指数函数定义域及值域
指数函数的定义域

指数函数的定义域
指数函数是在数学中最常用的函数之一,它可以用来描述多种物理和社会现象。
下面介绍它的定义域:
1. 定义:指数函数的定义,简单的说就是任意实数x的指数变换
y=ax^b(a是常数,b是指数),其中,左边的x称为自变量,右边的y称为因变量。
2. 定义域:指数函数的定义域是所有实数x(x属于R)。
3. 值域:指数函数的值域是所有实数y(y>0),当b>0时,指数函数的值域是[0, ∞),其中包括0;当b<0时,指数函数的值域是(0, ∞)。
4. 曲线特性:指数函数是基于等比数列的函数,当b>0时,指数函数的坐标图是从原点开始的凸函数;当b<0时,指数函数的坐标图是从原点开始的凹函数。
5. 函数奇偶性:一般而言,指数函数在实数轴上是奇函数,也就是说函数在实数轴上对称轴过原点,在图像中,指数函数是单调递增的。
6. 函数性质:指数函数可以表示指数成长和指数衰减,并且可以描述物理现象中含有指数关系的曲线方程,例如光衰减曲线方程就是一个
指数函数。
指数函数是用来描述指数成长、衰减的函数,它的定义域为实数x(x 属于R),值域为实数y(y>0)。
指数函数的坐标图从原点开始向上凸函数或下凹函数,它是一个单调递增的函数,也是一个奇函数,可以表示物理现象中含有指数关系的曲线方程。
指数函数的概念

⑵ y 3 解:(2) 由5x-1≥0得
5 x1
1 x 5 所以,所求函数定义域为
1 x | x 5
由
5x 1 0 得y≥1
所以,所求函数值域为{y|y≥1}
⑶
y 2x 1
由
解:(3)所求函数定义域为R
2 0
x
可得
2 1 1
x
所以,所求函数值域为{y|y>1}
6 5 4
x 1
所以,所求函数值域为 {y|y>0且y≠1}
-6
fx =
0.4 x-1
3
2
1
-4
-2
2
4
6
-1
-2
说明:对于值域的求解,可以令 考察指数函数y= 并结合图象 直观地得到: 函数值域为 {y|y>0且y≠1}
1 t x 1
0.4
t
(t 0)
6
5
4
3
2
1
-4
-2
2
4
6
-1
1 x 1 , x 1 2 2 x 1 , x 1
3.2
3.2 3.2 3.2 3.2 333 3
3
3
-0.2
对于有些复合函数的图象,则常用基本函数图象+变换方法 作出:即把我们熟知的基本函数图象,通过平移、作其对称图 等方法,得到我们所要求作的复合函数的图象,这种方法我们 遇到的有以下几种形式: 函 数 y=f(x+a) y=f(x)+a y=f(-x) y=-f(x) y=-f(-x) y=f(|x|) y=|f(x)| y=f(x) a>0时向左平移a个单位;a<0时向右平移|a|个单位. a>0时向上平移a个单位;a<0时向下平移|a|个单位. y=f(-x)与y=f(x)的图象关于y轴对称. y=-f(x)与y=f(x)的图象关于x轴对称. y=-f(-x)与y=f(x)的图象关于原点轴对称.
