如何做毕业设计的外文翻译

合集下载

毕设外文翻译是什么意思(两篇)

毕设外文翻译是什么意思(两篇)

引言概述:在现代高等教育中,毕业设计(或称为毕业论文、学士论文等)是学生完成学业的重要环节。

而对于一些特定的专业,例如翻译专业,有时候还需要完成外文翻译这一项任务。

本文将探讨毕设外文翻译的意义和目的,以及为什么对翻译专业的学生而言这一任务极其重要。

正文内容:1.提高翻译能力和技巧外文翻译是一项对翻译专业学生而言十分重要的任务,通过进行外文翻译,学生们可以通过实践提高自己的翻译能力和技巧。

在这个过程中,他们可以学习如何处理不同类型的外文文本,熟悉不同领域的专业术语,并掌握一些常用的翻译技巧和策略。

2.扩展语言和文化知识毕设外文翻译要求学生们对翻译语言的相关知识和背景有一定的了解。

在进行翻译时,学生们需要遵循目标语言的语法规则,并确保所翻译的内容准确、清晰地传达源语言的意义。

通过这一过程,学生们可以进一步扩展自己的语言和文化知识,提高自己的跨文化沟通能力。

3.提供实践机会毕设外文翻译为学生们提供了一个实践的机会,让他们能够将在课堂上所学到的理论知识应用于实际操作中。

通过实践,学生们可以对所学知识的理解更加深入,同时也可以发现并解决实际翻译过程中的问题和挑战。

这对于学生们将来从事翻译工作时具备更好的实践能力和经验具有重要意义。

4.培养翻译专业素养毕设外文翻译要求学生们具备良好的翻译专业素养。

在进行翻译过程中,学生们需要保持专业的态度和责任心,严谨地对待每一个翻译任务。

他们需要学会如何进行翻译质量的评估和控制,以确保最终翻译稿的准确性和流畅性。

这一系列的要求和实践,可以帮助学生们培养出色的翻译专业素养。

5.提升自我学习和研究能力毕设外文翻译要求学生们进行广泛的文献阅读和研究,以便更好地理解所翻译的内容,并找到适当的翻译方法和策略。

在这个过程中,学生们需要培养自己的自主学习和研究能力,提高对学术和专业领域的敏感性,并能够独立思考和解决问题。

这将对学生们未来的学术研究和进一步的职业发展产生积极的影响。

总结:引言概述:毕业设计外文翻译(Thesis Translation)是指在毕业设计过程中,对相关外文文献进行翻译,并将其应用于研究中,以提供理论支持和参考。

如何进行大学毕业论文的外文翻译与引用

如何进行大学毕业论文的外文翻译与引用

如何进行大学毕业论文的外文翻译与引用大学毕业论文是学生完成学业的关键性任务之一,而在撰写论文时,外文翻译与引用是不可避免的环节。

如何进行准确、规范的外文翻译与引用,对于提高论文质量和可信度至关重要。

本文将介绍如何进行大学毕业论文的外文翻译与引用,旨在提供参考和指导。

一、外文翻译1. 确定翻译需求:在开始外文翻译工作之前,需要确定哪些外文文献是需要翻译的。

审视毕业论文的需求,明确哪些内容需要外文翻译,并制定相应的计划。

2. 寻找合适的翻译资料:选择合适的翻译资料是确保翻译准确性和可信度的重要一步。

优先选择权威性的外文期刊、学术文献和专业书籍等,确保翻译的内容与自己的研究方向和论文题目相符。

3. 了解翻译要求:在进行外文翻译之前,需要了解论文所在学院或指导教师对翻译的具体要求。

例如,是否要求逐字逐句翻译,还是根据自己的理解进行意译,对参考文献的翻译是否需要加注标注等。

了解翻译要求能够帮助你更好地完成任务。

4. 深入理解原文内容:在翻译时,要充分理解原文的意思,尽量还原作者的原意。

通过阅读原文多次,结合词典或翻译软件可以解决一些困难的词汇或句子。

同时,根据自己的研究目标和论文需求,可以注重翻译原文中的重点部分。

5. 注意语言表达和格式:在翻译中,要注意语言表达的规范性和准确性,并尽量使用学术性和专业性的语言。

此外,还要注意翻译中的格式问题,如文献引用格式、标点符号的使用等。

二、外文引用1. 确定引用需求:在撰写毕业论文过程中,外文引用是支撑自己研究的重要依据。

在选择外文引用时,要结合自己的研究目标,选取有助于论证和支撑自己观点的文献,确保引用的内容与自己的论文主题相契合。

2. 引用格式准确:外文引用需要按照学术规范和论文要求进行,确保引用格式的准确性。

根据不同的学术领域和论文所在学院的要求,选择适合的引用风格,如APA、MLA或Chicago等。

3. 注重引言与解读:在引用他人观点时,要注重引言和解读。

毕业设计(论文)外文翻译(原文)

毕业设计(论文)外文翻译(原文)

