点【教学重点】用图形的坐标的变化来表示图形的位似变换.【教学难点】把一个图形按一定大小比例放大或缩小后,点的坐标变化的规律.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、直尺、铅笔.六、教学过程(一)导入新课(出示课件2)我们知道,在直角坐标系中,可以利用变化前后两个多边形对应顶点的坐标之间的关系表示某些平移、轴对称和旋转(中心对称).那么,位似是否也可以用两个图形坐标之间的关系来表示呢?(二)探索新知知识点1 平面直角坐标系中的位似变换在平面直角坐标系中,有两点A(6,3),B(6,0).以原点O为,把线段AB缩小,观察对应点之间坐标的变位似中心,相似比为13化.(出示课件4)学生自主作图后作答:把AB缩小后A,B的对应点为:(出示课件5)A′(2,1),B'(2,0);A"(-2,-1),B"(-2,0).如图,△ABC三个顶点坐标分别为A(2,3),B(2,1),C(6,2),以点O为位似中心,相似比为2,将△ABC放大,观察对应顶点坐标的变化,你有什么发现?(出示课件6)学生自主作图后作答:位似变换后A,B,C的对应点为:A'(4,6),B'(4,2),C'(12,4);A"(-4,-6),B"(-4,-2),C"(-12,-4).教师问:1.在平面直角坐标系中,以原点为位似中心作一个图形的位似图形可以作几个?(出示课件7)2.所作位似图形与原图形在原点的同侧,那么对应顶点的坐标的比与其相似比是何关系?如果所作位似图形与原图形在原点的异侧呢?学生分组讨论后,师生共同总结:(出示课件8)1.在平面直角坐标系中,以原点为位似中心作一个图形的位似图形可以作两个.2.在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点坐标的比等于k或-k.3.在平面直角坐标系中,以原点O为位似中心,位似比为k,若原图形上点A的坐标为(x,y),那么位似图形对应点A'的坐标为(kx,ky)或(-kx,-ky).教师强调:当k>1时,图形扩大为原来的k倍;当0<k<1时,图形缩小为原来的1k.出示课件9,学生独立思考后口答,教师订正.考点 利用平面直角坐标系中的位似变换作图例 如图,在平面直角坐标系中,△ABO 三个顶点的坐标分别为A(-2,4),B(-2,0),O(0,0).以原点O 为位似中心,画出一个三角形使它与△ABO 的相似比为3:2.(出示课件10)教师提示:画三角形关键是确定它各顶点的坐标.根据前面的归纳可知,点A 的对应点A ′的坐标为332422⎛⎫-⨯⨯ ⎪⎝⎭,,即(-3,6),类似地,可以确定其他顶点的坐标.(出示课件11)师生一起解答:解:利用位似中对应点的坐标的变化规律,分别取点A ′(-3,6),B ′(-3,0),O(0,0).顺次连接点A ′,B ′,O ,所得的△A ′B ′O 就是要画的一个图形.教师问:还有其他画法吗?自己试一试.学生尝试其他作法,教师加以指导.出示课件12,学生独立解答,教师订正.知识点2 平面直角坐标系中的图形变换出示课件13,将图中的△ABC做下列运动,画出相应的图形,指出三个顶点的坐标所发生的变化.(1)沿y轴正向平移3个单位长度;(2)关于x轴对称;(3)以C为位似中心,将△ABC放大2倍;(4)以C为中心,将△ABC顺时针旋转180°.学生按要求作图后,教师用多媒体加以展示.教师问:截止现在,你总共学了哪些图形变换?它们有何异同点?学生分组讨论后,师生共同总结:(出示课件14)出示课件15、16,学生独立解答,教师订正.(三)课堂练习(出示课件17-26)练习课件17-26相应题目,巩固本课知识点,约用时15分钟。
人教版数学九年级下册27.3位似2优秀教学案例

五、案例亮点
1.生活实例导入:通过展示现实生活中的位似变换实例,如建筑效果图、图片的放大与缩小等,将学生引入课堂,激发学生对位似变换的兴趣和好奇心,使学生能够更好地理解和感受到位似变换在实际生活中的应用。
2.问题导向:本节课以问题为导向,引导学生通过观察、思考和动手操作,自主探究位似变换的性质和运用。教师设计了一系列有针对性的问题,如:位似变换前后图形的形状、大小、位置有何关系?位似变换是否改变图形的面积和周长?通过问题的引导和解答,帮助学生深入理解位似变换的性质,培养学生的独立思考和解决问题的能力。
4.组织小组展示和分享,让学生展示自己的团队成果,提高学生的表达能力和自信心的同时,促进学生之间的相互学习和借鉴。
(四)反思与评价
1.引导学生对自己的学习过程进行反思,思考自己在探究位似变换过程中的优点和不足之处。
2.鼓励学生相互评价,从他人的作品中汲取经验和启示,提高自己的位似变换能力。
3.教师对学生的学习过程和成果进行评价,关注学生的进步和发展,给予积极的反馈和鼓励。
4.设计开放性问题,鼓励学生从不同角度思考问题,培养学生的批判性思维和创新意识。
(三)小组合作
1.将学生分成若干小组,每组成员共同讨论和探究位似变换的性质和应用。
2.设计具有挑战性的团队项目,如:制作一个位似变换动画,展示位似变换的过程和效果。
3.鼓励小组成员相互合作、交流,培养学生的团队协作能力和沟通能力。
4.引导学生通过观察、思考和动手操作,验证位似变换的性质,巩固学生对位似变换的理解。
(三)学生小组讨论
1.教师提出讨论题目:位似变换前后图形的形状、大小、位置有何关系?位似变换是否改变图形的面积和周长?
