流体的湍流模型和湍流模拟
流体力学中的多尺度湍流模拟与建模

流体力学中的多尺度湍流模拟与建模湍流是流体力学中一个复杂而普遍存在的现象,涉及到多尺度的运动和相互作用。
在实际应用中,对湍流进行准确模拟和有效建模具有极大的重要性。
本文将介绍流体力学中的多尺度湍流模拟与建模方法,并探讨其在工程实践中的应用。
第一部分:湍流模拟方法湍流模拟是通过数值方法模拟湍流流动,以获得流场的详细信息。
在多尺度湍流模拟中,常用的模拟方法包括直接数值模拟(DNS)、大涡模拟(LES)、雷诺平均导数模拟(RANS)等。
直接数值模拟是一种最为精确的模拟方法,通过求解流动的Navier-Stokes方程来模拟湍流现象。
由于湍流流动存在广泛的空间和时间尺度,直接数值模拟的计算成本极高,通常只能用于精细的研究和小规模的流动模拟。
大涡模拟是在直接数值模拟的基础上发展起来的一种方法,通过将大涡的运动精确模拟,而对小涡采用模型进行参数化。
相比于直接数值模拟,大涡模拟的计算成本较低,可以在一定程度上模拟湍流的多尺度特性。
雷诺平均导数模拟是一种更为常用的湍流模拟方法,在工程实践中得到广泛应用。
该方法通过将流场的各个变量进行平均处理,然后引入湍流模型来描述湍流效应。
由于雷诺平均导数模拟只考虑了平均尺度上的湍流特性,无法准确模拟湍流的具体结构,因此在一些对流动细节要求较高的场合,该方法的精度有限。
第二部分:湍流建模方法湍流建模是为了在湍流模拟中描述湍流效应而引入的方法。
这些模型基于湍流的统计性质和物理规律,对湍流的各种参数进行描述和计算。
常用的湍流建模方法包括湍流能量方程、湍流应力传输方程等。
湍流能量方程是湍流建模中的一种重要方法,用于描述湍流的能量传输过程。
该方程通过考虑湍流的产生、消耗和传输等过程,以及湍流能量的耗散来描述湍流的演化规律。
基于湍流能量方程,可以计算湍流的能谱和湍流能量的分布等参数。
湍流应力传输方程是湍流建模中的另一种关键方法,用于描述湍流的动量传输过程。
该方程通过考虑湍流的各向异性和湍流的剪切作用等因素,计算湍流应力的分布和演化规律。
湍流初级教程

湍流初级教程湍流是流体中的一种不规则运动,它是由于流体受到不同速度、不同方向的扰动而产生的,这些扰动会交替出现,形成不规则的涡流,并使流体表现出随机性、非线性等特征。
在实际工程中,湍流是普遍存在的,因此对湍流的理解及控制至关重要。
下面是一个湍流初级教程:1.湍流模型及其分类。
为了研究湍流,通常需要引入数学模型来描述湍流的演化和传输。
湍流模型主要可以分为两类:基于数据和基于物理。
基于数据的模型依赖于实验或数值模拟得到的数据,而基于物理的模型则基于流体力学的基本方程和基本物理原理进行构建。
常用的基于物理的湍流模型有RANS(雷诺平均Navier-Stokes)模型、LES(大涡模拟)模型、DNS(直接数值模拟)模型等。
2.湍流特性。
湍流有许多特性,其中一些重要的特性包括:-非线性:湍流中的各向异性和非线性效应是由于流体运动中存在的不对称性和动量传输导致的。
这使得湍流的预测变得非常困难。
-随机性:由于湍流的随机性,湍流运动是无规律的,不能通过简单的规律和关系来描述。
-涡流:湍流中存在许多大小不同的涡流结构,这些涡流结构不断变化并相互作用。
彼此之间是复杂的相互作用,将能量从大的涡流向小的涡流传递,形成一个级联的涡流系统。
3.湍流模拟方法。
湍流模拟方法通常可以分为实验室实验、数值模拟两类。
实验室实验可用于观察湍流现象,同时获得一些数据供数值模拟使用;数值模拟可以通过计算机计算来模拟湍流现象,根据所选的数学模型进行湍流计算。
4.湍流控制方法。
对于某些工程问题,需要对湍流进行控制以达到优化的效果,湍流控制方法主要包括:-增加流体粘性。
-改变流体性质。