编号:毕业设计(论文)外文翻译(原文)院(系):桂林电子科技大学职业技术学院专业:工商企业管理学生姓名:方智立学号:010*********指导教师单位:桂林电子科技大学职业技术学院姓名:朱芸芸职称:讲师2016年 4 月 1 日Marketing Strategy Analysis of SportsAbstractSports market is a special industry market, which for provide exchange of sports tangible products and services market. Sports market including fixed type, such as sports facilities, sports goods market, Mobile market, such as all kinds of sports service provided by the fitness club. Sports tourism and advertising business, sports goods should be consumers to accept, and occupy a larger market. If success of the sports marketing involves many factors. According to the specific characteristics of sports marketing, develop and implement appropriate marketing strategy is very important. Sports marketing strategy is to the sports business units within a certain period or stage marketing campaign's overall development plan of decision making.This paper argues that the marketing strategy can be further subdivided into market positioning strategy, market timing strategy, market entry strategy, market development strategy, market competition strategy, Choose a strategy, must conform to the enterprise's own competitive position, product status, to grasp the market opportunity, determined according to the demands of consumers. In this paper, the sports market segmentation marketing strategy for the market positioning strategy, market timing strategy, market entry strategy, market development strategy, market competition strategy, and discusses the sports marketing how to carry out strategic choice.Keywords: Sports bazaar ; Sports marketing; Marketing strategy1.Sports marketing strategy and characteristics1.1Sports marketing strategyStrategy refers to the planning of overall and profound things. Sports marketing strategy refers to the commodity business units under the guidance of modern marketing concept, to achieve its economic goal for enterprise in a certain period of the overall design and planning of marketing development.Inan increasingly competitive market circumstances, sports business units in order to effectively carry out business activities, to achieve its business objectives, must understand and based on the characteristics of marketing concepts and strategies, and Target the demand of the market, comprehensive analysis and marketing of various environmental factors, choose effective market strategy in the background.1.2The characteristics of the sports marketing strategySports marketing strategy has sports business units within a certain period or stage marketing campaign's overall development plan of decision making. It has the characteristics of the following.(1) Overall importance.Sports marketing strategy is a matter of the global business units, including two aspects the meaning of this global:on the one hand, Sports marketing strategy is the overall design, the development of the business units, including overall planning and the overall strategy and means.On the other hand, Sports marketing strategy decision is a matter of global business units and their all-round development in the future.(2)Secular.Sports marketing strategy is really about the future of sports business units: to achieve the goals of sports marketing strategy, will make the sports business units to produce qualitative leap, but this is not usually that can be done in the short term.Important, sports business units of marketing strategy on the strategic period not only very important to enterprise's survival and development, but also to the long-term development of enterprises play an important role.(3) Systematicness.Sports systemic marketing refers to business units, each part of the work of each link is a contact each other, are closely related to the organic unity of the whole.System have layers, the size and the primary and secondary division, at the next lower level to obey and serve at the next higher level.For a certain sports and business operation entity, the strategy of the whole enterprise as a whole system engineering to overall arrangement, the pursuit of the overall development of the biggest benefits.(4)Adaptability.Sports marketing adaptability, refers to the sports marketing and business operation entity is easily affected by external and internal environment, when the environment changes, sports business units made to adapt themselves to the new environment of the characteristics of rapid response.Sports marketing of the external environment including the market demand, political or economic situation changes, policy and law changes. Similarly, sports business entities internal conditions change will impact on marketing.(5)Risk.Due to sports marketing strategy is the business unit for the marketing activities during the period development collection of expected decision, and this decision is absolutely impossible in various conditions fully mature and information fully, make and sports market, especially the intangible product variety and complexity of the market, make sports marketing strategy has the characteristics of uncertainty and instantaneity, many market opportunities tend to be a passes, no longer to, opportunity and risk coexist.2.Sports marketing strategy comprisedand choiceSports marketing strategies mainly include market positioning strategy, market timing strategy, market entry strategy, market development strategy, market competition strategy.2.1 Market orientation strategyMarket positioning refers to the sports business units according to the condition of market competition situation and its own resources, establish and develop differentiated competitive advantage, to make their own products in the consumer formed in the difference between each product unique image and is superior to the competition.This unique image can be tangible or intangible.Enterprise after analyzing the market environment, should highlight its own market advantage, establish market position, Which companies need to know on a certain level of paper generalizes, consumers mind what is the best sports products as expected.2.2 Market entry policyMarket entry strategy is the sports business units at the right time to capture the target market, how to appropriately in the two aspects of production capacity and sales ability to make reliable measures and guarantee, to ensure the decision-making of sports products successfully enter the market.Its content mainly includes the production capacity of decision-making and sales ability to form two aspects.(1) Capacity Decision. In the necessary time, sports business entities formtargetmarket capacity, is one of the important conditions to achieve market goal.Regardless of whether they are sports tangible products and intangible products, generally there are two alternative strategies.①Independent development strategy refers to both tangible products, the development of sports and development of sports intangible products. All on its own strength to expand production scale, enhance the comprehensive production capacity or adjust the structure of the comprehensive production capacity of enterprise, to adapt the demand of product combination structure. ②Comprehensive development strategy, mainly depend on the sports business units of the external forces, namely, through joint, collaboration, subcontract, form a new comprehensive production capacity. Due to participating in planning, control, coordination, etc, are more difficult. Therefore, sports business units must be good at optimizing collaborator, deal with the various cooperation of responsibility, right and benefit, to maintain good relations of cooperation.(2) Sales ability decision. A sports product to enter and occupy the market, production enterprise must have the necessary sales ability and the ability to penetrate the market.Sales ability decision-making main consideration circulation channels and sales, product should be considered when making decisions, market, enterprise, social environment and the factors such as economic effect.2.3 Market development strategyMarket development strategy refers to the perspective of market prospects, the choice of market development means, usually includes two kinds of intensive development and diversified development main form.(1)Intensive development.When some kind of sports products in the market has the potential of further development, the choice of market penetration, product development and market development of three kinds of intensive development form. As the tangible products market, in sports and intangible products are common market and applicable.①Market penetration. on the basis of the existing market scale, increase the sales of existing products. Can use a variety of measures, consolidate old customers, increase the new user. ②Product development Is through developing and improving existing products, make its have some new properties and USES, meet the social demand more. ③market development. Refers to an enterprise that open up new product sales market, in order to increase sales.(2) Diversified development.Diversity is also called the diversification, basically have concentricity scattered scattered, horizontal dispersion and the integrityof three. ①Concentricity is sports business unit USES the original dispersed development technology and the characteristics, with its as the core, the development use different structure similar products. ②Scattered level of sexual development.Was used in the original market advantage, has occupied the market development of technology, nature and purpose of different products. For example, Sports club olicy makers, can through the player transfer channels, to sell players, profit.Others use their sports club or the player's social awareness to participate in the sales promotion of goods, in order to obtain profits. ③Integrity of dispersed development. Refers to the sports business units to expand the business into its original business, technology, market and the product has no connection in the industry. Such as the sports department construction and run a catering and service hotels, hotels, entertainment city, charge for parking lot, etc., is the form of scattered holistic development. Implement the diversification development, can improve the ability of sports business units to adapt to the environment, reduce the risk of a single business, at the same time, may be more fully use of all kinds of resources within the enterprise, make its have more potential development opportunities. However, the development of decentralized often leads to complication of operation and management, and business operation entities such as diversifying some problems.2.4Strategic Marketing CompetitionThe rules of the development of the market is superior bad discard, its characteristic is the petition can promote the economic development of the enterprise and the improvement of economic benefits.Enterprises should establish a clear concept of competition, flexible use of price and non-price competition means, take a man without I have, people have my good, good people knew, new I cheap, cheap I turn the principle and method of making enterprise competitive strategy, must accomplish know fairly well the competition environment and competition situation, can with ease.Enterprise competition environment factors mainly refers to the enterprise in addition to the social and cultural environment stress factors of various aspects, such as management scientist professor Michael porter of Harvard University famous the competitive offer slightly above, an enterprise usually exist competition pressure from five aspects, namely the industry competition pressure, potential to join the pressure from the industry, suppliers forward pressure (by providing raw materials or semi-finished products, to develop into their production products), buyers.(1) The overall competitive strategy. Under different conditions, the enterprise facing the pressure of competition is different, the analysis of the pressure of competition is to understand the purpose of each kind of competition situation of power, so as to make effective competition strategy.Under normal circumstances, the sports business units of competition strategy in general have a low cost strategy, product differentiation strategy and intensive strategy. ①low-cost strategy. Low cost strategy is to point to in under the premise of guarantee the quality of products and services, efforts to reduce the cost of production and sales so that the enterprise product prices lower than competitors' prices, with rapidly expanding sales increase market share. ②Product differentiation strategies. Product differentiation strategy is to point to create a unique characteristic of the enterprise products, to develop unique products or marketing programs, for in such aspects as product or service than competitors are unique. Thus to obtain the difference advantage.The United States, for example, "NIKE" brand sports shoes, NIKE production due to the appearance of novel design, the innovation of the use function and unique, and exquisite packaging, etc., although the price is surprisingly expensive, but occupies considerable market in China, the teenagers are very loving. ③Intensive strategy. Intensive strategy refers to the enterprises focus on one or several market segments provide the most effective service, better meet certain customers with different needs, so as to strive for the local competitive advantage. It is little different from the above three kinds of overall competition strategy, successfully implement these three strategies need different resources and decision-making, also should have different requirements on organization and management.(2) The competitive strategy of enterprises of different competitive position. Where the status of enterprise in market competition, the enterprise can be divided into: market leader, market challenger, market follower. Different competitive position of enterprises, should choose different market competitive strategy.①Dominant market competition strategy. Market power refers to the related products has the highest market share. Such as the current market position and stable dominated by clothing JinMeiLong, "ADIDAS", they are price changes, new product development, sales channel width and promotional efforts in a dominant position, recognized by other sports enterprises. ②The challenger market competition strategy. Market challenger refers to those in a secondary position in the market of the enterprise, such as "lining" brand garment enterprises .Market challenger to choosechallenge object is closely related to the strategic target, for a same object has different goals and strategies Such as attack market leader to gain the market share and product advantage ;Attack power with yourself quite seize its market position; Attacking small businesses taking their customers even small business itself."Lining" to win market price advantage to the international brand, with product quality advantages to gain "anta" challenger "peak" brand's market share. ③Followers of the market competition strategy. Market followers is to point to in a secondary position, under the conditions of "coexistence" market for as much as possible the benefit of the enterprise. Market followers don't need a lot of money, less risky and can obtain high profits, so many enterprises adopt this strategy, especially the sort of small or no fame and status of sports clothing enterprises. As the current sports "philharmonic" brand clothing enterprise in the enterprise.Reference[1] LiJianJun,WangCuiHua:The Research on Marketing Environment Enterprise of Things for Sports Use in China[J] Journal of NanJing institute of sport (social science edition) 2013.(10),36 ~ 48.[2] Discuss Sports market, products and marketing characteristics. [J] journal of xi ' an institute of physical education,2012.(3)101 ~109.[3] HuZhengMing Ed. Marketing Management[M].Shandong people's publishing house,2012.302 ~325.[4] [US]Kotler write. YuLiJun translate. Introduction to Marketing[M].Huaxia Publishing House,2011.333~389.[5] ZhangTongYao.Application areas to promote the marketing advantage analysis of third party logistics[J].Market of China,2010(3)128 ~136.[6] WangHuaiShu.The influence of the logistics quality of marketing[J].Teacher's Journal,2010(3)31 ~38.[7] WangChenWen.Shallow theory of logistics strategy in the role of marketing management[J].Chemical Enterprise Management,2009(7)175 ~178.。

