遥感数字图像处理_地表反射率、温度的反演以及植被指数的计算

遥感数字图像处理_地表反射率、温度的反演以及植被指数的计算
遥感数字图像处理_地表反射率、温度的反演以及植被指数的计算

地表温度反演实验报告

遥感原理与及应用 地表温度反演实验报告 专业:地理信息系统 班级: XXXXXXXX 姓名: XXX 学号: XXXXXX 成绩: 指导教师: XXX 2014年12月17日 一. 实验目的 1. 根据实际需要,学会在网上(如中国科学院遥

感与数字地球研究所数据共享网)下载研究区内的遥感数据; 2. 掌握在ENVI中实现简单的地表温度反演的原理与步骤。 二. 实验任务 1. 在中国科学院遥感与数字地球研究所数据共享网上订购并下载覆盖郫县的TM影像; 2. 在ENVI中实现简单的地表温度反演算法。 三. 实验数据 在中国科学院遥感与数字地球研究所数据共享网上下载的覆盖郫县地区的TM影像。

四. 实验原理 图1 TM 影像地表温度反演流程 1. 地表温度(Land Surface Temperature)反演公 式为: 2 1(1)K LST K In R ε=+, 其中,R m DN d =?+,2111607.76K W m sr m μ---=???,21260.56K K =。 2. 根据TM 辐射定标原理,热红外波段表观辐亮 度可以进一步写作: max min 6min 255L L R DN L -=?+, 其中LmaxBand6=15.303 , LminBand6=1.238。 3. 地表比辐射率ε为同温度下地表辐射能与黑体 辐射能的比率,其可以表示为: 1.0090.047(In )(0)NDVI NDVI ε=+>,

其中,4343 TM TM NDVI TM TM -=+,当0NDVI <=时(如水体)地表比辐射率取常数1。 五. 实验步骤 1. TM 数据下载 数 据查询和下载网址https://www.360docs.net/doc/6f18674499.html,/query.html ,界面如图2 所示。 图2 中国科学院遥感与数字地球研究所数据共享 网址界面

遥感植被指数NDVI计算

本科学生综合性、设计性 实验报告 姓名宋国俊学号114130168 专业地理信息系统班级 实验课程名称遥感地学分析 实验名称NDVI计算 开课学期2011 至2012 学年下学期 云南师范大学旅游与地理科学学院编印 一、实验准备

1、实验目的和要求: 利用TM卫星数据,应用ENVI软件进行归一化植被指数的计算,及在此基础对研究 区进行植被覆盖率的提取,根据植被覆盖率进行一些应用分析。 2、实验材料及相关设备: 昆明影像数据(path/row:129/43(2002.02.09))ENVI及ArcGIS软件。 3、实验方法步骤及注意事项: 实验方法:利用ENVI及ArcGIS图像处理软件,参考软件的处理操作步骤,对图像进行处理。 注意事项:下载数据时应该严格遵照行列号来下载,下载的数据要包括完整的影像数据信息以便数据的预处理。 二、实验内容、步骤和结果(详细写清楚本次实验的完成的主要内容、具体 实施步骤和实验结果。) 1、实验内容 利用下载的昆明影像数据用ENVI进行NDVI计算,计算公式如下: NDVI=(NIR-R)/(NIR+R)(NIR为近红外波段,R为红光波段) 2、实验步骤 (1)对昆明影像数据进行辐射定标: Ⅰ、启动ENVI File→Open External File→Landsat→Geo TIFF with metadata→Enter Landsat MetaData Filenames(输入元数据) Ⅱ、Spectral→Preprocessing→Calibration utilities→Landsatcalibration→Landsat calibration input file→输 入第一步的元数据 Ⅲ、将辐射定标后的数据转化为BIL格式:

landsat 遥感影像地表温度反演教程

基于辐射传输方程的Landsat数据地表温度反演教程 一、数据准备 Landsa 8遥感影像数据一景,本教程以重庆市2015年7月26日的=行列号为(128,049)影像(LC8LGN00)为例。 同时需提前查询影像的基本信息(详见下表) 标识日期采集时间中心经度中心纬度LC8LGN002016/7/263:26:56 ………………………… 二、地表温度反演的总体流程 三、具体步骤 1、辐射定标 地表温度反演主要包括两部分,一是对热红外数据,二是多光谱数据进行辐射定标。 (1)热红外数据辐射定标

选择Radiometric Correction/Radiometric Calibration。在File Selection对话框中, 选择数据LC8LGN02_MTL_Thermal,单击Spectral Subset选择Thermal Infrared1(),打开Radiometric Calibration面板。 Scale factor 不能改变,否则后续 计算会报错。保持默认1即可。 (2)多光谱数据辐射定标 选择要校正的多光谱数据“LC8LGN02_MTL_MultiSpectral” 进行辐射定标。 因为后续需要对多光谱数据进行大气校正,可直接单击Apply Flaash Settings, 如下图。

注意与热红外数据辐射定标是的差 别,设置后Scale factor值为。 2、大气校正 本教程选择Flaash 校正法。FLAASH Atmospheric Correction,双击此工具,打开辐射定标的数据,进行相关的参数设置进行大气校正。 注意:如果在多光谱数据辐射定标时Scale factor值忘记设置,可在本步骤中打开辐射定标数时设置single scale faceor 值为,若已设置,则默认值为1即可。 1)Input Radiance Image:打开辐射定标结果数据; 2)设置输出反射率的路径,由于定标时候; 3)设置输出FLAASH校正文件的路径,最优状态:路径所在磁盘空间足够大; 4)中心点经纬度Scene Center Location:自动获取; 5)选择传感器类型:Landsat-8 OLI;其对应的传感器高度以及影像数据的分辨 率自动读取; 6) 设置研究区域的地面高程数据;