-利用机械设备控制湍流。
-利用外场控制湍流。
以上是一些湍流初级教程的介绍,希望对初学者有所帮助。
常用湍流模型及其在FLUENT软件中的应用

常用湍流模型及其在FLUENT软件中的应用常用湍流模型及其在FLUENT软件中的应用湍流是流体运动中不可避免的现象,它具有无规则、随机和混沌等特点,对于流体力学研究和工程应用具有重要影响。
为了更好地模拟流体运动中的湍流现象,并进行相关的工程计算和优化设计,科学家们提出了许多湍流模型。
本文将介绍一些常用的湍流模型,并探讨它们在流体动力学软件FLUENT中的应用。
1. 动力学湍流模型(k-ε模型)动力学湍流模型是最为经典和常用的湍流模型之一,主要通过求解湍流动能k和湍流耗散率ε来模拟湍流运动。
这一模型主要适用于较为简单的湍流流动,如外部流场和平稳湍流流动。
在FLUENT软件中,用户可以选择不同的k-ε模型进行计算,并对模型参数进行调整,以获得更准确的湍流模拟结果。
2. Reynolds应力传输方程模型(RSM模型)RSM模型是基于雷诺应力传输方程的湍流模型,它通过求解雷诺应力分量来描述湍流的速度脉动特性。
相比于动力学湍流模型,RSM模型适用于复杂的湍流流动,如边界层分离流动和不可压缩流动。
在FLUENT软件中,用户可以选择RSM模型,并对模型参数进行优化,以实现对湍流流动的更精确模拟。
3. 混合湍流模型混合湍流模型是将多个湍流模型相结合,以更好地模拟不同湍流流动。
常见的混合湍流模型有k-ε和k-ω模型的组合(k-ε/k-ω模型)和k-ε模型和RSM模型的组合(k-ε/RSM模型)等。
在FLUENT软件中,用户可以选择不同的混合模型,并根据具体的流动特征进行模型参数调整,以实现更准确的湍流模拟。
除了上述介绍的常用湍流模型外,FLUENT软件还提供了其他的湍流模型选择,如近壁函数模型(近壁k-ω模型、近壁k-ε模型)、湍流耗散模型(SD模型)、多场湍流模型(尺度能量模型)等。
这些模型针对不同的湍流现象和流动特性,提供了更加丰富和精确的模拟方法。
在FLUENT软件中,用户可以根据具体的工程问题和流动特性选择合适的湍流模型,并进行相应的设置和参数调整。
流体的管道湍流和湍流模型

流体的管道湍流和湍流模型湍流是流体在管道内传输时,由于流速、压力等因素产生的不稳定的流动状态。
管道湍流是一种复杂而普遍存在的现象,其研究对于理解流体运动、设计高效的管道系统和优化工程流动具有重要意义。
为了描述管道湍流的特性和行为,研究者发展了各种湍流模型,以便更好地预测和模拟湍流流动。
一、湍流的基本概念和特点湍流流动是指在管道内,流体的速度和压力场具有随机和不规则的变化。
相对于层流流动,湍流流动更加复杂和混乱,包含了许多各向异性的小尺度运动。
湍流流动具有下面几个特点:1. 不规则性:湍流流动的速度和压力场随时间和空间呈现随机的变化和涨落。
湍流是无序的,没有周期性和规律性。
2. 涡旋结构:湍流流动中涡旋是一种重要的结构,涡旋的尺度从大到小层层叠加,形成了复杂的流动结构。
涡旋之间的交互作用导致能量的耗散和转换。
3. 能量耗散:湍流流动存在能量的耗散过程,即流体的机械能逐渐转化为热能,在湍流中能量的转换和传递非常复杂。
4. 湍流相关性:湍流流动中存在湍流之间的相关性,即涡旋的大小和位置受到前一时刻的涡旋的影响,湍流的相关性是湍流模拟和预测的重要考虑因素之一。
二、湍流模型的分类和应用湍流模型是研究湍流流动的重要工具,通过将湍流流动数学化和离散化,模型能够预测湍流流动的平均特性和涡旋结构。
根据不同的应用场景和研究目的,湍流模型可以分为两类:经验湍流模型和基于物理原理的湍流模型。
1. 经验湍流模型:经验湍流模型是基于大量实验数据和统计学方法发展起来的模型,它们通过观测湍流流动的平均特性和涡旋结构,提出了各种统计量和关联式。