指数函数的意义

指数函数的意义一、指数函数的定义1. 形式- 一般地,函数y = a^x(a>0,a≠1)叫做指数函数,其中x是自变量,函数的定义域是R。
例如y = 2^x,y=<=ft((1)/(3))^x都是指数函数。
- 这里要注意指数函数的底数a的取值范围,a>0是为了保证对于任意实数x,a^x都有意义;a≠1是因为当a = 1时,y=1^x=1,它是一个常数函数,不符合指数函数的特征。
2. 与幂函数的区别- 幂函数的形式是y = x^α(α为常数),自变量x在底数位置;而指数函数y = a^x中,自变量x在指数位置,底数a是常数。
例如y = x^2是幂函数,y = 2^x 是指数函数。
二、指数函数的图象和性质1. 图象特征- 当a>1时,指数函数y = a^x的图象是上升的曲线。
例如y = 2^x,它过点(0,1),即当x = 0时,y=1。
随着x的增大,y的值增长得越来越快。
- 当0 < a < 1时,指数函数y=a^x的图象是下降的曲线。
比如y=<=ft((1)/(2))^x,也过点(0,1),随着x的增大,y的值减小得越来越慢。
2. 性质- 定义域:指数函数y = a^x(a>0,a≠1)的定义域是R,这意味着x可以取任意实数。
- 值域:其值域是(0,+∞)。
因为对于任何a>0,a≠1和x∈ R,a^x>0。
- 单调性:当a>1时,函数在R上单调递增;当0 < a < 1时,函数在R上单调递减。
例如,比较2^3和2^2,因为3>2且a = 2>1,所以2^3>2^2;而对于y=<=ft((1)/(2))^x,比较<=ft((1)/(2))^3和<=ft((1)/(2))^2,因为3>2且0 <a=(1)/(2)<1,所以<=ft((1)/(2))^3<<=ft((1)/(2))^2。
数学指数函数的知识点

数学指数函数的知识点
数学指数函数的知识点
(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的'定义域不存在连续的区间,因此我们不予考虑。
(2)指数函数的值域为大于0的实数集合。
(3)函数图形都是下凹的。
(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。
(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。
其中水平直线y=1是从递减到递增的一个过渡位置。
(6)函数总是在某一个方向上无限趋向于X轴,永不相交。
(7)函数总是通过(0,1)这点。
(8)显然指数函数无界。
指数函数知识点总结

指数函数知识点总结指数函数是高中数学中的重要内容之一。
它是以底数为常数、指数为自变量的函数,具有独特的性质和应用。
本文将从定义、性质、图像和应用四个方面对指数函数进行总结。
一、定义指数函数是具有形式f(x) = a^x的函数,其中a为大于0且不等于1的常数。
指数函数是一种通过指数幂运算的方式获得函数值的数学函数。
二、性质1. 底数大于1时,指数函数是增函数;底数在0和1之间时,指数函数是减函数。
这意味着指数函数的图像可以分为两种情况:斜上升和斜下降。
2. 指数函数有定义域为全体实数,值域为正实数。
3. 指数函数的图像经过点(0,1),即a^0 = 1。
4. 指数函数的平行于x轴的渐近线为y = 0。
这是因为指数函数在负无穷大时趋于0。
5. 指数函数的性质可以推广到负指数,即f(x) = a^(-x)。
相同的性质适用于负指数函数。
三、图像指数函数的图像特点很明显。
当底数a大于1时,指数函数的图像会从左下方无限趋近于x轴。
当底数a在0和1之间时,指数函数的图像会从左上方无限趋近于x轴。
指数函数的图像在逼近x轴时变得非常陡峭。
这是因为随着指数不断增加,函数的增长速度越来越快。
四、应用指数函数在现实世界中有许多应用。
以下是一些常见的应用领域:1. 金融领域:指数函数在复利计算中发挥着重要作用。
复利是指在计算利息时将利息加入到本金中,进而计算下一阶段的利息。
指数函数可用于计算定期存款或贷款的未来价值或余额。