毕业设计外文翻译_英文版

毕业设计外文翻译_英文版

A Design and Implementation of Active NetworkSocket ProgrammingK.L. Eddie Law, Roy LeungThe Edward S. Rogers Sr. Department of Electrical and Computer EngineeringUniversity of TorontoToronto, Canadaeddie@, roy.leung@utoronto.caAbstract—The concept of programmable nodes and active networks introduces programmability into communication networks. Code and data can be sent and modified on their ways to destinations. Recently, various research groups have designed and implemented their own design platforms. Each design has its own benefits and drawbacks. Moreover, there exists an interoperability problem among platforms. As a result, we introduce a concept that is similar to the network socket programming. We intentionally establish a set of simple interfaces for programming active applications. This set of interfaces, known as Active Network Socket Programming (ANSP), will be working on top of all other execution environments in future. Therefore, the ANSP offers a concept that is similar to “write once, run everywhere.” It is an open programming model that active applications can work on all execution environments. It solves the heterogeneity within active networks. This is especially useful when active applications need to access all regions within a heterogeneous network to deploy special service at critical points or to monitor the performance of the entire networks. Instead of introducing a new platform, our approach provides a thin, transparent layer on top of existing environments that can be easily installed for all active applications.Keywords-active networks; application programming interface; active network socket programming;I. I NTRODUCTIONIn 1990, Clark and Tennenhouse [1] proposed a design framework for introducing new network protocols for the Internet. Since the publication of that position paper, active network design framework [2, 3, 10] has slowly taken shape in the late 1990s. The active network paradigm allows program code and data to be delivered simultaneously on the Internet. Moreover, they may get executed and modified on their ways to their destinations. At the moment, there is a global active network backbone, the ABone, for experiments on active networks. Apart from the immaturity of the executing platform, the primary hindrance on the deployment of active networks on the Internet is more on the commercially related issues. For example, a vendor may hesitate to allow network routers to run some unknown programs that may affect their expected routing performance. As a result, alternatives were proposed to allow active network concept to operate on the Internet, such as the application layer active networking (ALAN) project [4] from the European research community. In the ALAN project, there are active server systems located at different places in the networks and active applications are allowed to run in these servers at the application layer. Another potential approach from the network service provider is to offer active network service as the premium service class in the networks. This service class should provide the best Quality of Service (QoS), and allow the access of computing facility in routers. With this approach, the network service providers can create a new source of income.The research in active networks has been progressing steadily. Since active networks introduce programmability on the Internet, appropriate executing platforms for the active applications to execute should be established. These operating platforms are known as execution environments (EEs) and a few of them have been created, e.g., the Active Signaling Protocol (ASP) [12] and the Active Network Transport System (ANTS) [11]. Hence, different active applications can be implemented to test the active networking concept.With these EEs, some experiments have been carried out to examine the active network concept, for example, the mobile networks [5], web proxies [6], and multicast routers [7]. Active networks introduce a lot of program flexibility and extensibility in networks. Several research groups have proposed various designs of execution environments to offer network computation within routers. Their performance and potential benefits to existing infrastructure are being evaluated [8, 9]. Unfortunately, they seldom concern the interoperability problems when the active networks consist of multiple execution environments. For example, there are three EEs in ABone. Active applications written for one particular EE cannot be operated on other platforms. This introduces another problem of resources partitioning for different EEs to operate. Moreover, there are always some critical network applications that need to run under all network routers, such as collecting information and deploying service at critical points to monitor the networks.In this paper, a framework known as Active Network Socket Programming (ANSP) model is proposed to work with all EEs. It offers the following primary objectives.• One single programming interface is introduced for writing active applications.• Since ANSP offers the programming interface, the design of EE can be made independent of the ANSP.This enables a transparency in developing andenhancing future execution environments.• ANSP addresses the interoperability issues among different execution environments.• Through the design of ANSP, the pros and cons of different EEs will be gained. This may help design abetter EE with improved performance in future.The primary objective of the ANSP is to enable all active applications that are written in ANSP can operate in the ABone testbed . While the proposed ANSP framework is essential in unifying the network environments, we believe that the availability of different environments is beneficial in the development of a better execution environment in future. ANSP is not intended to replace all existing environments, but to enable the studies of new network services which are orthogonal to the designs of execution environments. Therefore, ANSP is designed to be a thin and transparent layer on top of all execution environments. Currently, its deployment relies on automatic code loading with the underlying environments. As a result, the deployment of ANSP at a router is optional and does not require any change to the execution environments.II. D ESIGN I SSUES ON ANSPThe ANSP unifies existing programming interfaces among all EEs. Conceptually, the design of ANSP is similar to the middleware design that offers proper translation mechanisms to different EEs. The provisioning of a unified interface is only one part of the whole ANSP platform. There are many other issues that need to be considered. Apart from translating a set of programming interfaces to other executable calls in different EEs, there are other design issues that should be covered, e.g., • a unified thread library handles thread operations regardless of the thread libraries used in the EEs;• a global soft-store allows information sharing among capsules that may execute over different environmentsat a given router;• a unified addressing scheme used across different environments; more importantly, a routing informationexchange mechanism should be designed across EEs toobtain a global view of the unified networks;• a programming model that should be independent to any programming languages in active networks;• and finally, a translation mechanism to hide the heterogeneity of capsule header structures.A. Heterogeneity in programming modelEach execution environment provides various abstractions for its services and resources in the form of program calls. The model consists of a set of well-defined components, each of them has its own programming interfaces. For the abstractions, capsule-based programming model [10] is the most popular design in active networks. It is used in ANTS [11] and ASP [12], and they are being supported in ABone. Although they are developed based on the same capsule model, their respective components and interfaces are different. Therefore, programs written in one EE cannot run in anther EE. The conceptual views of the programming models in ANTS and ASP are shown in Figure 1.There are three distinct components in ANTS: application, capsule, and execution environment. There exist user interfaces for the active applications at only the source and destination routers. Then the users can specify their customized actions to the networks. According to the program function, the applications send one or more capsules to carry out the operations. Both applications and capsules operate on top of an execution environment that exports an interface to its internal programming resources. Capsule executes its program at each router it has visited. When it arrives at its destination, the application at destination may either reply it with another capsule or presents this arrival event to the user. One drawback with ANTS is that it only allows “bootstrap” application.Figure 1. Programming Models in ASP and ANTS.In contrast, ASP does not limit its users to run “bootstrap” applications. Its program interfaces are different from ANTS, but there are also has three components in ASP: application client, environment, and AAContext. The application client can run on active or non-active host. It can start an active application by simply sending a request message to the EE. The client presents information to users and allows its users to trigger actions at a nearby active router. AAContext is the core of the network service and its specification is divided into two parts. One part specifies its actions at its source and destination routers. Its role is similar to that of the application in ANTS, except that it does not provide a direct interface with the user. The other part defines its actions when it runs inside the active networks and it is similar to the functional behaviors of a capsule in ANTS.In order to deal with the heterogeneity of these two models, ANSP needs to introduce a new set of programming interfaces and map its interfaces and execution model to those within the routers’ EEs.B. Unified Thread LibraryEach execution environment must ensure the isolation of instance executions, so they do not affect each other or accessThe authors appreciate the Nortel Institute for Telecommunications (NIT) at the University of Toronto to allow them to access the computing facilitiesothers’ information. There are various ways to enforce the access control. One simple way is to have one virtual machine for one instance of active applications. This relies on the security design in the virtual machines to isolate services. ANTS is one example that is using this method. Nevertheless, the use of multiple virtual machines requires relatively large amount of resources and may be inefficient in some cases. Therefore, certain environments, such as ASP, allow network services to run within a virtual machine but restrict the use of their services to a limited set of libraries in their packages. For instance, ASP provides its thread library to enforce access control. Because of the differences in these types of thread mechanism, ANSP devises a new thread library to allow uniform accesses to different thread mechanisms.C. Soft-StoreSoft-store allows capsule to insert and retrieve information at a router, thus allowing more than one capsules to exchange information within a network. However, problem arises when a network service can execute under different environments within a router. The problem occurs especially when a network service inserts its soft-store information in one environment and retrieves its data at a later time in another environment at the same router. Due to the fact that execution environments are not allowed to exchange information, the network service cannot retrieve its previous data. Therefore, our ANSP framework needs to take into account of this problem and provides soft-store mechanism that allows universal access of its data at each router.D. Global View of a Unified NetworkWhen an active application is written with ANSP, it can execute on different environment seamlessly. The previously smaller and partitioned networks based on different EEs can now be merging into one large active network. It is then necessary to advise the network topology across the networks. However, different execution environments have different addressing schemes and proprietary routing protocols. In order to merge these partitions together, ANSP must provide a new unified addressing scheme. This new scheme should be interpretable by any environments through appropriate translations with the ANSP. Upon defining the new addressing scheme, a new routing protocol should be designed to operate among environments to exchange topology information. This allows each environment in a network to have a complete view of its network topology.E. Language-Independent ModelExecution environment can be programmed in any programming language. One of the most commonly used languages is Java [13] due to its dynamic code loading capability. In fact, both ANTS and ASP are developed in Java. Nevertheless, the active network architecture shown in Figure 2 does not restrict the use of additional environments that are developed in other languages. For instance, the active network daemon, anted, in Abone provides a workspace to execute multiple execution environments within a router. PLAN, for example, is implemented in Ocaml that will be deployable on ABone in future. Although the current active network is designed to deploy multiple environments that can