经验湍流模型具有简单、高效的特点,适用于工程实践中的湍流模拟和预测。
2. 基于物理原理的湍流模型:基于物理原理的湍流模型是通过对湍流流动的基本方程进行数学建模和求解,利用雷诺平均的动量方程和湍流能量方程描述湍流流动。
这类模型通常需要更复杂的计算和较长的运行时间,适用于对湍流流动进行细致分析和深入研究。
湍流理论和湍流模型(博士课程课件)

工程上,将下临界雷诺数作为流态的判断依据。
1.1 湍流的不规则性
湍流速度场是时间、空间坐标、实验次数的不规则函数
ui ui(x,t, ~)
在不规则湍流中,流动的最小时间尺度和最小空间尺度都远远大于分 子热运动的相应尺度,因此湍流运动产生质量和能量的输运远大于分 子热运动产生的宏观输运,所以湍流场中质量和能量的平均扩散远大 于层流扩散。
1.5 湍流脉动的测量原理
湍流脉动的时间序列具有宽频带,测量仪器准确、响应特性好。
测量点的脉动速度的时间序列测量方法:热丝风速计法、激光多普勒测速法
脉动场的脉动速度的时间序列测量方法:统称为粒子图像测速法(PIV, paticle
数据采集的要求
image velocimetry)
(1) 测量精度:仪器精度+电子系统的高信噪比和宽频带的频率响应特性
脉动速度频谱
Su(u )2 1 R u(u )ex i p)d (
其逆变换为
R u(u ) Su(u )exip)d (
时间相关函数与频谱是一一对应的,
它们是统计量在时域和频域之间的转换。
当τ=0时 u2 Suu()d , Suu(ω)表示湍动能在频带中的分布,它在所有
频段上的积分等于湍动能的系综平均或时间平均值。
湍流:流体作复杂的、无规则的、随机的非定常运动,也称紊流;
上临界流速:层流变湍流 下临界流速:湍流变层流
ReRce(232) 0
Vc',
Rc'
Vc'd
Vc'd
Vc,
Rc
VcdVcd
流动为层流
Vc Vc'
RceReRc'e(138)0流0动为不稳定的过渡状态
《湍流流动模型》课件

• 混合模型:结合基于方程的模型 和基于统计的模型的特点,通过 混合这两种方法来描述湍流流动 。如SST k-ω模型和修正后的k-ε 模型等。计算量适中,精度较高 ,适用于多种工程应用场景。
03 湍流流动模型的建立与求解
湍流流动模型的建立
湍流现象的描述
湍流是流体的一种复杂流动状态,具有高度的不规则性和 随机性。为了理解和模拟湍流,需要建立一个数学模型来 描述其基本特征和规律。
3
纳维-斯托克斯方程的满足度
检验模型是否满足纳维-斯托克斯方程,以评估 模型的物理意义和准确性。
湍流流动模型的应用Байду номын сангаас例
航空航天领域
湍流流动模型用于研究飞行器在高速飞行时 产生的湍流流动现象,以提高飞行器的性能 和安全性。
能源与环境领域
湍流流动模型用于模拟燃烧过程、流体机械内部流 动等复杂湍流现象,以提高能源利用效率和环境保 护水平。
化工与制药领域
湍流流动模型用于研究化学反应过程中产生 的湍流流动现象,以提高化学反应效率和制 药工艺水平。
05
湍流流动模型的发展趋势与展 望
湍流流动模型的发展趋势
多尺度模拟
随着计算能力的提升,湍流流动模型正朝着多尺度模拟的方向发 展,以更准确地模拟湍流在不同尺度上的行为。
非线性模型
传统的线性模型在处理复杂湍流时显得力不从心,非线性模型的研 发和应用成为新的趋势。
基于本征方程的模型
本征方程模型
通过求解湍流的本征方程来描述湍流 流动。本征方程基于湍流的物理特性 ,能够更准确地描述湍流流动。但计 算量大,对计算机性能要求高。
简化的本征方程模型
为了减小计算量,对基本的本征方程 进行简化处理,如忽略某些项或采用 近似解。计算量相对较小,精度有所 降低。