2. 自然科学:指数函数在自然科学中广泛应用,尤其是在物理学和化学方面。
例如,放射性衰变是一个指数运动,指数函数可用于描述放射性物质的衰变过程。
3. 经济学:指数函数在经济学中用于描述人口增长、市场价格和物品生产等。
经济学家常常使用指数函数来分析和预测经济趋势。
4. 生物学:指数函数在生物学中用于描述生物种群的增长。
当环境资源充足时,生物种群的增长可以被指数函数描述。
总结:指数函数是一种重要的数学函数,在各个领域都有重要的应用。
幂函数指数函数与对数函数的性质与计算

幂函数指数函数与对数函数的性质与计算幂函数、指数函数与对数函数是数学中常见的函数类型,它们具有一些独特的性质以及特定的计算方式。
在本文中,我们将探讨这些函数的基本概念、性质以及如何进行计算。
一、幂函数的性质与计算幂函数是形如y=x^n的函数,其中n为实数。
幂函数的性质如下:1. 幂函数的定义域为实数集R,值域则取决于n的值。
- 当n为正奇数时,f(x)为增函数,值域为R+(正实数集);- 当n为正偶数时,f(x)为非负且有最小值0,值域为[0, +∞);- 当n为负数时,f(x)有正负之分,值域为R+和R-(负实数集),且在不同的定义域上具有不同的增减性;- 当n为0时,0的0次方没有定义。
2. 幂函数的图像特点:- 当n为正数时,随着x的增大,函数值也随之增大,图像呈现递增趋势;- 当n为负数时,随着x的增大,函数值递减,图像呈现递减趋势。
3. 幂函数的计算方法:- 幂函数的运算法则遵循指数运算法则,如x^m * x^n = x^(m+n),x^m / x^n = x^(m-n),(x^m)^n = x^(m*n)等。
二、指数函数的性质与计算指数函数是形如y=a^x的函数,其中a为常数且a>0且a≠1。
指数函数的性质如下:1. 指数函数的定义域为实数集R,值域为正实数集R+。
2. 指数函数以a为底,随着自变量x的增大,函数值呈现指数增长的特征。
3. 指数函数的计算方法:- 当a为正数时,指数函数的运算法则与幂函数相似,如a^m *a^n = a^(m+n),a^m / a^n = a^(m-n)等。
- 当a为负数时,指数函数的运算方法可以通过转化为幂函数的形式进行计算。
三、对数函数的性质与计算对数函数是指数函数的逆运算,以b为底,记作y=logₐx。
对数函数的性质如下:1. 对数函数的定义域为正实数集R+,值域为实数集R。
2. 对数函数以b为底,将正实数x映射到实数y,即b^y=x。
3. 对数函数的计算方法主要包括:- 同底数的对数乘法法则:logₐ(x * y) = logₐx + logₐy;- 同底数的对数除法法则:logₐ(x / y) = logₐx - logₐy;- 对数的换底公式:logₐx = log_bx / log_ba,其中a、b为正实数且a≠1,b≠1。
新高考指数函数知识点归纳

新高考指数函数知识点归纳随着中国教育改革的不断深入,新高考已经逐渐取代了传统的高考制度,成为了学生们普遍关注和备考的焦点。
在新高考中,数学是必考科目之一,而指数函数作为数学中的重要内容之一,将在新高考中扮演重要的角色。
本文将对指数函数这一知识点进行归纳总结,帮助同学们对此进行深入理解和掌握。
一、指数与幂指数函数的首要概念是指数与幂的概念。
在数学中,幂指的是一个数自乘若干次的运算,即n的m次方。
而指数则表示幂的次数,即指数n对应幂的次数m。
在指数函数中,指数可以是整数、分数或者是其他实数。
二、指数的性质1.指数为正数时,幂的结果是一个正数,表现为指数函数的增长特性。
指数为负数时,幂的结果是一个小于1的分数或小数,表现为指数函数的递减特性。
2.指数为0时,幂的结果为1,这可以视为幂的特殊情况。
3.指数为分数时,幂的结果可以找到对应的根的概念,是求幂运算的逆运算。
三、指数函数的图像指数函数的图像呈现出一种特殊的形状,具有一条渐近线(y轴)。
当指数为正数时,函数图像会从渐近线方向无线接近,但永远不会达到渐近线。
当指数为负数时,函数图像则会无限接近于x轴,并且在第一象限与x轴正半轴交于一点,并在第二象限与y轴交于一点。
四、指数函数的定义域与值域指数函数的定义域是所有实数集合R,而值域则取决于指数的正负情况。