be in any programming languages, there lacks the tool to allow active applications to run seamlessly upon these environments. Hence, one of the issues that ANSP needs to address is to design a programming model that can work with different programming languages. Although our current prototype only considers ANTS and ASP in its design, PLAN will be the next target to address the programming language issue and to improve the design of ANSP.Figure 2. ANSP Framework Model.F. Heterogeneity of Capsule Header StructureThe structures of the capsule headers are different in different EEs. They carries capsule-related information, for example, the capsule types, sources and destinations. This information is important when certain decision needs to be made within its target environment. A unified model should allow its program code to be executed on different environments. However, the capsule header prevents different environments to interpret its information successfully. Therefore, ANSP should carry out appropriate translation to the header information before the target environment receives this capsule.III. ANSP P ROGRAMMING M ODELWe have outlined the design issues encountered with the ANSP. In the following, the design of the programming model in ANSP will be discussed. This proposed framework provides a set of unified programming interfaces that allows active applications to work on all execution environments. The framework is shown in Figure 2. It is composed of two layers integrated within the active network architecture. These two layers can operate independently without the other layer. The upper layer provides a unified programming model to active applications. The lower layer provides appropriate translation procedure to the ANSP applications when it is processed by different environments. This service is necessary because each environment has its own header definition.The ANSP framework provides a set of programming calls which are abstractions of ANSP services and resources. A capsule-based model is used for ANSP, and it is currently extended to map to other capsule-based models used in ANTSand ASP. The mapping possibility to other models remains as our future works. Hence, the mapping technique in ANSP allows any ANSP applications to access the same programming resources in different environments through a single set of interfaces. The mapping has to be done in a consistent and transparent manner. Therefore, the ANSP appears as an execution environment that provides a complete set of functionalities to active applications. While in fact, it is an overlay structure that makes use of the services provided from the underlying environments. In the following, the high-level functional descriptions of the ANSP model are described. Then, the implementations will be discussed. The ANSP programming model is based upon the interactions between four components: application client , application stub , capsule , and active service base.Figure 3. Information Flow with the ANSP.•Application Client : In a typical scenario, an active application requires some means to present information to its users, e.g., the state of the networks. A graphical user interface (GUI) is designed to operate with the application client if the ANSP runs on a non-active host.•Application Stub : When an application starts, it activates the application client to create a new instance of application stub at its near-by active node. There are two responsibilities for the application stub. One of them is to receive users’ instructions from the application client. Another one is to receive incoming capsules from networks and to perform appropriate actions. Typically, there are two types of actions, thatare, to reply or relay in capsules through the networks, or to notify the users regarding the incoming capsule. •Capsule : An active application may contain several capsule types. Each of them carries program code (also referred to as forwarding routine). Since the application defines a protocol to specify the interactions among capsules as well as the application stubs. Every capsule executes its forwarding routine at each router it visits along the path between the source and destination.•Active Service Base : An active service base is designed to export routers’ environments’ services and execute program calls from application stubs and capsules from different EEs. The base is loaded automatically at each router whenever a capsule arrives.The interactions among components within ANSP are shown in Figure 3. The designs of some key components in the ANSP will be discussed in the following subsections. A. Capsule (ANSPCapsule)ANSPXdr decode () ANSPXdr encode () int length ()Boolean execute ()New types of capsule are created by extending the abstract class ANSPCapsule . New extensions are required to define their own forwarding routines as well as their serialization procedures. These methods are indicated below:The execution of a capsule in ANSP is listed below. It is similar to the process in ANTS.1. A capsule is in serial binary representation before it issent to the network. When an active router receives a byte sequence, it invokes decode() to convert the sequence into a capsule. 2. The router invokes the forwarding routine of thecapsule, execute(). 3. When the capsule has finished its job and forwardsitself to its next hop by calling send(), this call implicitly invokes encode() to convert the capsule into a new serial byte representation. length() isused inside the call of encode() to determine the length of the resulting byte sequence. ANSP provides a XDR library called ANSPXdr to ease the jobs of encoding and decoding.B. Active Service Base (ANSPBase)In an active node, the Active Service Base provides a unified interface to export the available resources in EEs for the rest of the ANSP components. The services may include thread management, node query, and soft-store operation, as shown in Table 1.TABLE I. ACTIVE SERVICE BASE FUNCTION CALLSFunction Definition Descriptionboolean send (Capsule, Address) Transmit a capsule towards its destination using the routing table of theunderlying environment.ANSPAddress getLocalHost () Return address of the local host as an ANSPAddress structure. This isuseful when a capsule wants to check its current location.boolean isLocal (ANSPAddress) Return true if its input argument matches the local host’s address andreturn false otherwise.createThread () Create a new thread that is a class ofANSPThreadInterface (discussed later in Section VIA “Unified Thread Abstraction”).putSStore (key, Object) Object getSStore (key) removeSStore (key)The soft-store operations are provided by putSStore(), getSSTore(), and removeSStore(), and they put, retrieve, and remove data respectively. forName (PathName) Supported in ANSP to retrieve a classobject corresponding to the given path name in its argument. This code retrieval may rely on the code loading mechanism in the environment whennecessary.C. Application Client (ANSPClient)boolean start (args[])boolean start (args[],runningEEs) boolean start (args[],startClient)boolean start (args[],startClient, runningEE)Application Client is an interface between users and the nearby active source router. It does the following responsibilities.1. Code registration: It may be necessary to specify thelocation and name of the application code in some execution environments, e.g., ANTS. 2. Application initialization: It includes selecting anexecution environment to execute the application among those are available at the source router. Each active application can create an application client instance by extending the abstract class, ANSPClient . The extension inherits a method, start(), to automatically handle both the registration and initialization processes. All overloaded versions of start() accept a list of arguments, args , that are passed to the application stub during its initialization. An optional argument called runningEEs allows an application client to select a particular set of environment variables, specified by a list of standardized numerical environment ID, the ANEP ID, to perform code registration. If this argument is not specified, the default setting can only include ANTS and ASP. D. Application Stub (ANSPApplication)receive (ANSPCapsule)Application stubs reside at the source and destination routers to initialize the ANSP application after the application clients complete the initialization and registration processes. It is responsible for receiving and serving capsules from the networks as well as actions requested from the clients. A new instance is created by extending the application client abstract class, ANSPApplication . This extension includes the definition of a handling routine called receive(), which is invoked when a stub receives a new capsule.IV. ANSP E XAMPLE : T RACE -R OUTEA testbed has been created to verify the design correctnessof ANSP in heterogeneous environments. There are three types of router setting on this testbed:1. Router that contains ANTS and a ANSP daemonrunning on behalf of ASP; 2. Router that contains ASP and a ANSP daemon thatruns on behalf of ANTS; 3. Router that contains both ASP and ANTS.The prototype is written in Java [11] with a traceroute testing program. The program records the execution environments of all intermediate routers that it has visited between the source and destination. It also measures the RTT between them. Figure 4 shows the GUI from the application client, and it finds three execution environments along the path: ASP, ANTS, and ASP. The execution sequence of the traceroute program is shown in Figure 5.Figure 4. The GUI for the TRACEROUTE Program.The TraceCapsule program code is created byextending the ANSPCapsule abstract class. When execute() starts, it checks the Boolean value of returning to determine if it is returning from the destination. It is set to true if TraceCapsule is traveling back to the source router; otherwise it is false . When traveling towards the destination, TraceCapsule keeps track of the environments and addresses of the routers it has visited in two arrays, path and trace , respectively. When it arrives at a new router, it calls addHop() to append the router address and its environment to these two arrays. When it finally arrives at the destination, it sets returning to false and forwards itself back to the source by calling send().When it returns to source, it invokes deliverToApp() to deliver itself to the application stub that has been running at the source. TraceCapsule carries information in its data field through the networks by executing encode() and decode(), which encapsulates and de-capsulates its data using External Data Representation (XDR) respectively. The syntax of ANSP XDR follows the syntax of XDR library from ANTS. length() in TraceCapsule returns the data length, or it can be calculated by using the primitive types in the XDRlibrary.Figure 5. Flow of the TRACEROUTE Capsules.V. C ONCLUSIONSIn this paper, we present a new unified layered architecture for active networks. The new model is known as Active Network Socket Programming (ANSP). It allows each active application to be written once and run on multiple environments in active networks. Our experiments successfully verify the design of ANSP architecture, and it has been successfully deployed to work harmoniously with ANTS and ASP without making any changes to their architectures. In fact, the unified programming interface layer is light-weighted and can be dynamically deployable upon request.R EFERENCES[1] D.D. Clark, D.L. Tennenhouse, “Architectural Considerations for a NewGeneration of Protocols,” in Proc. ACM Sigcomm’90, pp.200-208, 1990. [2] D. Tennenhouse, J. M. Smith, W. D. Sicoskie, D. J. Wetherall, and G. J.Minden, “A survey of active network research,” IEEE Communications Magazine , pp. 80-86, Jan 1997.[3] D. Wetherall, U. Legedza, and J. Guttag, “Introducing new internetservices: Why and how,” IEEE Network Magazine, July/August 1998. [4] M. Fry, A. Ghosh, “Application Layer Active Networking,” in ComputerNetworks , Vol.31, No.7, pp.655-667, 1999.[5] K. W. Chin, “An Investigation into The Application of Active Networksto Mobile Computing Environments”, Curtin University of Technology, March 2000.[6] S. Bhattacharjee, K. L. Calvert, and E. W. Zegura, “Self OrganizingWide-Area Network Caches”, Proc. IEEE INFOCOM ’98, San Francisco, CA, 29 March-2 April 1998.[7] L. H. Leman, S. J. Garland, and D. L. Tennenhouse, “Active ReliableMulticast”, Proc. IEEE INFOCOM ’98, San Francisco, CA, 29 March-2 April 1998.[8] D. Descasper, G. Parulkar, B. Plattner, “A Scalable, High PerformanceActive Network Node”, In IEEE Network, January/February 1999.[9] E. L. Nygren, S. J. Garland, and M. F. Kaashoek, “PAN: a high-performance active network node supporting multiple mobile code system”, In the Proceedings of the 2nd IEEE Conference on Open Architectures and Network Programming (OpenArch ’99), March 1999. [10] D. L. Tennenhouse, and D. J. Wetherall. “Towards an Active NetworkArchitecture”, In Proceeding of Multimedia Computing and Networking , January 1996.[11] D. J. Wetherall, J. V. Guttag, D. L. Tennenhouse, “ANTS: A toolkit forBuilding and Dynamically Deploying Network Protocols”, Open Architectures and Network Programming, 1998 IEEE , 1998 , Page(s): 117 –129.[12] B. Braden, A. Cerpa, T. Faber, B. Lindell, G. Phillips, and J. Kann.“Introduction to the ASP Execution Environment”: /active-signal/ARP/index.html .[13] “The java language: A white paper,” Tech. Rep., Sun Microsystems,1998.。