四种湍流模型介绍
四种湍流模型介绍湍流是一种自然界中的非常普遍的现象,它的产生非常复杂且难以完全理解。
然而,对于一些科学领域来说,湍流是非常重要的,比如气象学、海洋学、工程学等。
湍流的模拟对于这些领域中的许多问题都是至关重要的。
本文将介绍四种湍流模型的基本概念及其应用。
1. DNS(直接数值模拟)DNS模型是把流体问题看做一组微分方程的解,对流体流动的每个细节都进行了计算。
这种模型的重要性在于它能够提供非常详细的流场信息,而且可以完全地描述流体力学问题,因此它也被称为“参考模型”。
然而,DNS模型也有一些局限性。
由于湍流的分子尺度是非常小的,因此在模型计算时需要高分辨率的计算网格,这使得计算时间和存储空间要求非常高。
此外,由于瞬时的湍流性质非常不稳定,因此DNS模型的计算过程也非常复杂。
因此,在实际应用中,DNS模型的应用受到了很大的限制。
2. LES(大涡模拟)LES模型是将湍流分解成大尺度的大涡和小尺度的小涡,并通过计算大涡的运动来获得流场的信息。
相比于DNS模型,LES模型计算的时间和存储空间要求比较低。
但是,这种模型仍然需要计算小涡的贡献,因此计算时仍然需要很高的分辨率。
在工程学中,这种模型常用于模拟湍流流动问题,比如气动噪声、汽车的气动流动、空气污染等问题,因为模型能够更好地反映流场的基本特性,提供比较准确的结果。
3. RANS(雷诺平均纳维-斯托克斯方程模型)RANS模型通过对湍流流场的平均速度和压力场进行求解,以获得平均情况下的流动情况。
该模型在计算湍流流场时,只需要考虑平均的流态,不需要计算流动中的小且不稳定的涡旋,因此计算效率比较高。
这种模型常用于一些基于大规模的工程计算,如风力发电机、涡轮机、船舶的流动等。
研究发现,在这些问题中,相比于LES模型,RANS模型所得到的结果精度略低,但是在很多领域中已经被广泛地应用。
4. VLES(小尺度大涡模拟)VLES模型是LES模型和RANS模型的结合体,通过计算流场中的大尺度涡旋和小尺度涡旋来提高计算的准确性。
流体力学中的湍流问题
流体力学中的湍流问题湍流是流体力学中的一个重要问题,在许多自然界和工程领域都有广泛的应用。
本文将从湍流的定义、发展过程、湍流的特征以及湍流模型等方面进行论述。
一、湍流的定义和发展过程湍流是指流体在运动过程中出现的无规则、混乱和不可预测的流动现象。
相对于层流而言,湍流表现出不规则的速度和压力变化,流体粒子的运动路径也显得复杂多样。
湍流的发展过程可分为三个阶段:诱导阶段、展开阶段和稳定阶段。
在诱导阶段,流体的初始扰动逐渐增强,而此时流动还是以层流为主。
随着初始扰动的逐渐增强,流动进入展开阶段,此时局部的层流区域出现湍流现象。
最终,湍流将在整个流场展开,并达到稳定阶段。
二、湍流的特征湍流具有以下几个主要特征:1. 高速度和低速度的不规则变化:湍流中,流体的速度在不同位置和不同时刻都具有不规则的变化。
高速区和低速区相互交替出现,形成流体动力学的混沌状态。
2. 纵向和横向不均匀性:湍流中,流体的速度在流动方向和流动平面上都具有不均匀性。
这种不均匀性导致流体粒子的运动路径难以预测,增加了湍流流动的复杂性。
3. 湍流能量的级联:湍流的能量级联是指湍流在不同尺度上的能量转换。
湍流中,大尺度的涡旋将能量输送给小尺度的涡旋,形成能量级联的过程。
这种级联机制是湍流动力学的重要特性之一。
三、湍流模型为了研究和预测湍流的行为,科学家和工程师开发了各种湍流模型。
湍流模型的目的是通过对湍流统计性质的描述来模拟和预测湍流的运动。
常见的湍流模型包括雷诺平均纳维-斯托克斯方程(RANS)模型、大涡模拟(LES)和直接数值模拟(DNS)等。