植被指数

在遥感应用领域,植被指数已广泛用来定性和定量评价植被覆盖及其生长活力。由于植被光谱表现为植被、土壤亮度、环境影响、阴影、土壤颜色和湿度复杂混合反应,而且受大气空间—时相变化的影响,因此植被指数没有一个普遍的值,其研究经常表明不同的结果。研究结果表明,利用在轨卫星的红光和红外波段的不同组合进行植被研究非常好,这些波段在气象卫星和地球观测卫星上都普遍存在,并包含90%以上的植被信息,这些波段间的不同组合方式统被称为植被指数。 植被指数有助于增强遥感影像的解译力,并已作为一种遥感手段广泛应用于土地利用覆盖探测、植被覆盖密度评价、作物识别和作物预报等方面,并在专题制图方面增强了分类能力。植被指数还可用来诊断植被一系列生物物理参量:叶面积指数(LAI)、植被覆盖率、生物量、光合有效辐射吸收系数(APAR)等;反过来又可用来分析植被生长过程:净初级生产力(NPP)和蒸散(蒸腾)等。 为了估算和监测植被覆盖,最早发展了比值植被指数(RVI)。但RVI对大气影响敏感,而且当植被覆盖不够浓密时(小于50%),它的分辨能力也很弱,只有在植被覆盖浓密的情况下效果最好。归一化差异植被指数(NDVI)对绿色植被表现敏感,它可以对农作物和半干旱地区降水量进行预测,该指数常被用来进行区域和全球的植被状态研究。对低密度植被覆盖,NDVI对于观测和照明几何非常敏感。但在农作物生长的初始季节,将过高估计植被覆盖的百分比;在农作物生长的结束季节,将产生估计低值。继之,将各波段反射率以不同形式进行组合来消除外在的影响因素,如遥感器定标、大气、观测和照明几何条件等。这些线性组合或波段比值的指数发展满足特定的遥感应用,如作物产量、森林开发、植被管理和探测等。农业植被指数(A VI)针对作物生长阶段测量绿色植被;多时相植被指数(MTVI),将两个不同日期的数值简单相减,是为了观测两个日期植被覆盖条件的变化和作物类型的分类,并用来探测由于火灾和土地流失造成的森林覆盖变化。归一化差异绿度指数(NDGI),可用来对不同活力植被形式进行检验。归一化差异指数(NDI)建立了光谱反射率和棉花作物残余物的表面覆盖率的关系,以用来对作物残余物的制图。 近年来,随着高光谱分辨率遥感的发展以及热红外遥感技术的应用,又发展了红边植被指数、导数植被指数(DVI)、温度植被指数(Ts-VI)、生理反射植被指数(PRI)。“红边”的一般定义为叶绿素吸收红边斜率的拐点。红边位置灵敏于叶绿素a、b的浓度和植被叶细胞的结构。为获取红边位置信息,Miller 等用一个倒高斯模型拟合红边斜率。导数植被指数由于它能压缩背景噪音对目标信号的影响或不理想的低频信号,被应用在目前的高光谱遥感研究中,尤其是在利用高光谱遥感提取植被化学成份信息方面得到成功的应用。近年来的经验研究表明:热红外辐射(如土面亮度温度)和植被指数在大尺度范围遥感应用中可提高土地覆盖的制图和监测精度。生理反射植被指数是针对高光谱遥感的特点,对植被生化特性的短期变化(如一天的植被的光合作用)进行探测。 植被指数按发展阶段可分为三类:第一类植被指数基于波段的线性组合(差或和)或原始波段的比值,由经验方法发展的,没有考虑大气影响、土壤亮度和土壤颜色,也没有考虑土壤、植被间的相互作用(如RVI等)。它们表现了严重的应用限制性,这是由于它们是针对特定的遥感器(Landsat MSS)并为明确特定应用而设计的。第二类植被指数大都基于物理知识,将电磁波辐射、大气、植被覆盖和土壤背景的相互作用结合在一起考虑,并通过数学和物理及逻辑经验以及通过模拟将原植被指数不断改进而发展的(如PVI、S A VI、MSA VI、TSA V

landsat 遥感影像地表温度反演 教程(大气校正法)

基于辐射传输方程的Landsat数据地表温度反演教 程 一、数据准备 Landsa 8遥感影像数据一景,本教程以重庆市2015年7月26日的=行列号为(128,049)影像(LC81280402016208LGN00)为例。 同时需提前查询影像的基本信息(详见下表) 标识日期采集时 间 中心经度中心纬度 LC81280402016208LGN002016/7/263:26:56106.1128830.30647…………………………注:基本信息在影像头文件中均可查询到,采集时间为格林尼治时间。 二、地表温度反演的总体流程

三、具体步骤 1、辐射定标 地表温度反演主要包括两部分,一是对热红外数据,二是多光谱数据进行辐射定标。 (1)热红外数据辐射定标 选择Radiometric Correction/Radiometric Calibration。在File Selection对话框中,选择数据LC81230322013132LGN02_MTL_Thermal,单击Spectral Subset选择Thermal Infrared1(10.9),打开Radiometric Calibration面板。

Scale factor 不能改变,否则后续计算会报错。保持默认1即可。 Scale factor 不能改变,否则后续计算会报错。保持默认1即可。 (2)多光谱数据辐射定标 选择要校正的多光谱数 据“LC81230322013132LGN02_MTL_MultiSpectral” 进行辐射定标。 因为后续需要对多光谱数据进行大气校正,可直接单击Apply Flaash Settings,如下图。