毕业设计外文翻译英文加中文

毕业设计外文翻译英文加中文

A Comparison of Soft Start Mechanisms for Mining BeltConveyors1800 Washington Road Pittsburgh, PA 15241 Belt Conveyors are an important method for transportation of bulk materials in the mining industry. The control of the application of the starting torque from the belt drive system to the belt fabric affects the performance, life cost, and reliability of the conveyor. This paper examines applications of each starting method within the coal mining industry.INTRODUCTIONThe force required to move a belt conveyor must be transmitted by the drive pulley via friction between the drive pulley and the belt fabric. In order to transmit power there must be a difference in the belt tension as it approaches and leaves the drive pulley. These conditions are true for steady state running, starting, and stopping. Traditionally, belt designs are based on static calculations of running forces. Since starting and stopping are not examined in detail, safety factors are applied to static loadings (Harrison, 1987). This paper will primarily address the starting or acceleration duty of the conveyor. The belt designer must control starting acceleration to prevent excessive tension in the belt fabric and forces in the belt drive system (Suttees, 1986). High acceleration forces can adversely affect the belt fabric, belt splices, drive pulleys, idler pulleys, shafts, bearings, speed reducers, and couplings. Uncontrolled acceleration forces can cause belt conveyor system performance problems with vertical curves, excessive belt take-up movement, loss of drive pulley friction, spillage of materials, and festooning of the belt fabric. The belt designer is confronted with two problems, The belt drive system must produce a minimum torque powerful enough to start the conveyor, and controlled such that the acceleration forces are within safe limits. Smooth starting of the conveyor can be accomplished by the use of drive torque control equipment, either mechanical or electrical, or a combination of the two (CEM, 1979).SOFT START MECHANISM EVALUATION CRITERIONWhat is the best belt conveyor drive system? The answer depends on many variables. The best system is one that provides acceptable control for starting, running, and stopping at a reasonable cost and with high reliability (Lewdly and Sugarcane, 1978). Belt Drive System For the purposes of this paper we will assume that belt conveyors are almost always driven byelectrical prime movers (Goodyear Tire and Rubber, 1982). The belt "drive system" shall consist of multiple components including the electrical prime mover, the electrical motor starter with control system, the motor coupling, the speed reducer, the low speed coupling, the belt drive pulley, and the pulley brake or hold back (Cur, 1986). It is important that the belt designer examine the applicability of each system component to the particular application. For the purpose of this paper, we will assume that all drive system components are located in the fresh air, non-permissible, areas of the mine, or in non-hazardous, National Electrical Code, Article 500 explosion-proof, areas of the surface of the mine.Belt Drive Component Attributes SizeCertain drive components are available and practical in different size ranges. For this discussion, we will assume that belt drive systems range from fractional horsepower to multiples of thousands of horsepower. Small drive systems are often below 50 horsepower. Medium systems range from 50 to 1000 horsepower. Large systems can be considered above 1000 horsepower. Division of sizes into these groups is entirely arbitrary. Care must be taken to resist the temptation to over motor or under motor a belt flight to enhance standardization. An over motored drive results in poor efficiency and the potential for high torques, while an under motored drive could result in destructive overspending on regeneration, or overheating with shortened motor life (Lords, et al., 1978).Torque ControlBelt designers try to limit the starting torque to no more than 150% of the running torque (CEMA, 1979; Goodyear, 1982). The limit on the applied starting torque is often the limit of rating of the belt carcass, belt splice, pulley lagging, or shaft deflections. On larger belts and belts with optimized sized components, torque limits of 110% through 125% are common (Elberton, 1986). In addition to a torque limit, the belt starter may be required to limit torque increments that would stretch belting and cause traveling waves. An ideal starting control system would apply a pretension torque to the belt at rest up to the point of breakaway, or movement of the entire belt, then a torque equal to the movement requirements of the belt with load plus a constant torque to accelerate the inertia of the system components from rest to final running speed. This would minimize system transient forces and belt stretch (Shultz, 1992). Different drive systems exhibit varying ability to control the application of torques to the belt at rest and at different speeds. Also, the conveyor itself exhibits two extremes of loading. An empty belt normally presents the smallest required torque for breakaway and acceleration, while a fully loaded belt presents the highest required torque. A mining drive system must be capable of scaling the applied torque from a 2/1 ratio for a horizontal simple belt arrangement, to a 10/1 ranges for an inclined or complex belt profile.Thermal RatingDuring starting and running, each drive system may dissipate waste heat. The waste heat may be liberated in the electrical motor, the electrical controls,, the couplings, the speed reducer, or the belt braking system. The thermal load of each start Is dependent on the amount of belt load and the duration of the start. The designer must fulfill the application requirements for repeated starts after running the conveyor at full load. Typical mining belt starting duties vary from 3 to 10 starts per hour equally spaced, or 2 to 4 starts in succession. Repeated starting may require the dreading or over sizing of system components. There is a direct relationship between thermal rating for repeated starts and costs. Variable Speed. Some belt drive systems are suitable for controlling the starting torque and speed, but only run at constant speed. Some belt applications would require a drive system capable of running for extended periods at less than full speed. This is useful when the drive load must be shared with other drives, the belt is used as a process feeder for rate control of the conveyed material, the belt speed is optimized for the haulage rate, the belt is used at slower speeds to transport men or materials, or the belt is run a slow inspection or inching speed for maintenance purposes (Hager, 1991). The variable speed belt drive will require a control system based on some algorithm to regulate operating speed. Regeneration or Overhauling Load. Some belt profiles present the potential for overhauling loads where the belt system supplies energy to the drive system. Not all drive systems have the ability to accept regenerated energy from the load. Some drives can accept energy from the load and return it to the power line for use by other loads. Other drives accept energy from the load and dissipate it into designated dynamic or mechanical braking elements. Some belt profiles switch from motoring to regeneration during operation. Can the drive system accept regenerated energy of a certain magnitude for the application? Does the drive system have to control or modulate the amount of retarding force during overhauling? Does the overhauling occur when running and starting? Maintenance and Supporting Systems. Each