人教版数学九年级下册27.3《位似》教学设计(二)

人教版数学九年级下册27.3《位似》教学设计(二)一. 教材分析人教版数学九年级下册27.3《位似》是学生在学习了相似图形、相似比等概念的基础上进一步学习的知识。
本节内容主要介绍位似的定义、性质和运用。
通过本节课的学习,学生能够理解位似的含义,掌握位似的性质,并能够运用位似解决一些实际问题。
二. 学情分析九年级的学生已经具备了一定的几何基础,对相似图形、相似比等概念有一定的了解。
但在学习本节课时,学生可能对位似的理解存在一定的困难,因此需要通过大量的实例和练习来帮助学生理解和掌握位似。
三. 教学目标1.知识与技能:理解位似的定义,掌握位似的性质,能够运用位似解决一些实际问题。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和几何思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和问题解决能力。
四. 教学重难点1.重点:位似的定义和性质。
2.难点:位似在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活实例和几何模型,引导学生观察、操作、思考,激发学生的学习兴趣。
2.合作学习法:引导学生分组讨论和交流,培养学生的团队合作意识和几何思维能力。
3.问题解决法:通过解决实际问题,引导学生运用位似知识,提高学生的问题解决能力。
六. 教学准备1.教学课件:制作课件,包括位似的定义、性质和实例等。
2.几何模型:准备一些几何模型,如正方形、矩形等,用于引导学生观察和操作。
3.实际问题:准备一些实际问题,如建筑设计、地图绘制等,用于引导学生运用位似知识。
七. 教学过程1.导入(5分钟)利用课件展示一些实际问题,如建筑设计、地图绘制等,引导学生思考这些问题与位似的关系。
2.呈现(10分钟)利用课件呈现位似的定义和性质,引导学生观察和理解。
同时,配合几何模型,让学生直观地感受位似的特点。
3.操练(10分钟)分组讨论和交流,让学生通过操作几何模型,探索位似的性质。
2024九年级数学下册第27章相似27.3位似(位似图形)教学设计(新版)新人教版

- 自主学习法:引导学生自主完成作业和拓展学习。
- 反思总结法:引导学生对自己的学习过程和成果进行反思和总结。
作用与目的:
- 巩固学生在课堂上学到的位似图形的性质和应用。
- 通过拓展学习,拓宽学生的知识视野和思维方式。
- 通过反思总结,帮助学生发现自己的不足并提出改进建议,促进自我提升。
六、学生学习效果
1. 知识与技能:
- 学生能够理解位似图形的概念,掌握位似图形的性质,并能够运用位似图形的性质解决实际问题。
- 学生能够理解位似变换的应用,并能够运用位似变换来解决实际问题。
- 学生能够通过实际问题,理解和掌握位似图形在实际中的应用,提高解决实际问题的能力。
2. 过程与方法:
- 学生能够通过自主学习,提高自学能力和独立思考能力。
3. 题型三:位似比的计算
题目:一个三角形通过位似变换变成了另一个三角形,位似比为2:1。求原三角形的面积。
答案:设原三角形面积为S,则新三角形面积为4S。由于位似比为2:1,原三角形的面积为新三角形面积的1/4,即S = (1/4) * 4S = S。
4. 题型四:位似图形的问题解决
题目:一个房间的设计图是实际房间尺寸的1:5缩小模型。如果设计图中的房间面积是50平方米,实际房间的面积是多少?