当指数为正数时,值域为(0, +∞),表示函数的范围为正实数大于0;当指数为负数时,值域为(0,1),表示函数的范围为小于1的正实数。
五、指数函数的性质与运算1.指数函数具有多个性质,如指数零定律、指数等比加法规律、指数等基乘法规律、指数等差加法规律等,这些性质在求解指数函数问题时有着重要的作用。
2.指数函数之间的运算涉及到指数根的概念以及对数的概念,在解决实际问题时可以通过这些运算与性质来简化计算和求解过程。
六、指数函数的应用指数函数在科学、经济、生活等各个方面都有着广泛的应用。
在自然科学领域,指数函数可以用来描述物质的放射性衰变、细菌的繁殖等自然现象。
指数函数的定义与性质

指数函数的定义与性质指数函数是数学中一种重要的函数类型,它的定义和性质对于数学的学习和应用具有重要意义。
本文将介绍指数函数的定义以及其常见的性质。
一、指数函数的定义指数函数是以指数为自变量的函数,通常形式为f(x) = a^x,其中a为底数,x 为指数。
底数为正数且不等于1时,指数函数存在且连续。
指数函数可以分为两种情况:1. 当底数a大于1时,指数函数呈现增长趋势。
随着指数x的增大,函数值f(x)也相应增大,增长速度逐渐加快。
例如,函数f(x) = 2^x,当x从负无穷逐渐增大时,f(x)的值也逐渐增大。
2. 当底数a介于0和1之间时,指数函数呈现衰减趋势。
随着指数x的增大,函数值f(x)逐渐减小,衰减速度逐渐减慢。
例如,函数f(x) = (1/2)^x,当x从负无穷逐渐增大时,f(x)的值逐渐减小。
二、指数函数的性质指数函数具有以下几个常见的性质:1. 基本性质:指数函数的定义域为实数集R,值域为正实数集(0, +∞)。
当底数a大于1时,函数在整个定义域上是递增的;当底数a介于0和1之间时,函数在整个定义域上是递减的。
2. 对称性:指数函数具有对称性。
当底数a大于1时,函数f(x) = a^x关于y轴对称;当底数a介于0和1之间时,函数f(x) = a^x关于x轴对称。
3. 渐近线:指数函数在x轴的左侧有一条水平渐近线y=0。
当底数a大于1时,函数在x趋近于负无穷时,趋近于渐近线y=0;当底数a介于0和1之间时,函数在x趋近于正无穷时,趋近于渐近线y=0。
4. 运算性质:指数函数具有一些重要的运算性质。
当a和b为正数且不等于1时,有以下性质成立:(a^m) * (a^n) = a^(m+n),即相同底数的指数函数相乘,指数相加;(a^m) / (a^n) = a^(m-n),即相同底数的指数函数相除,指数相减;(a^m)^n = a^(m*n),即指数函数的指数幂运算,指数相乘。
以上是指数函数的定义和常见性质的简要介绍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.观察法通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。
例1求函数y=3+√(2-3x) 的值域。
点拨:根据算术平方根的性质,先求出√(2-3x) 的值域。
解:由算术平方根的性质,知√(2-3x)≥0,故3+√(2-3x)≥3。
∴函数的知域为.点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。
本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。
练习:求函数y=[x](0≤x≤5)的值域。
(答案:值域为:{0,1,2,3,4,5})二.反函数法当函数的反函数存在时,则其反函数的定义域就是原函数的值域。
例2求函数y=(x+1)/(x+2)的值域。
点拨:先求出原函数的反函数,再求出其定义域。
解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。
点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。
这种方法体现逆向思维的思想,是数学解题的重要方法之一。
练习:求函数y=(10x+10-x)/(10x-10-x)的值域。