drive system will require periodic preventative maintenance. Replaceable items would include motor brushes, bearings, brake pads, dissipation resistors, oils, and cooling water. If the drive system is conservatively engineered and operated, the lower stress on consumables will result in lower maintenance costs. Some drives require supporting systems such as circulating oil for lubrication, cooling air or water, environmental dust filtering, or computer instrumentation. The maintenance of the supporting systems can affect the reliability of the drive system.CostThe drive designer will examine the cost of each drive system. The total cost is the sum of the first capital cost to acquire the drive, the cost to install and commission the drive, thecost to operate the drive, and the cost to maintain the drive. The cost for power to operate the drive may vary widely with different locations. The designer strives to meet all system performance requirements at lowest total cost. Often more than one drive system may satisfy all system performance criterions at competitive costs.ComplexityThe preferred drive arrangement is the simplest, such as a single motor driving through a single head pulley.However,mechanical, economic,and functional requirements often necessitate the use of complex drives.The belt designer must balance the need for sophistication against the problems that accompany complex systems. Complex systems require additional design engineering for successful deployment. An often-overlooked cost in a complex system is the cost of training onsite personnel, or the cost of downtime as a result of insufficient training.SOFT START DRIVE CONTROL LOGICEach drive system will require a control system to regulate the starting mechanism. The most common type of control used on smaller to medium sized drives with simple profiles is termed "Open Loop Acceleration Control". In open loop, the control system is previously configured to sequence the starting mechanism in a prescribed manner, usually based on time. In open loop control, drive-operating parameters such as current, torque, or speed do not influence sequence operation. This method presumes that the control designer has adequately modeled drive system performance on the conveyor. For larger or more complex belts, "Closed Loop" or "Feedback" control may he utilized. In closed loop control, during starting, the control system monitors via sensors drive operating parameters such as current level of the motor, speed of the belt, or force on the belt, and modifies the starting sequence to control, limit, or optimize one or wore parameters. Closed loop control systems modify the starting applied force between an empty and fully loaded conveyor. The constants in the mathematical model related to the measured variable versus the system drive response are termed the tuning constants. These constants must be properly adjusted for successful application to each conveyor. The most common schemes for closed loop control of conveyor starts are tachometer feedback for speed control and load cell force or drive force feedback for torque control. On some complex systems, It is desirable to have the closed loop control system adjust itself for various encountered conveyor conditions. This is termed "Adaptive Control". These extremes can involve vast variations in loadings, temperature of the belting, location of the loading on the profile, or multiple drive options on the conveyor. There are three commonadaptive methods. The first involves decisions made before the start, or 'Restart Conditioning'. If the control system could know that the belt is empty, it would reduce initial force and lengthen the application of acceleration force to full speed. If the belt is loaded, the control system would apply pretension forces under stall for less time and supply sufficient torque to adequately accelerate the belt in a timely manner. Since the belt only became loaded during previous running by loading the drive, the average drive current can be sampled when running and retained in a first-in-first-out buffer memory that reflects the belt conveyance time. Then at shutdown the FIFO average may be use4 to precondition some open loop and closed loop set points for the next start. The second method involves decisions that are based on drive observations that occur during initial starting or "Motion Proving'. This usually involves a comparison In time of the drive current or force versus the belt speed. if the drive current or force required early in the sequence is low and motion is initiated, the belt must be unloaded. If the drive current or force required is high and motion is slow in starting, the conveyor must be loaded. This decision can be divided in zones and used to modify the middle and finish of the start sequence control. The third method involves a comparison of the belt speed versus time for this start against historical limits of belt acceleration, or 'Acceleration Envelope Monitoring'. At start, the belt speed is measured versus time. This is compared with two limiting belt speed curves that are retained in control system memory. The first curve profiles the empty belt when accelerated, and the second one the fully loaded belt. Thus, if the current speed versus time is lower than the loaded profile, it may indicate that the belt is overloaded, impeded, or drive malfunction. If the current speed versus time is higher than the empty profile, it may indicate a broken belt, coupling, or drive malfunction. In either case, the current start is aborted and an alarm issued.CONCLUSIONThe best belt starting system is one that provides acceptable performance under all belt load Conditions at a reasonable cost with high reliability. No one starting system meets all needs. The belt designer must define the starting system attributes that are required for each belt. In general, the AC induction motor with full voltage starting is confined to small belts with simple profiles. The AC induction motor with reduced voltage SCR starting is the base case mining starter for underground belts from small to medium sizes. With recent improvements, the AC motor with fixed fill fluid couplings is the base case for medium to large conveyors with simple profiles. The Wound Rotor Induction Motor drive is the traditional choice for medium to large belts with repeated starting duty or complex profilesthat require precise torque control. The DC motor drive, Variable Fill Hydrokinetic drive, and the Variable Mechanical Transmission drive compete for application on belts with extreme profiles or variable speed at running requirements. The choice is dependent on location environment, competitive price, operating energy losses, speed response, and user familiarity. AC Variable Frequency drive and Brush less DC applications are limited to small to medium sized belts that require precise speed control due to higher present costs and complexity. However, with continuing competitive and technical improvements, the use of synthesized waveform electronic drives will expand.REFERENCES[1]Michael L. Nave, P.E.1989.CONSOL Inc.煤矿业带式输送机几种软起动方式的比较1800 年华盛顿路匹兹堡, PA 15241带式运送机是采矿工业运输大批原料的重要方法。

外文翻译指导记录怎么写

外文翻译指导记录怎么写

外文翻译指导记录怎么写外文翻译指导记录怎么写外文翻译、开题报告要求一套完整的毕业设计(论文)材料由外文翻译、开题报告和毕业设计(论文)正文三部分组成,按照统一的封面和格式编写。

和字体大小将按照学院的规定。

文本格式和书写要求(一)外文翻译通过文献综述和翻译,进一步提高外语运用能力,熟悉本专业几大外文书刊,了解国内外毕业设计(论文)信息和动态。

1、格式:(1)外文(译文前面附被翻译的外文原件复印件);(2)翻译成中文格式:①标题②署名(作者名)** 著译者:***③翻译正文④外文著录为了反映文稿的科学依据和译者尊重他人研究成果的严肃态度以及向读者提出有关信息的出处,要求译者按著录/题名/出版事项顺序排列注明:期刊——著者,题名,期刊名称,出版年,卷号(期号),起始页码。

书籍——著者,书名、版次(第一版不标注),出版地,出版者,出版年,起始页码。

2、内容要求:(1)阅读每位学生在文献查阅环节中,必须阅读5~10万个印刷符号的外语文献资料(最好阅读与课题或本专业有联系的内容),择其重要的翻译1~2万个印刷符号(约3000汉字)。