这些题型和答案仅供参考,实际教学中应根据学生的具体情况和教材内容进行调整和扩展。
八、作业布置与反馈
1. 作业布置:
(1)题目:请根据位似图形的定义和性质,完成以下题目:
- 判断下列两个图形是否为位似图形,并解释原因。
- 确定下列位似变换中的位似比,并说明如何计算。
- 利用位似图形的性质,求解实际问题中的相关量。
人教版九年级数学下册27.3位似优秀教学案例

三、教学策略
(一)情景创设
1.以生活实例引入,如建筑设计中的相似图形、照片放大缩小等,让学生感受位似在现实生活中的应用,激发学习兴趣。
3.运用合作学习的方式,培养团队协作精神和沟通能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学习热情,提高自主学习能力。
2.培养学生勇于探究、积极思考的科学精神,增强解决实际问题的信心。
3.通过对位似的深入学习,感受数学在生活中的重要作用,提高数学素养。
在教学过程中,我将关注每一个学生的成长,充分尊重他们的个性差异。针对不同学生的学习需求,制定合理的教学策略,让每一个学生都能在课堂上得到充分的锻炼和发展。同时,注重激发学生的创新思维,培养他们独立思考和解决问题的能力。
在制定教学案例时,我充分考虑了学生的年龄特点和学习需求,以实际问题为导入,激发学生的学习兴趣。通过设计丰富的教学活动,引导学生主动探究,发现并总结位似的性质。同时,注重培养学生运用数学语言表达和解决问题的能力,提高他们的数学素养。
在教学过程中,我还将充分利用多媒体教学资源,如图片、动画等,以形象直观的方式展示位似的变化,使学生能够更好地理解和掌握位似的本质。同时,设计适量难度的练习题,让学生在实践中巩固知识,提高他们的应用能力。
3.举例说明位似在现实生活中的应用,如建筑设计、照片放大缩小等,提高学生的学习兴趣。
(三)学生小组讨论
1.组织学生进行小组讨论,共同探究位似的性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级《数学》下册教案
执教者:上课时间:第一周/2月20日上课班级:901
课时总时数:1
课题:27.3 位似(2)
教学目标:[来源:学科网]
(一)知识与技能:1、了解平面坐标系中,以原点为位似中心的位似图形的对应点
的坐标之间的关系
2、利用平面坐标系中以原点为位似中心的位似图形的对应点的坐标之
间的关系,作位似图形
(二)过程与方法:通过对实际问题的引入,了解位似的定义,并且掌握位似的性质和特点,从而引出位似图形与平面直角坐标系之间的关系。
(三)情感态度与价值观:培养学生动手操作的良好习惯,以积极进取的思想探究数学学科知识,体会本节知识的实际应用价值和文化价值
教学重点:在平面直角坐标系中,利用位似图形的对应点的坐标之间的关系,用描点法画出以原点为我中心的已知图形的一个位似图形
教学难点:平面坐标系中,以原点为位似中心的位似图形的对应点的坐标之间的关系
教学方法:引导法,点拔法,合作交流法
教具准备:课本、PPT、三角板
教学时数:1
教学过程:
第2课时
一、导入新课
温故:1、正方形ABCD和正方形OEFG中,点A和点F的坐标分别为(3,2),(-1,-1),则两个正方形的位似中心的坐标是_________。
新课导入: 1. 我们学习了哪几种变换?
2. 什么叫位似图形?怎样画一个图形关于某点的位似图形?
过渡:在前面的学习中,我们知道,在直角坐标系中,可以利用变化前后两个多边形对应顶点的坐标之间的关系表示某些平移、轴对称和旋转.类似地,位似也可以用两个图形坐标之间的关系来表示.
二、出示目标,自主学习
1、了解平面坐标系中,以原点为位似中心的位似图形的对应点的坐标之间的关系
2、利用平面坐标系中以原点为位似中心的位似图形的对应点的坐标之间的关系,作位似图形
三、创设情景,构建新知
情景:1. 观察探究、发现新知
探究:如图(1),在直角坐标系中,有两点A (6,3), B (6,0).以点O 为中心,相似比为3
1,把线段AB 缩小.观察对应点之间坐标的变化,你有什么发现?
如图(2),△AOC 三个顶点的坐标分别为A (4,4),O (0,0),C (5,0).以点O 为位似中心,相似比为2,将△AOC 放大.观察对应顶点坐标的变化,你有什么发现?
教师组织学生思考、交流,必要时可进行指导,通过观察,让学生发现变换前后图形的对应点坐标之间的关系.
可以看出,图(1)中,把AB 缩小后,A ,B 的对应点为A ′(2,1),B ′(2,0);A ″(―2,―1),B ″(―2,0) .图(2)中,把△AOC 放大后,A ,O ,C 的对应点为A ′(8,8),O (0,0),C′(10,0);A ″(―8,―8),O (0, 0),C ″(―10,0).。