基于ETM数据地表温度反演实验单通道算法操作文档

基于ETM 数据煤田火区地表温度反演的研究实验操作步骤与流程 算法:单通道算法,其公式为 Τs =γ ε?1 ψ1L sensor +ψ2 +ψ3 +δ(1) γ= c 2L sensor T sensor 2 λ4 c 1 L sensor +λ?1 ?1 (2) δ=?γL sensor +T sensor (3) L sensor =L min λ + L max λ ?L min λ Q DN Q max (4) T sensor = K 2 ln 1+K 1L λ (5) K 1=666.09 mW ?cm ?2?sr ?1?um ?1 , K 2=1282.71K ψ1=0.1471?ω2?0.1558ω+1.1234 (6) ψ2=?1.1836?ω2?0.3761ω?0.5289(7) ψ3=?0.0455?ω2+1.8719ω?0.3907 (8) ω=0.177e +0.339 (9) e =0.6108?exp 17.27 Τ0 ?273 237.3+Τ 0?273 ?RH (10) 先来说明单通道算法公式(1)中γ,L sensor ,δ,ψ1,ψ2,ψ3等这些参数的计算过程,地表比辐射率ε的计算过程稍后在说明。 (1)对于ψ1,ψ2,ψ3的计算,只要查阅资料得知相对湿度RH ,与温度Τ0后,就可以算出大气中水蒸汽的含量ω,进而可以根据公式算出ψ1,ψ2,ψ3。 (2)对于L sensor 的计算,也就是辐射校正的过程,主要目的在于把影像中像元的灰度值转化成辐亮度L sensor ,公式(4)中的L min λ ,L max λ ,Q max 在影像头文件中可以找到,Q DN 就是所要进行校正的影像。在ENVI 中的操作如下: Basic tools → band math ,然后点开出现如下左侧对话框: 对于ETM 数据热红外波段高增益就是L sensor =3.2+9.45?Q DN 255 然后点ok 出现如下右侧对话框:

定量遥感_地表温度反演

遥感数字影像处理 作品名称:黄河三角洲地表温度反演 +学号: 小组成绩:

一、概述 1、作业背景: 地表温度是很多环境模型的一个重要参数,在大气与地表的能量与物质交换,天气预报,全球洋流循环,气候变化等研究领域有重要的应用。利用热红外遥感可以得到大围的地表温度面状信息,与传统的地表温度测量方式相比,具有快速、便捷、测量围大、信息连续等特点,因此利用热红外遥感数据反演地面温度得到了广泛的应用 2、作业意义: 黄河三角洲是黄河携带大量泥沙在渤海凹陷处沉积形成的冲积平原,位处黄河入处的黄河三角洲自然保护区正是以保护河口湿地生态系统和珍稀、濒危鸟类为主的湿地类型保护区。以利津为顶点,北到徒骇河口,南到小清河口,呈扇状三角形,面积5,450平方公里。地面平坦,在海拔10公尺以下。向东撒开的扇状地形,海拔高程低于15米,面积达5450平方公里。三角洲属,温带季风性气候。四季分明,光照充足,区自然资源丰富。 黄河口湿地生态旅游区占地23万亩,都处在黄河三角洲之,地貌以芦苇沼泽,湿地为主,其次为河口滩地,带翅碱蓬盐滩湿地,灌丛疏林湿地以及人工槐林湿地等。集自然景观与人文景观为一体,既有沧海桑田的神奇与壮阔,又有黄龙入海的壮观和长河落日的静美,是人们休闲、度假、观光科普的最佳场所。 二、数据介绍 数据来自地理空间数据云,Landsat 4-5 TM(陆地卫星4、5号,1982年发射后运行至今,携带有TM传感器)的相关遥感影像作为研究数据,研究黄河三角洲温度分布状况。 实验数据:2010年9月11号黄河三角洲图像(中心经度:118.8878w,中心纬度:37.4815n) 三、基本概念及技术流程图 3.1、基本概念:

基于热红外波段的地表温度反演实验报告

遥感原理与应用 地表温度反演 实验报告 专业:地理信息系统 班级:XXXXXXXX 姓名:XXX 学号:XXXXXX 成绩: 指导教师:XXX 2014年12月17日

一. 实验目的 1. 根据实际需要,学会在网上(如中国科学院遥感与数字地球研究所数据共享网)下载研究区内的遥感数据; 2. 掌握在ENVI中实现简单的地表温度反演的原理与步骤。 二. 实验任务 1. 在中国科学院遥感与数字地球研究所数据共享网上订购并下载覆盖郫县的TM影像; 2. 在ENVI中实现简单的地表温度反演算法。 三. 实验数据 在中国科学院遥感与数字地球研究所数据共享网上下载的覆盖郫县地区的TM影像。 四. 实验原理 图1 TM影像地表温度反演流程

1. 地表温度(Land Surface Temperature)反演公式为: 2 1(1) K LST K In R ε= +, 其中,R m DN d =?+,2111607.76K W m sr m μ---=???,21260.56K K =。 2. 根据TM 辐射定标原理,热红外波段表观辐亮度可以进一步写作: max min 6min 255 L L R DN L -= ?+, 其中LmaxBand6=15.303 , LminBand6=1.238。 3. 地表比辐射率ε为同温度下地表辐射能与黑体辐射能的比率,其可以表示为: 1.0090.047(In ) (0)NDVI NDVI ε=+>, 其中,4343 TM TM NDVI TM TM -=+,当0NDVI <=时(如水体)地表比辐射率取常数1。 五. 实验步骤 1. TM 数据下载 数据查询和下载网址https://www.360docs.net/doc/6f18674499.html,/query .html ,界面如图2所示。 图2 中国科学院遥感与数字地球研究所数据共享网址界面