(2)翻译①标题应真实地反映出翻译外文的主体内容或原外文标题内容,一般控制在20个汉字以内。

可以用副标题对标题予以补充说明;②标题下方正中为外文作者署名;③外文翻译成中文的内容;④外文著录(二)开题报告1、格式:(1)课题名称;(2)学生、专业、指导教师和教学单位署名;(3)开题报告的正文撰写。

2、内容要求:(1)课题名称要求与毕业设计(论文)正文标题名称一致(一般控制在20个汉字以内,可以用副标题对标题予以补充说明)。

(2)学生、指导教师和教学单位署名:题目下方中间是学生签名,学生签名下方是专业名称,专业名称下方是指导老师签名,指导老师签名下方是教学单位签名(教学单位指学院)。

(3)开题报告的正文撰写要求包括(不少于2500字):①课题来源②研究目的和意义③研究的内容与途径④国内外研究现状与发展趋势通过提问和分析问题,综合前人文献提出的理论和事实,比较各种学术观点,明确所提问题的历史、现状和发展方向。

网页设计专业毕业设计外文翻译

网页设计专业毕业设计外文翻译

Produce the design of the tool and realize automaticallyon the basis of JSP webpageIt is an important respect that Internet uses that Web develops technology, and JSP is the most advanced technology that Web is developed , it is present Web developer's first-selected technology. But because JSP has relatively high expectations for Web developer, a lot of general Web developers can not use this advanced technology . The discussion produces the design of the tool and realizes automatically on the basis of JSP webpage of the template and label storehouse, put forward concrete design philosophy and implementation method .With the popularization of WWW (World Wide Web ), the technology of the dynamic webpage is developed rapidly too. From original CGI (Common Gateway In-terface ) to ASP (Active Server Page ), have met the webpage developer to the demand for developing technology of the dynamic webpage to a certain extent. But no matter CGI or ASP have certain limitation, for instance, consuming to resources of the server of CGI, ASP can only be used etc. with Microsoft IIS, all these have limited scope of application of the technology, have hindered their popularization greatly. The vast page developers all look forward to a kind of unified page and develop technology earnestly, characteristic that this technology there should be:①Have nothing to do with the operating platform, can run on any Web or the application program server ;②Show the logic and page of application program that separates ; ③Offer codes to put in an position, simplify and develop the course based on interactive application program of Web.JSP (Java Server Page ) technology is designed and used for responding to the request that like this. JSP is developed technology by the new webpage that Sun MicroSystem Company put out in June of 1999, it is that Web based on Java Serv-let and the whole Java system develops technology, and Servlet2. Expansion of 1API. Utilize this technology, can set up advancedly , safely and stepping dynamic websites of the platform .Java is the future mainstream to develop technology , have a lot of advantages . JSP is Java important application technology on Internet/Intranet Web , get extensive support and admit, it can conbine with various kinds of Java technology together intactly , thus realize very complicated application.As a kind of technology of development based on text , taking showing as centre, JSP has offered all advantages of Java Servlet. Logic function in order to make sure and showing the function was separated , JSP can already work with JavaBeans , Enterprise JavaBeans (EJB ) and Servlet . The developer of JSP can finish the work that majority and website's logic are correlated with through using JavaBeans , EJB and Servlet , and only assign the work shown to JSP page to finish. Content and show advantage that logic separate lie in , upgrade person , page of appearanceneedn't understand Java code , the personnel upgrading Javas needn't be experts who design webpage either. This can define Web template in JSP page with Javas , in order to set up websites made up of a page with similar appearance. Java completion data offer, have Java code among template, this mean template these can write by one HTML person is it maintain to come.JSP develops technology as the webpage of the mainstream at present, has the following characteristics:(1) Separate the formulation and showing of the content : Using JSP technology, the page developer of Web can use HTML or XML identification to design and format the final page . Use JSP identification or bound foot turn into dynamic content of page actually (whether content according to is it come change to ask). Produce logic of content of the identification and JavaBeans package , truss up of the little script encapsulation, all scripts run in the end of the server. If key logic among identification and JavaBeans, then other people, such as Web administrative staff and page designer encapsulation, can edit and use JSP page , and does not influence the formulation of the content .(2) Emphasize the reusable package : Most JSP pages depend on the reusable one, the package stepping the platform finish more complicated treatment with required application program. Benefitting from the independence of operating platform of Java, the developer can be very convenient to share and exchange and carry out the ordinary package that operated, or make these packages used by more users. The method based on package has accelerated the total development course, the efficiency of improving the project and developing wholly greatly.Though JSP is powerful, it requires the webpage developer should be quite familiar with Java. There are still relatively few Java programmers now, for general webpage developer, the grammar of JSP is more difficult to grasp . So, need a kind of webpage developing instrument and offer commonly used JSP application to general webpage developer, is it understand general page develop developer of technology (HTML ) can use strong function of JSP too only to let.Systematic design object and main technology of use:(1)Design objectSystem this design object for understand but HTML understand general webpage developer of JSP offer a webpage developing instrument at all only, enable them to follow the systematic file, use the daily function of JSP through the label, produce one finally and only include static HTML and dynamic JSP webpage of JSP label.(2)Main technologyThis system is in the design, consider using the technology of the template and JSP label to realize mainly.1、Technology of the templateThe technology of the template is widely applied to various kinds of development and application system. It produces some commonly used frame structure in advance , uses the family to choose the template from the template storehouse conveniently according to the needs of one's own one, is it is it put up to go again by oneself to need , save construction period in user , facilitate use of user. In this system , classify the page according to the function type , sum up the commonly used page type, produce the template storehouse.2、Storehouse technology of the labelIn JSP, movements can create and visit the language target of the procedure and influence the element exported and flowed. JSP has defined six standard movements. Except six standard movement these, user can define own movement finish the specific function. These movements are known as the customer movement, they are the reusable procedure module . Through movement these, programmer can some encapsulation stand up too display function of page in JSP page, make the whole page more succinct and easier to maintain. In a JSP page, movements were transfered through the customer label in these customers. And the label storehouse (Tag Library ) is the set of the customer label.JSP label storehouse is that one kind produces the method based on script of XML through JavaBeans. It is one of the greatest characteristics of JSP. Through the label storehouse , can expand JSP application unrestrictedly , finish any complicated application demand.JSP label storehouse has the following characteristic:①Easy to use: The labels in JSP and general HTML marks are totally the same in appearance, it is as convenient as ordinary HTML mark to use.②The easy code is paid most attention to: Every label in the label storehouse can finish certain function . Define ready to eat one label storehouse , is it pack one Jar file the label storehouse to need only, then only need use this label storehouse in other systems afterwards, needn't develop codes again , has raised the system and developed efficiency greatly, have reduced the development cost.③The easy code is safeguarded: All application logic is encapsulated in label processor and JavaBeans, all labels concentrate on a label storehouse. If need to upgrade codes or need to revise the function on a webpage, only need to revise the corresponding label. Maintain way in unison through this kind , it is unnecessary in each webpage is it is it fix to act as to get onning, have reduce the work load safeguarded greatly, has economized the cost of safeguarding.④The easy system is expanded : If need to add the new function to the system , only need to define a new label to finish this function, do not need to do any change to other respects of thesystem. Can inherit JSP normal characteristics of various fields in the label storehouse. Can expand and increase the function of JSP unrestrictedly like this, and does not need to wait for the appearance of the next edition JSP .Systematic composition and realizing:(1)The system making upThis system is made up of four parts mainly:1、The database joins some: This system supports several daily databases , including Oracle, Sybase, MSSQLServer, MySQL and DB2, use JDBC and database to link to each other according to database type and database name , user name , password that users offer that users choose.2、The basic form of system produces some: After joining with the database , produce the basic form TC-Tables and TC-Columns of two systems according to the user name linking to each other with the database , TC-Tables form includes English name , Chinese name and some attribute of form belonging to this user in this database , for instance can revise , can inquire about ; The Chinese and English name of the row and some other attribute that TC-Columns form includes belonging to all forms of this user's in this database . For instance can show , can inquire about . Basic information of the database that these basic forms of two systems provide to user's institute for use in the course of development of the whole system.3、The template is chosen to produce some with the webpage: This part is a key part of a system. It includes two pieces of sub module .①The template is chosen some: The system offers the template to user and chooses the interface, let users choose the templates used from the template storehouse according to the need.②The template is dealt with some: According to template that user choose, system transfer designated template deal with module is it punish to go on to these template. When dealing with the label that the procedure meets in the template, offer the mutual interface to user, let user input parameter for designated label , prove system validity of label that user input. Finished the formulation of JSP page systematically finally.Webpage preview is with revising some: After the webpage was produced out, the system has offered a webpage preview window and code to user and looked over that revises the window. Through this preview window, users can look at the result of JSP page produced out in advance . If user static result of respect in page very satisfied, user can through code look over revise window revise HTML code of code. If users have further demands for the static result of the page, the system has also offered a piece of interface which transfers DreamWeaver editing machine to user, users can use it to carry on further modification and perfection to the static result of JSP page that is produced out .(2)Systematic realization1、Realization of the template storehouse and label storehouseThe planning and design of the label storehouse are essential in the whole system design, efficiency that the degree and system that are put in an position have operated that its relation has reached codes. Its planning should follow the following principle .(1) Should try one's best little including static HTML among label. To general user, the label is transparent. Users can not look over and revise labels . If include too many static HT-ML sentence in the label , will influence the modification and perfection of user's static result to the page, limit the use of the label.(2) Try one's best to raise the paying most attention to degree of the code. Is it is it is it is it is it is it get to JSP public JSP out to withdraw to use to try one's best to classify to go on to use, form labels. Do not use and realize this application repeatedly in each label . While revising and perfecting to using like this , only need to revise this label, maintenance of the easy code.(3) Facilitate users' use. While designing the label storehouse , should fully consider users' operating position , it can very easy and understanding and using labels conveniently to use the family.①Definition of the label storehouse: Define a label storehouse, must define a label storehouse and describe the file (TLD ) at first . This is a file of script based on XML, have defined the edition of XML in this file , codes used, the edition , name and definition and parameter of all labels included in this storehouse of the label storehouse of the edition of the label storehouse , JSP used describe, including the name of the label, corresponding Javas of label, description information of the label ,etc..②Realization of the label: One label first special Java type, this each must inherit TagSupports , this each is in javax. servlet. jsp. Define in tagext bag . In the labels, the parameter which includes this label initializes the subject treatment method (Handler ) of method (Set/Get ) , label and method available for making the first class label to adjust,etc..③Realization of the template : A template is that one contains JSP file that labels quoted . In order to quote the labels defined in the template , must introduce the label storehouse at first .<%@taglib uri=“tag.tld”prefix=“ctag”%>Among them uri appoints the label storehouse to describe the route of the file ; Prefixes used when prefix appoints to quote labels.While quoting the designated label in the template , use the designated prefix while introducing the label storehouse, appoint the name of the label; It is the parameter assignment of the label.2、Systematic development environmentWhat this systematic subject procedure making is used is JBuilder 6 of Borland Company. 0, it is Front-Page2000 of Microsoft Company that the template is developed and used, what the label storehouse is developed and used is UltraEdit editing machine, what JDK is adopted is JDK1.4. The system testing environment is JRun3. 0.Java future mainstream to develop language, and Java using JSP will become major technology that Web will be developed in the future too mainly at Web. This system has adopted the label storehouse , one of the biggest characteristics of JSP, enable the general Web developer to use JSP strong dynamic page function conveniently too, develop JSP dynamic Web page of the modern techniques. Because this system adopts Java to develop, can run under the operating system of any support graphic interface , have realized complete having nothing to do with the platform. This system is easy to expand and perfect. Can consider offering the interface to user afterwards , will use the family to expand the template storehouse and label storehouse by oneself, strengthen the systematic function further.List of references:[1] Cay S. Horstmann,Gary Cornell. Java 2 key technology (CoreJava 2 ) [M ]. Beijing: Publishing house of the mechanical industry.[2] Bruce Eckel. Java programming thought (Thinking in Java ) [M ]. Beijing: Publishing house of the mechanical industry.[3] Joseph L. Weber. Java 2 programming is explained in detail (Using Java 2) [M ]. Beijing: Electronic Industry Press.[4] Borland Company. Building Applications with JBuilder.基于JSP网页自动生成工具的设计与实现Web开发技术是Internet应用的一个重要方面,而JSP又是Web开发的最先进的技术,是当前Web开发人员的首选技术。