(答案:函数的值域为{y∣y<-1或y>1})三.配方法当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域例3:求函数y=√(-x2+x+2)的值域。
点拨:将被开方数配方成完全平方数,利用二次函数的最值求。
解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。
此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4]∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2]点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。
配方法是数学的一种重要的思想方法。
练习:求函数y=2x-5+√15-4x的值域.(答案:值域为{y∣y≤3})四.判别式法若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。
例4求函数y=(2x2-2x+3)/(x2-x+1)的值域。
点拨:将原函数转化为自变量的二次方程,应用二次方程根的判别式,从而确定出原函数的值域。
解:将上式化为(y-2)x2-(y-2)x+(y-3)=0 (*)当y≠2时,由Δ=(y-2)2-4(y-2)x+(y-3)≥0,解得:2<x≤10/3当y=2时,方程(*)无解。
∴函数的值域为2<y≤10/3。
点评:把函数关系化为二次方程F(x,y)=0,由于方程有实数解,故其判别式为非负数,可求得函数的值域。
常适应于形如y=(ax2+bx+c)/(dx2+ex+f)及y=ax+b±√(cx2+dx+e)的函数。
练习:求函数y=1/(2x2-3x+1)的值域。
(答案:值域为y≤-8或y>0)。
五.最值法对于闭区间[a,b]上的连续函数y=f(x),可求出y=f(x)在区间[a,b]内的极值,并与边界值f(a).f(b)作比较,求出函数的最值,可得到函数y的值域。
例5已知(2x2-x-3)/(3x2+x+1)≤0,且满足x+y=1,求函数z=xy+3x的值域。
点拨:根据已知条件求出自变量x的取值范围,将目标函数消元、配方,可求出函数的值域。
解:∵3x2+x+1>0,上述分式不等式与不等式2x2-x-3≤0同解,解之得-1≤x≤3/2,又x+y=1,将y=1-x代入z=xy+3x中,得z=-x2+4x(-1≤x≤3/2),∴z=-(x-2)2+4且x∈[-1,3/2],函数z在区间[-1,3/2]上连续,故只需比较边界的大小。
当x=-1时,z=-5;当x=3/2时,z=15/4。
∴函数z的值域为{z∣-5≤z≤15/4}。
点评:本题是将函数的值域问题转化为函数的最值。
对开区间,若存在最值,也可通过求出最值而获得函数的值域。
练习:若√x为实数,则函数y=x2+3x-5的值域为()A.(-∞,+∞)B.[-7,+∞] C.[0,+∞)D.[-5,+∞)(答案:D)。
六.图象法通过观察函数的图象,运用数形结合的方法得到函数的值域。
例6求函数y=∣x+1∣+√(x-2)2 的值域。
点拨:根据绝对值的意义,去掉符号后转化为分段函数,作出其图象。
解:原函数化为-2x+1 (x≤1)y= 3 (-1<x≤2)2x-1(x>2)它的图象如图所示。
显然函数值y≥3,所以,函数值域[3,+∞]。
点评:分段函数应注意函数的端点。
利用函数的图象求函数的值域,体现数形结合的思想。
是解决问题的重要方法。
求函数值域的方法较多,还适应通过不等式法、函数的单调性、换元法等方法求函数的值域。
七.单调法利用函数在给定的区间上的单调递增或单调递减求值域。
例1求函数y=4x-√1-3x(x≤1/3)的值域。
点拨:由已知的函数是复合函数,即g(x)= -√1-3x,y=f(x)+g(x),其定义域为x≤1/3,在此区间内分别讨论函数的增减性,从而确定函数的值域。
解:设f(x)=4x,g(x)= -√1-3x ,(x≤1/3),易知它们在定义域内为增函数,从而y=f(x)+g(x)= 4x -√1-3x在定义域为x≤1/3上也为增函数,而且y≤f(1/3)+g(1/3)=4/3,因此,所求的函数值域为{y|y ≤4/3}。