主要植被指数类型及其应用条件

主要植被指数类型及其应用条件 分类:遥感知识 2008.7.2 08:55 作者:晓雪天飞 | 评论:0 | 阅读:79 在遥感应用领域,植被指数已广泛用来定性和定量评价植被覆盖及其生长活力。由于植被光谱表现为植被、土壤亮度、环境影响、阴影、土壤颜色和湿度复杂混合反应,而且受大气空间—时相变化的影响,因此植被指数没有一个普遍的值,其研究经常表明不同的结果。研究结果表明,利用在轨卫星的红光和红外波段的不同组合进行植被研究非常好,这些波段在气象卫星和地球观测卫星上都普遍存在,并包含90%以上的植被信息,这些波段间的不同组合方式统被称为植被指数。植被指数有助于增强遥感影像的解译力,并已作为一种遥感手段广泛应用于土地利用覆盖探测、植被覆盖密度评价、作物识别和作物预报等方面,并在专题制图方面增强了分类能力。植被指数还可用来诊断植被一系列生物物理参量:叶面积指数(LAI)、植被覆盖率、生物量、光合有效辐射吸收系数(APAR)等;反过来又可用来分析植被生长过程:净初级生产 力(NPP)和蒸散(蒸腾)等。 为了估算和监测植被覆盖,最早发展了比值植被指数(R VI)。但RVI对大气影响敏感,而且当植被覆盖不够浓密时(小于50%),它的分辨能力也很弱,只有在植被覆盖浓密的情况下效果最好。归一化差异植被指数(NDVI)对绿色植被表现敏感,它可以对农作物和半干旱地区降水量进行预测,该指数常被用来进行区域和全球的植被状态研究。对低密度植被覆盖,NDVI对于观测和照明几何非常敏感。但在农作物生长的初始季节,将过高估计植被覆盖的百分比;在农作物生长的结束季节,将产生估计低值。继之,将各波段反射率以不同形式进行组合来消除外在的影响因素,如遥感器定标、大气、观测和照明几何条件等。这些线性组合或波段比值的指数发展满足特定的遥感应用,如作物产量、森林开发、植被管理和探测等。农业植被指数(AVI )针对作物生长阶段测量绿色植被;多时相植被指数(MTVI),将两个不同日期的数值简单相减,是为了观测两个日期植被覆盖条件的变化和作物类型的分类,并用来探测由于火灾和土地流失造成的森林覆盖变化。归一化差异绿度指数(NDGI),可用来对不同活力植被形式进行检验。归一化差异指数(NDI)建立了光谱反射率和棉花作物残余物的表面覆盖率的关系,以用来对作物残余物的制图。 近年来,随着高光谱分辨率遥感的发展以及热红外遥感技术的应用,又发展了红边植被指数、导数植被指数(DVI)、温度植被指数(Ts-VI)、生理反射植被指数(PRI)。“红边” 的一般定义为叶绿素吸收红边斜率的拐点。红边位置灵敏于叶绿素a、b的浓度和植被叶细胞的结构。为获取红边位置信息,Miller 等用一个倒高斯模型拟合红边斜率。导数植被指数由于它能压缩背景噪音对目标信号的影响或不理想的低频信号,被应用在目前的高光谱遥感研究中,尤其是在利用高光谱遥感提取植被化学成份信息方面得到成功的应用。近年来的经验研究表明:热红外辐射(如土面亮度温度)和植被指数在大尺度范围遥感应用中可提高土地覆盖的制图和监测精度。生理反射植被指数是针对高光谱遥感的特点,对植被生化特性的短期 变化(如一天的植被的光合作用)进行探测。 植被指数按发展阶段可分为三类:第一类植被指数基于波段的线性组合(差或和)或原始波段的比值,由经验方法发展的,没有考虑大气影响、土壤亮度和土壤颜色,也没有考虑土壤、植被间的相互作用(如RVI 等)。它们表现了严重的应用限制性,这是由于它们是针对特定的遥感器(Landsat MSS)并为明确特定应用而设计的。第二类植被指数大都基于物理知识,将电磁波辐射、大气、植被覆盖和土壤背景的相互作用结合在一起考虑,并通过数学和物理及逻辑经验以及通过模拟将原植被指数不断改进而发展的(如PVI、SAVI、MSAVI、TSAV I、ARVI、GEMI、AVI、NDVI等)。它们普遍基于反射率值、遥感器定标和大气影响并

近地表气温遥感反演方法(定)