毕业设计(论文)外文翻译【范本模板】

毕业设计(论文)外文翻译【范本模板】

华南理工大学广州学院本科生毕业设计(论文)翻译英文原文名Review of Vibration Analysis Methods for Gearbox Diagnostics and Prognostics中文译名对变速箱振动分析的诊断和预测方法综述学院汽车工程学院专业班级车辆工程七班学生姓名刘嘉先学生学号201130085184指导教师李利平填写日期2015年3月15日英文原文版出处:Proceedings of the 54th Meeting of the Society for Machinery Failure Prevention Technology, Virginia Beach,V A, May 1-4,2000,p. 623-634译文成绩:指导教师(导师组长)签名:译文:简介特征提取技术在文献中有描述;然而,大多数人似乎掩盖所需的特定的预处理功能。

一些文件没有提供足够的细节重现他们的结果,并没有一个全面的比较传统的功能过渡齿轮箱数据。

常用术语,如“残差信号”,是指在不同的文件不同的技术.试图定义了状态维修社区中的常用术语和建立所需的特定的预处理加工特性。

本文的重点是对所使用的齿轮故障检测功能。

功能分为五个不同的组基于预处理的需要。

论文的第一部分将提供预处理流程的概述和其中每个特性计算的处理方案。

在下一节中,为特征提取技术描述,将更详细地讨论每一个功能。

最后一节将简要概述的宾夕法尼亚州立大学陆军研究实验室的CBM工具箱用于齿轮故障诊断。

特征提取概述许多类型的缺陷或损伤会增加机械振动水平。

这些振动水平,然后由加速度转换为电信号进行数据测量。

原则上,关于受监视的计算机的健康的信息被包含在这个振动签名。

因此,新的或当前振动签名可以与以前的签名进行比较,以确定该元件是否正常行为或显示故障的迹象。

在实践中,这种比较是不能奏效的。

由于大的变型中,签名的直接比较是困难的。

相反,一个涉及从所述振动署名数据特征提取更多有用的技术也可以使用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一般导师还会要之前的英文文献的,所以要保 留一份,而且如果英文文献很长,可以和导师协调, 挑选一部分翻译。如果导师让您自己选文献,可以
找找比较短的或者是日本人韩国人写的文章,比英 语国家的好理解一点
注意事项 来源网络
0c60f4e 盈丰国际
语序的调整是很复杂的,往往您怎么都看不懂 机器翻译的是什么,这可能是知识积累还有欠缺, 或者实在是语序复杂,您可以适当跳过这些内容或 者按自己的理解翻译并询问您的导师。英语中的定
0c60f4e 盈丰国际
语后置之类的语法也导致了机器翻译的语序问题, 的经验是往往名词都有一句话来翻译,很长,不如 分开用小句子,即使重复使用同样的词汇。
正确的用词。还有一个提示是您最好使用翻译 自带的复制按钮,而不是右键复制和 Ctrl+C,否 则不是有格式粘贴到 word 会有蓝色暗纹。
文献选择,推荐您尽量选择 PDF 格式的外文文 献,一般可以使用 chrome 内核浏览器打开,无需 下载其他阅读器,其他格式文献可能不能制文
0c60f4e 盈丰国际
字,自己打是不可是词不对意 的,所以您需要自己翻译这些单词,而且这些词汇 是经常出现的,的技巧是先把不认识的专业单词复 制到 EI 的文献检索中,搜索标题(不是主题),这
样就会有中文的文献名字提到这个单词了,您只要 对应到位置就可以,很有效果哦
如何做毕业设计的外文翻译
毕设是一个大学生大学四年的最后阶段了,您 是否准备好了呢毕设一般需要调研报告和外文翻 译已及论文等内容,今天就把自己做外文翻译的经 验分享给大家
EI 论文检索网
如果您的英语不是很好,那么您可以使用 翻译先把英文一段一段复制下来翻译,推荐不要太 多一次,因为本身就不是正常语序的自动翻译是很 乱的,少一点比较有逻辑,而且这个翻译一般导师 是不会接受的,您需要自己重新调整语序和一些不
相关文档
最新文档