RANS模型通过对湍流平均量进行描述,将湍流问题转化为求解均匀流动的问题。
LES模型通过将流场分解为大尺度和小尺度的涡旋,对大尺度涡旋进行直接模拟,对小尺度涡旋使用模型进行参数化。
DNS模型则通过直接求解湍流的全部动力学方程来模拟湍流的行为,但由于计算量巨大,目前只适用于一些简单的湍流问题的研究。
工程流体力学中的湍流模型比较与分析
工程流体力学中的湍流模型比较与分析引言:湍流是流体力学中一种复杂的流动现象,它广泛存在于自然界和工程应用中。
研究和模拟湍流流动是工程流体力学中的一个重要课题。
湍流模型是用来描述湍流流动的数学模型,对于工程实践中的湍流模拟有着重要的影响。
本文将比较和分析几种常用的湍流模型,包括雷诺平均Navier-Stokes方程(RANS)模型、大涡模拟(LES)和直接数值模拟(DNS)。
1. 雷诺平均Navier-Stokes方程(RANS)模型雷诺平均Navier-Stokes方程是湍流模拟中最常用的模型之一。
它基于雷诺平均的假设,将流动场分解为平均流动和湍流脉动两部分。
RANS模型通过求解平均流动方程和湍流脉动方程来描述流场的平均状态和湍流效应。
经典的RANS模型包括k-ε模型和k-ω模型,它们通过引入湍流能量和正应力来描述湍流的传输和衰减。
2. 大涡模拟(LES)大涡模拟是一种介于RANS模型和DNS模型之间的模型。
在LES模拟中,较大的湍流涡旋被直接模拟,而较小的涡旋则通过子网格模型(subgrid model)来描述。
LES模型可以较好地模拟湍流的空间变化特性,对于流动中的尺度较大的湍流结构有着较好的描述能力。
然而,由于需要模拟较小的湍流结构,LES模拟通常需要更高的计算资源和更复杂的数值算法。
3. 直接数值模拟(DNS)直接数值模拟是一种最为精确的湍流模拟方法,它通过直接求解包含所有空间和时间尺度的Navier-Stokes方程来模拟湍流流动。
DNS模拟可以精确地捕捉湍流流动中的所有涡旋和尺度结构,提供最为详细的湍流统计信息。
然而,由于湍流流动具有广泛的空间和时间尺度,DNS模拟通常需要巨大的计算资源和较长的计算时间。
4. 模型比较与选择在实际工程应用中,选择合适的湍流模型需要综合考虑计算资源、计算效率和模拟精度。
如果在工程实践中仅关注流场的整体特征和平均效应,RANS模型是一种简便且有效的选择,尤其是k-ε模型和k-ω模型在工程应用中得到了广泛的应用。
流体力学中的流体流动的湍流模型
流体力学中的流体流动的湍流模型在流体力学中,流体流动是一个复杂而广泛的研究领域。
湍流作为流体流动的一种重要模型,具有不可忽视的影响。
本文将讨论湍流模型在流体力学中的应用和意义。
一、湍流的概念和特点湍流是指在流体中存在不规则、混乱的流动现象。
与之相对的是层流,层流是指流体以平行且有序的路径运动。
湍流的主要特点包括:不规则性、三维性、旋转性和不可预测性。
湍流具有广泛的应用领域,如气象学、航空航天、工程流体力学等。
二、湍流模型的分类湍流模型主要用于描述湍流流动的数学和物理特性,有多种分类方法。
根据直接数值模拟(DNS)、雷诺平均模拟(RANS)和大涡模拟(LES)等,湍流模型可分为直接模拟模型、统计模型和动态模型等。
1. 直接模拟模型直接模拟模型是基于流体力学方程的解析解,通过数值方法模拟流体流动的全过程。
这种模型能够精确描述湍流的数学和物理特性,但计算量大,适用范围有限。
2. 统计模型统计模型是通过对湍流流动的统计数据进行建模,以得到平均场变量的表达式。
常见的统计模型包括雷诺平均模型(RANS)、湍动能方程模型和湍流动能理论模型等。
这些模型适用于工程实际,计算量相对较小。
3. 动态模型动态模型是指结合统计模型和直接模拟模型的模型。
它能够根据流动状态自适应地调整模型参数,以提高模型的准确性。