近地表气温遥感反演方法研究进展 摘要:气温是描述陆地环境条件的重要参数,也是气象观测资料中最基本观测项目之一。结合遥感的空间分辨率高,覆盖面广,资料同步性强的特点,运用遥感方法反演气温弥补了传统方法的缺点,气象卫星的发展,为其提供了技术平台支持。本文从近地表气温反演的各种不同的方法进行阐述,分别从半统计方法、统计方法、多因子分析方法和遗传算法方面进行叙述。 关键词:气温;遥感;反演方法这 1.引言 气温是描述陆地环境条件的重要参数,也是气象观测资料中最基本观测项目之一。由于近地球表面气温控制着大部分陆地表面过程(如光合作用、呼吸作用及陆地表面蒸散过程等),因此,气温是各种植物生理、水文、气象、环境等模式或模型中的一个非常重要的近地表气象参数输入因子[1,2]。高山、水体、植被以及土壤含水量等,以至于表现出很大的空间异质性。我们常常听说的气温,是有气象观测站在植有草皮的观测场所中离地面1.5米高的百叶箱中的温度表测得的。由于温度表保持了良好的通风性并避免了阳光直接照射,因而具有较好的代表性,这个温度基本上反映了观测地点(当地)的气温。但是随着数值预报的发展,常规的探测手段越来越不能满足现代业务预报的需要。特别是在海洋,沙漠,沙漠等的荒僻的地区,基本不可能设立气象站点,即使设立站点也十分稀疏,这就使得我们所获取的气温资料十分有限,要想研究特定位置的气温水平空间分布状况及其内部结构特征等都有一定的困难。同时在不同地形和不同景观条件下,一个气象站观测的数据能够代表的范围有很大差别,即使通过空间内插过程也不能够获得满意的气温空间分布,从影响模型模拟结果[3]。 而遥感具有覆盖面广,空间分辨率高,资料同步性强的特点,所以利用卫星遥感手段资料反演近地表的大气温度就弥补了传统手段的缺陷,不论在现实意义还是经济意义上,都是非常重要的。随着大气科学理论和遥感探测技术的迅速发展,在全球大气观测系统中,卫星探测技术将会成为中流砥柱。同时,从60年代有了气象卫星之后,给遥感反演温度提供了可靠的现实依据。 目前反演大气参数的方法基本可以分为三类:物理方法、半统计方法和统计方法。物理方法是从辐射传输方程出发,根据已知的一些大气知识对方程进行简化,从而达到求解的目的,至今对它们的物理机制认识得还很不清楚,所以极大地限制了该方法的应用与发展。半统计方法是采用物理方法与实测资料的结合,建立个大气参数间的关系,然后利用实测资料进行各参数的反演。目前在该领域采用比较多的是统计方法,它主要包括单因子线性回归分析方法、多元统计方法、Bowen 比分析方法、遗传算法和神经网络方法等,利用这些方法时需考虑多种影响因素,从而建立各因素之间的相互关系[4]。 本文具体从半统计方法和统计方法对气温反演进行研究,着重论述了统计方法反演近地表气温,考虑了热红外和微波两个波段对气温的反演。

Landsat8 TIRS 地表温度反演

热红外遥感(Infrared Remote Sensing)是指传感器工作波段限于红外波段范围之内的遥感。即利用星载或机载传感器收集、记录地物的热红外信息,并利用这种热红外信息来识别地物和反演地表参数如温度、湿度和热惯量等。目前有很多的卫星携带了热红外传感器,包括ASTER、AVHRR、MODIS、TM/ETM+/ TIRS等。 目前,地表温度反演算法主要有以下三种:大气校正法(也称为辐射传输方程:Radiative Transfer Equation——RTE)、单通道算法和分裂窗算法。 本实例是基于大气校正法,利用Landsat8 TIRS反演地表温度。 基本原理:首先估计大气对地表热辐射的影响, 然后把这部分大气影响从卫星传感器所观测到的热辐射总量中减去, 从而得到地表热辐射强度, 再把这一热辐射强度转化为相应的地表温度。 具体实现为:卫星传感器接收到的热红外辐射亮度值Lλ由三部分组成:大气向上辐射亮度L↑,地面的真实辐射亮度经过大气层之后到达卫星传感器的能量;大气向下辐射到达地面后反射的能量。卫星传感器接收到的热红外辐射亮度值Lλ的表达式可写为(辐射传输方程): Lλ = [εB(T S) + (1-ε)L↓]τ+ L↑(1.1) 式中,ε为地表比辐射率,T S为地表真实温度(K),B(T S)为黑体热辐射亮度,τ为大气在热红外波段的透过率。则温度为T的黑体在热红外波段的辐射亮度B(T S)为: B(T S) = [Lλ - L↑- τ(1-ε)L↓]/τε(1.2) T s可以用普朗克公式的函数获取。

T S = K2/ln(K1/ B(T S)+ 1) (1.3) 对于TM,K1 =607.76 W/(m2*μm*sr),K2 =1260.56K。 对于ETM+,K1=666.09 W/(m2*μm*sr),K2 =1282.71K。 对于TIRS Band10,K1= 774.89 W/(m2*μm*sr),K2 = 1321.08K。 从上可知此类算法需要2个参数:大气剖面参数和地表比辐射率。大气剖面参数在NASA提供的网站(https://www.360docs.net/doc/6f18674499.html,/)中,输入成影时间以及中心经纬度可以获取大气剖面参数。适用于只有一个热红外波段的数据,如Landsat TM /ETM+/TIRS数据。 主要内容就是使用BandMath工具计算公式(1.2)和公式(1.3),处理流程如下图所示。

landsat 遥感影像地表温度反演教程

基于辐射传输方程的Landsat 数据地表温度反演教程 一、数据准备 Landsa 8遥感影像数据一景,本教程以重庆市2015年7月26日的=行列号为(128,049)影像(LC8LGN00)为例。 同时需提前查询影像的基本信息(详见下表) 二、地表温度反演的总体流程 三、具体步骤 1、辐射定标 地表温度反演主要包括两部分,一是对热红外数据,二是多光谱数据进行辐射定标。 (1)热红外数据辐射定标 选择Radiometric Correction/Radiometric Calibration 。在File Selection 对话框中,选择数据LC8LGN02_MTL_Thermal ,单击Spectral Subset 选择Thermal Infrared1(),打开Radiometric Calibration 面板。 (2)多光谱数据辐射定标 选择要校正的多光谱数据“进行辐射定标。 Settings ,如下图。 2、大气校正