点评:利用单调性求函数的值域,是在函数给定的区间上,或求出函数隐含的区间,结合函数的增减性,求出其函数在区间端点的函数值,进而可确定函数的值域。
练习:求函数y=3+√4-x 的值域。
(答案:{y|y≥3})八.换元法以新变量代替函数式中的某些量,使函数转化为以新变量为自变量的函数形式,进而求出值域。
例2求函数y=x-3+√2x+1 的值域。
点拨:通过换元将原函数转化为某个变量的二次函数,利用二次函数的最值,确定原函数的值域。
解:设t=√2x+1 (t≥0),则x=1/2(t2-1)。
于是y=1/2(t2-1)-3+t=1/2(t+1)2-4≥1/2-4=-7/2.所以,原函数的值域为{y|y≥-7/2}。
点评:将无理函数或二次型的函数转化为二次函数,通过求出二次函数的最值,从而确定出原函数的值域。
这种解题的方法体现换元、化归的思想方法。
它的应用十分广泛。
练习:求函数y=√x-1 –x的值域。
(答案:{y|y≤-3/4}九.构造法根据函数的结构特征,赋予几何图形,数形结合。
例3求函数y=√x2+4x+5+√x2-4x+8 的值域。
点拨:将原函数变形,构造平面图形,由几何知识,确定出函数的值域。
解:原函数变形为f(x)=√(x+2)2+1+√(2-x)2+22作一个长为4、宽为3的矩形ABCD,再切割成12个单位正方形。
设HK=x,则ek=2-x,KF=2+x,AK=√(2-x)2+22 ,KC=√(x+2)2+1 。
由三角形三边关系知,AK+KC≥AC=5。
当A、K、C三点共线时取等号。
∴原函数的知域为{y|y≥5}。
点评:对于形如函数y=√x2+a ±√(c-x)2+b(a,b,c均为正数),均可通过构造几何图形,由几何的性质,直观明了、方便简捷。
这是数形结合思想的体现。
练习:求函数y=√x2+9 +√(5-x)2+4的值域。
(答案:{y|y≥5√2})十.比例法对于一类含条件的函数的值域的求法,可将条件转化为比例式,代入目标函数,进而求出原函数的值域。
例4已知x,y∈R,且3x-4y-5=0,求函数z=x2+y2的值域。
点拨:将条件方程3x-4y-5=0转化为比例式,设置参数,代入原函数。
解:由3x-4y-5=0变形得,(x3)/4=(y-1)/3=k(k为参数)∴x=3+4k,y=1+3k,∴z=x2+y2=(3+4k)2+(14+3k)2=(5k+3)2+1。
当k=-3/5时,x=3/5,y=-4/5时,zmin=1。
函数的值域为{z|z≥1}.点评:本题是多元函数关系,一般含有约束条件,将条件转化为比例式,通过设参数,可将原函数转化为单函数的形式,这种解题方法体现诸多思想方法,具有一定的创新意识。
练习:已知x,y∈R,且满足4x-y=0,求函数f(x,y)=2x2-y的值域。
(答案:{f(x,y)|f(x,y)≥1})十一.利用多项式的除法例5求函数y=(3x+2)/(x+1)的值域。
点拨:将原分式函数,利用长除法转化为一个整式与一个分式之和。
解:y=(3x+2)/(x+1)=3-1/(x+1)。
∵1/(x+1)≠0,故y≠3。
∴函数y的值域为y≠3的一切实数。
点评:对于形如y=(ax+b)/(cx+d)的形式的函数均可利用这种方法。
练习:求函数y=(x2-1)/(x-1)(x≠1)的值域。
(答案:y≠2)十二.不等式法例6求函数Y=3x/(3x+1)的值域。
点拨:先求出原函数的反函数,根据自变量的取值范围,构造不等式。
解:易求得原函数的反函数为y=log3[x/(1-x)],由对数函数的定义知x/(1-x)>01-x≠0解得,0<x<1。
∴函数的值域(0,1)。
点评:考查函数自变量的取值范围构造不等式(组)或构造重要不等式,求出函数定义域,进而求值域。
不等式法是重要的解题工具,它的应用非常广泛。
是数学解题的方法之一。
以下供练习选用:求下列函数的值域1.Y=√(15-4x)+2x-5;({y|y≤3})2.Y=2x/(2x-1)。
(y>1或y<0)注意变量哦~。