动态模型适用于大尺度流动和高雷诺数流动的模拟。
三、湍流模型的应用湍流模型在流体力学研究和工程实践中有着广泛的应用。
以下是一些典型的应用案例:1. 空气动力学湍流模型在飞行器气动性能研究中起到了重要作用。
通过模拟湍流的生成和演化过程,可以预测飞行器在不同工况下的气动特性。
这对于飞机设计、空气动力学优化和飞行安全都具有重要意义。
2. 水力学湍流在水动力学中的应用同样不可忽视。
例如,在水坝设计中,湍流模型可以用来预测水体在溢流过程中的流速、压力和能量损失等参数。
这对于保证水坝的安全性和有效性至关重要。
3. 工业应用湍流模型在工业领域中的应用十分广泛。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
流体的湍流模型和湍流模拟
流体力学是研究流体的运动规律和性质的学科,其中湍流模型和湍
流模拟是其中非常重要的研究方向。
湍流是流体力学中一种复杂而普
遍存在的现象,它具有不规则、无序和随机性等特点。
湍流模型和湍
流模拟的发展,对于理解和预测真实世界中的湍流现象,以及涉及湍
流的工程设计和应用具有重要意义。
一、湍流模型
湍流模型是描述湍流现象的数学模型,在流体力学中起着扮演着非
常重要的作用。
根据流体力学理论,湍流是由于流体中微小尺度的速
度涡旋突然出现和消失所导致的现象。
由于湍流涡旋的尺度范围很广,从而难以直接模拟和计算。
因此,使用湍流模型来近似描述湍流现象,成为了一种常用的方法。
常见的湍流模型包括雷诺平均湍流模型(Reynolds-averaged Navier-Stokes equations, RANS)和大涡模拟(large eddy simulation, LES)等。
雷诺平均湍流模型是基于平均流场的统计性质,通过求解雷诺平均速
度和湍流应力来评估湍流效应。
而大涡模拟是将湍流现象分解为不同
尺度的涡旋,并通过直接模拟大涡旋来研究湍流运动。
二、湍流模拟
湍流模拟是利用计算机来模拟湍流现象的方法,通常基于数值方法
对流体力学方程进行求解。
湍流模拟分为直接数值模拟(direct numerical simulation, DNS)、雷诺平均湍流模拟和大涡模拟等。
直接数值模拟是将流场划分为网格,并通过离散化流体力学方程和湍流模型来求解湍流流场的详细信息。
由于该方法需要计算微小尺度的细节,计算量非常大,限制了其在实际工程中的应用。
因此,直接数值模拟主要用于湍流现象的基础研究和理论验证。
相比之下,雷诺平均湍流模拟和大涡模拟能够更有效地模拟湍流现象。
雷诺平均湍流模拟通过对湍流参数进行求解,来描述平均的湍流效应。
而大涡模拟则将湍流现象分为大涡旋和小涡旋,通过模拟大涡旋来捕获湍流流场的主要特征。
三、湍流模型与湍流模拟的应用
湍流模型和湍流模拟在工程设计和应用中有着广泛的应用。
在航空航天、汽车工程、能源领域等各个领域中,湍流模型和湍流模拟被用于评估和优化流动行为,提高能效和减少能量损失。
例如,在飞机翼型设计中,湍流模型和湍流模拟可以帮助工程师预测机翼表面的湍流分布,并优化机翼的形状和表面设计,以减少湍流阻力和提高升力效率。
在汽车气动设计中,湍流模型和湍流模拟可以帮助工程师评估车辆外形对空气阻力的影响,并优化车身设计以减少阻力,提高燃油效率。
此外,在核工程中,湍流模型和湍流模拟也被广泛应用于核电站的冷却系统设计和安全评估。
通过对冷却剂流动的湍流模拟,可以更好地理解和优化核电站中冷却系统的热交换效率和稳定性。
总之,湍流模型和湍流模拟是流体力学中重要的研究方向。
它们的应用不仅帮助我们更好地理解湍流现象,还为工程设计和应用提供了有效的工具和方法。
随着计算能力的提升和数值方法的进步,湍流模型和湍流模拟将在更多领域中发挥重要的作用。