本教程选择Flaash 校正法。FLAASH Atmospheric Correction,双击此工具,打开辐射定标的数据,进行相关的参数设置进行大气校正。 注意:如果在多光谱数据辐射定标时Scale factor值忘记设置,可在本步骤中打开辐射定标数时设置single scale faceor 值为,若已设置,则默认值为1即可。 1)Input Radiance Image:打开辐射定标结果数据; 2)设置输出反射率的路径,由于定标时候; 3)设置输出FLAASH校正文件的路径,最优状态:路径所在磁盘空间足够大; 4)中心点经纬度Scene Center Location:自动获取; 5)选择传感器类型:Landsat-8 OLI;其对应的传感器高度以及影像数据的分辨率自动读取; 6) 设置研究区域的地面高程数据; 7)影像生成时的飞行过境时间:在layer manager中的Lc8数据图层右键选择View Metadata,浏览time字段获取成像时间; 注:也可以从元文件“”中找到,具体名称:DATE_ACQUIRED = 2013-05-12;SCENE_CENTER_TIME = 02:55:; 8) 大气模型参数选择:Sub-Arctic Summer(根据成像时间和纬度信息选择); 9) 气溶胶模型Aerosol Model:Urban,气溶胶反演方法Aerosol Retrieval:2-band(K-T); 10) 其他参数按照默认设置即可。 11) 多光谱参数设置中, K-T反演选择默认模式:Defaults->Over-Land Retrieval standard (600:2100) 波谱响应函数:默认指向.. \Program Files\Exelis\ENVI51\classic\filt_func\ 把它重新指向:..\Program Files\Exelis\ENVI51\resource\filterfuncs\ 注:这是因为版本的一个小bug,即Classic中的L8的波谱响应函数不正确,另外一个一劳永逸的方法是:将

ENVI中常见植被指数介绍

作业9 植被指数 植被指数 概念:利用卫星不同波段探测数据组合而成的,能反映植物生长状况的指数。 植物叶面在可见光红光波段有很强的吸收特性,在近红外波段有很强的反射特性,这是植被遥感监测的物理基础,通过这两个波段测值的不同组合可得到不同的植被指数。 不同的植被覆盖类型可以通过其特有的光谱特征进行区分,这是由于叶绿素在红波段内对太阳辐射的吸收以及叶片细胞结构对红外波段内太阳辐射的强反射。 Broadband Greenness(5 indices)(宽带绿色指标(5)) 宽带绿度指数可以简单度量绿色植被的数量和生长状况,它对植物的叶绿素含量、叶子表面冠层、冠层结构比较敏感,这些都是植被光合作用的主要物质,与光合有效辐射(fAPAR)也有关系。宽带绿度指数常用于植被物候发育的研究,土地利用和气候影响评估,植被生产力建模等。宽带绿度指数选择的波段范围在可见光和近红外,一般的多光谱都包含这些 波段。下面的公式中规定波段的中心波长:ρNIR=800nm,ρRED=680nm,ρBLUE=450nm。 1. Normalized Difference Vegetation Index归一化植被指数 增强在近红外波段范围绿叶的散射与红波段范围叶绿素的吸收差异。 简称NDVI: NDVI=(NIR-R)/(NIR+R) (1)应用:检测植被生长状态、植被覆盖度和消除部分辐射误差等; (2)-1<=NDVI<=1,负值表示地面覆盖为云、水、雪等,对可见光高反射;0表示有岩石或裸土等,NIR和R近似相等;正值,表示有植被覆盖,且随覆盖度增大而增大; (3)NDVI的局限性表现在,用非线性拉伸的方式增强了NIR和R的反射率的对比度。对于同一幅图象,分别求RVI和NDVI时会发现,RVI值增加的速度高于NDVI增加速度,即NDVI 对高植被区具有较低的灵敏度; (4)NDVI能反映出植物冠层的背景影响,如土壤、潮湿地面、学、枯叶、粗超度等,且与植被覆盖有关; 2.Simple Ratio Index比值植被指数 在近红外波段范围绿叶的散射与红波段范围叶绿素吸收的比值。 简称SR:SR=ρNIR/ρRED 在LAI 值很高,即植被茂密时其灵敏度会降低.SR值的范围是0~30,一般绿色植被区的范围是2~8 3.Enhanced Vegetation Index 增强植被指数 增强NDVI,解决土壤背景和大气气溶胶对茂密植被的影响。 简称:EVI

遥感反演地表温度

遥感地学分析 实验报告 成绩: 姓名: 学号: 班级: 题目:

课程实验报告要求 一、实验目的 掌握并熟悉band math的操作,对建筑用地分离用的几个建筑指数;学会面对对象分类;学会反演地表温度。 二、实验准备 软件准备: 数据准备:中等分辨率数据AA、高分辨率数据、热岛监测band6 三、实验步骤 1.中等分辨率数据中城市范围的提取: (1)加载数据AA,首先在BAND MATH里面计算图像的NDVI值其公式:(float(b1)-float(b2))/(float(b1)+float(b2)),正确输入公式后点击OK; 在接下来的界面中为公式中b1和b2赋予相应的波段,及近红外波段和红色波段,选择合适的路径即可点击OK; 结果如图:

(2)同样用上述发放计算图像的归一化建筑指数(NDBI值),公式同样使用前面所用,但是后面给b1和b2赋予第五和第四波段就行,同样选择合适的路径即可; 结果如图:

(3)利用前面所计算的NDVI和NDBI值计算改进的归一化裸露指数(MNDBI),MNDBI= NDBI+(1-NDVI),首先在BAND MATH中输入一下公式并b1和b2赋予NDBI的波段和NDVI的波段; 结果如图:

(3)同样使用上述方法计算城镇用地指数(ULI)计算公式为ULI=NDBI and NDVI,同样在BAND MATH中输入公式并赋予相应的波段,在设置好输出路径即可; 结果如图:

(4)三种指数的阈值的设置,通过查看三种指数的直方图可以为每种指数的分离建筑用地提取合适的阈值;通过查看NDBI的阈值设置为,并将其在band math中进行二值化; 通过查看MNDBI的阈值设置为,并将其在band math中进行二值化;

erdas 北京地表温度反演_实习报告

Landsat TM6 地表温度反演实习报告 实习目的: 1、TM Level 1 数据的热红外波段辐射定标:学会阅读头文件,找出所需定标参数;利用定标参数将TM图像热红外波段DN值转换为辐射亮度; 2、运用单通道法,反演地表温度反演 实习步骤: 1.加载图像:import—>选择需要加载的图像 2.分部建模 2.1求算NDVI的建模如图所示

第三第四波段的辐射定标运算的增益和偏移均来自数据的头文件。 2.2第六波段辐射定标计算

说明:第六波段的辐射定标计算的增益和偏移不能再用头文件中的增益和偏移,否则误差会很大造成无法显示,因此必须在老师给的表格中查找。 然后再用老师给的公式进行计算. 从表格中找出L min 和L max 输入下面公式 255 G min max L L rescale -= min B L rescale = rescale cal rescale B Q G L +?=λ 即可求出增益和偏移,然后进行辐射定标运算即可求出所需结果。

2.3求解地表反射率(λε)的建模运算。 所使用的经验公式根据Van 的经验公式: )ln(047.00094.1NDVI +=λε 2.4求解)T (B s λ的建模。)T (B s λ为温度为s T 的黑体在热红外波段的辐射亮度。

使用的公式是 L L o o o s ↓ ↑ -- -=λ λ λ λλλλλεετε1L )T (B )(,其中 L o ↓ λ 表示大气向下辐射亮度,模拟结果为1.68 Wm -2um -1Sr -1,L o ↑ λ表示大气向上辐射亮度, 模拟结果为1.74 Wm -2um -1Sr -1,λτo 为大气在热红外波段的透过率,模拟结果为0.77。λε为上一步求解的结果。 2.5反演温度的建模

定量遥感:地表温度反演

作品名称:黄河三角洲地表温度反演 姓名+学号: 小组成绩:

一、概述 1、作业背景: 地表温度是很多环境模型的一个重要参数,在大气与地表的能量与物质交换,天气预报,全球洋流循环,气候变化等研究领域有重要的应用。利用热红外遥感可以得到大范围的地表温度面状信息,与传统的地表温度测量方式相比,具有快速、便捷、测量范围大、信息连续等特点,因此利用热红外遥感数据反演地面温度得到了广泛的应用 2、作业意义: 黄河三角洲是黄河携带大量泥沙在渤海凹陷处沉积形成的冲积平原,位处黄河入海口处的黄河三角洲自然保护区正是以保护河口湿地生态系统和珍稀、濒危鸟类为主的湿地类型保护区。以利津为顶点,北到徒骇河口,南到小清河口,呈扇状三角形,面积5,450平方公里。地面平坦,在海拔10公尺以下。向东撒开的扇状地形,海拔高程低于15米,面积达5450平方公里。三角洲属,温带季风性气候。四季分明,光照充足,区内自然资源丰富。 黄河口湿地生态旅游区占地23万亩,都处在黄河三角洲之内,地貌以芦苇沼泽,湿地为主,其次为河口滩地,带翅碱蓬盐滩湿地,灌丛疏林湿地以及人工槐林湿地等。集自然景观与人文景观为一体,既有沧海桑田的神奇与壮阔,又有黄龙入海的壮观和长河落日的静美,是人们休闲、度假、观光科普的最佳场所。 二、数据介绍 数据来自地理空间数据云,Landsat 4-5 TM(陆地卫星4、5号,1982年发射后运行至今,携带有TM传感器)的相关遥感影像作为研究数据,研究黄河三角洲温度分布状况。 实验数据:2010年9月11号黄河三角洲图像(中心经度:118.8878w,中心纬度:37.4815n) 三、基本概念及技术流程图 3.1、基本概念:

NDVI指数在植被研究中的应用及其评价

NDVI指数在植被研究中的应用及其评价 归一化植被指数NDVI是目前应用最广泛的植被指数。不同的NDVI值对应不同的土地覆被类型,可以进行土地覆被方面的研究;NDVI20余年的时序资料可用于研究植被动态,以及与相关生态因子的相关性研究;卫星遥感技术具有覆盖面广、获取数据快等特点,可以用于环境、植被等的监测;应用NDVI发展生态学模型,可以开展生态学模拟研究,并在实地检验过程中完善。NDVI指数虽然存在容易饱和、校正有限、噪音较多等缺点,而且已经发展了新的替代性指数,但其特有的优点仍将使其在今后的研究中发挥重大作用。 植被指数是基于植物的光谱特征,将可见光与近红外遥感光谱观测通道进行组合运算而得到的数据。迄今为止,植被指数已经发展出40 余种。其中AVHRR-NDVI是目前应用最广泛的植被指数,应用领域包括土地利用、产量预报、区域检测以及生物地理学和生态学研究等。NDVI已经积累了20 余年的数据资料Anyamba Tucker,2005,应用研究颇具成效。 1、NDVI指数原理 植物叶片组织对蓝光470nm和红光650nm有强烈吸收,而对绿光和红外光强烈反射叶片中心的海绵组织和叶片背面组织对近红外辐射NIR,700-1000nm 反射较强。从红光Red到红外光,裸地反射率较高但增幅很小。植被覆盖越高,红光反射越小,近红外光反射越大。红光吸收很快达到饱和,而近红外光反射随着植被增加而增加。所以,任何强化Red 和NIR 差别的数学变换都可以作为植被指数,来描述植被状况。归一化植被指数NDVI就被定义为:NIR/Red-1/ NIR/Red1。 在理想状况下,不考虑大气、土壤背景等的影响,太阳-地物-传感器位置相对固定,此时传感器受到的信号将没有信号丢失和噪音干扰。而现实中,遥感数据要受到大气、土壤和传感器角度等因素的影响,因此在使用时需要进行必要的校正。如AVHRR-NDVI,对瑞利散射和臭氧吸收作了校正,又通过最大值合成法MVC对其他噪音作了校正。 2、NDVI指数应用举例 2.1. 土地覆被研究 在合适的条件下,不同的NDVI值对应不同的土地覆盖类型,从而可以进行大尺度上的土地覆盖分类。王长耀等2005利用1995 年NOAA 十天合成的ch4、ch5 通道亮温,先计算出陆地表面温度Ts,然后用最大值合成法计算每月的最大Ts和NDVI,以每月最大Ts和NDVI建立NDVI-Ts 空间。根据像素点NDVI,Ts在空间中的位置矢量,求出矢量在空间中的方向角度,并作归一化处理,得对到温度植被角度NTVA。12 个月NTVA 做主成分变换提取前三个主分量辅以全年总NDVI和大于0℃Ts积温,用模糊K-均值法进行全国土地覆盖分类。研究结果表明,基于NDVI-Ts 空间的NTVA 与NDVI、Ts一起作为分类特征在土地覆盖分类中具有较高的分类精度,能够取得较好的分类效果。 植被盖度是土地覆被研究的重要内容。结合实地观测来验证NDVI指数的植被盖度估测方法,可以提高实际工作的效率。张云霞等2007选择中国北方温带典型草原为研究对象,运用样方叠加的方法,选择不同植被盖度的49 块样地,将地面实测数据和ASTER 遥感数据结合,建立植被盖度经验模型,研究植被指数与植被盖度的相关性以及地面样方尺度对经验模型的影响。发现NDVI在估测草原植被盖度上优于其它植被指数RVI NDGI,而且样方尺度的选择对植被盖度经验模型的建立又很大影响,中国北方典型草原区适合大样方、取中值的方法。夏照

地表温度反演

地表温度反演

目录 一:单窗算法 (3) 1.1实验原理 (3) 1.1.1TM/ETM波段的热辐射传导方程: (3) 1.1.2化简后最终的单窗体算法模型为: (3) 1.1.3大气平均作用温度Ta的近似估计 (3) 1.1.4大气透射率t6的估计 (3) 1.1.5地表比辐射率的估计 (4) 1.1.6像元亮度温度计算 (4) 1.1.7遥感器接收的辐射强度计算 (4) 1.2操作步骤 (5) 1.2.1研究区示意图 (5) 1.3实验结果 (7) 1.3.1灰度图像 (7) 1.3.2密度分割后图像 (7) 二:单通道算法 (8) 2.1实验原理 (8) 2.1.1单通道算法模型为: (8) 2.1.2大气平均作用温度Ta的近似估计 (8) 2.1.3大气透射率t6的估计 (8) 2.1.5像元亮度温度计算 (8) 2.1.6遥感器接收的辐射强度计算 (9) 2.2操作步骤 (9) 研究区示意图 (9) 2.2.1计算L6 (10) 2.2.2T6e6的求算 (10) 2.2.3计算R (10) 2.2.4计算t (10) 2.3实验结果 (11) 2.3.1温度反演灰度图像 (11) 2.3.2密度分割后的图像 (11) 三:辐射方程 (12) 3.1实验过程 (12) 3.1.1数据准备 (12) 3.1.2地表比辐射率的估计 (12) 3.1.3计算同温度下黑体的辐射亮度值 (12) 3.1.4反演地表温度 (13) 3.2温度反演结果 (13)

一:单窗算法 1.1实验原理 1.1.1TM/ETM波段的热辐射传导方程: B6(T6)=t6(q)[ ε6B6(Ts)+(1-ε6)I6~]+I6_ Ts是地表温度; T6是TM6的亮度温度; t6是大气透射率; ε6是地表辐射率。 B6(T6)表示TM6遥感器所接收到的热辐射强度; B6(Ts)是地表在TM6波段区间内的实际热辐射强度,直接决取于地表温度; I6~和I6_分别是大气在TM6波段区间内的向上和向下热辐射强度。 1.1.2化简后最终的单窗体算法模型计算Ts(地表温度): Ts={a(1-C-D)+[b(1-C-D)+C+D]T6-DTa}/C 式中 C6=τ6ε6(ε6为比辐射率,τ6为透射率) D6=(1-τ6)[1+t6(1-ε6)] a =-67.355351,b=0.458606 1.1.3大气平均作用温度Ta的近似估计 温度换算:T=t+273.15 本图为9月份拍摄,对于中纬度夏季平均大气Ta=16.0110+0.92621T0 取平均气温为25摄氏度时Ta = 312.15753 1.1.4大气透射率τ6的估计 τ6=0.974290-0.08007w,0.4≤w≤1.6。 w为水分含量,单位(g/cm2),这里,取w=1.0,计算得到τ6=0.89422

相关文档
最新文档