洛必达法则
洛必达法则化简公式

洛必达法则化简公式
洛必达法则是微积分中的一种重要工具,用于求解极限问题。
它可以将一个极限问题化简成一个可以求解的形式,从而简化了极限的计算过程。
洛必达法则包括两个公式:洛必达法则第一型和洛必达法则第二型。
洛必达法则第一型:
如果函数f(x)和g(x)在x=a处连续,且g(a)=0,那么当x趋近于a时,f(x)与g(x)的比值的极限存在,则这个极限等于函数
f(x)和g(x)的导数在x=a的值的比值。
即:lim[f(x)/g(x)](x→a) = lim[f'(x)/g'(x)](x→a)
洛必达法则第二型:
如果函数f(x)和g(x)在x→±∞时趋近于无穷或趋近于零,且f'(x)/g'(x)的极限存在,则f(x)/g(x)的极限存在,且等于
f'(x)/g'(x)的极限。
即:lim[f(x)/g(x)](x→±∞) = lim[f'(x)/g'(x)](x→±∞)以上就是洛必达法则的两个公式,它们对于求解极限问题非常有用。
我们可以根据具体的问题选择应用哪一种公式,将复杂的极限问题化简成简单的导数计算问题,从而更加方便地求解。
- 1 -。
洛必达法则三个条件

洛必达法则三个条件1. 洛必达法则啊,它有三个条件呢。
这就像三把钥匙,少了一把都打不开那扇特定的数学大门。
第一个条件是,在自变量趋于某值时,分子分母的极限都得是零或者无穷大。
比如说,求极限lim(x→0) (sinx)/x,当x 趋于0的时候,sinx趋于0,x也趋于0,这就符合第一个条件啦。
你看,这多像两个人同时走向一个神秘的起点,要一起满足这个特殊的开始条件呢。
2. 洛必达法则的第二个条件也很关键哦。
在这个极限趋近的过程中,分子分母得在那个值的去心邻域内可导。
啥叫去心邻域呢?就像给那个值周围画个圈,但是不包括那个值本身。
举个例子,像lim(x→1) (x² - 1)/(x - 1),在x接近1的时候,分子分母在1的去心邻域内都是可导的。
这就好比一群小伙伴要去探险,在接近宝藏的那片区域得有特殊的能力(可导),这样才能继续探索下去呢。
3. 嘿,洛必达法则的第三个条件可不能忘。
分母的导数不能为零啊。
这就像一个规则,分母就像一个支撑的架子,要是这个架子的变化率(导数)为零了,那整个式子就乱套了。
就像lim(x→2) (x³ - 8)/(x - 2)²,分母的导数在x→2的时候不为零,这就符合第三个条件。
这就像一场比赛,分母这个“选手”得按照一定的规则来,不能有特殊的违规情况(导数为零)。
4. 洛必达法则的这三个条件啊,就像拼图的三块,缺了任何一块都拼不出完整的画面。
第一个条件里分子分母极限的那种共同趋向(零或者无穷大),就像是两个舞者同时迈着相同的步伐走向舞台中央。
比如lim(x→0) (tanx)/x,x趋于0时,tanx和x都走向那个神秘的零的状态。
你要是只看到一个舞者在动,另一个不动,那就不符合这个法则的第一个条件啦。
这是不是很神奇呢?5. 再看第二个条件,在自变量趋近的去心邻域内可导。
这就像在一片神秘的森林里,只有在特定的小区域内有特殊的能力(可导)才能继续前进。
洛必达法则

洛必达法则简介洛必达法则(L’Hôpital’s rule),又称洛必达法则(L’Hospital’s rule),是微积分中的一条重要定理,用于求解某些形式的极限。
这一定理由法国数学家洛必达(Guillaume-Roger-François, Marquis de L’Hôpital)在18世纪提出,被认为是微积分学中的重要工具之一。
洛必达法则主要用于解决形如f(x) / g(x)形式的函数极限问题,其中f(x)和g(x)是两个可导函数,并且极限结果存在不定型。
通过洛必达法则,我们可以将其转化为求f’(x) / g’(x)的极限,从而得到准确的结果。
洛必达法则的条件洛必达法则适用于以下情况:1.极限形式为f(x) / g(x);2.函数f(x)和g(x)在极限点的附近均连续;3.函数g’(x)不为零,除了可能在极限点上。
洛必达法则的表述洛必达法则的一般形式可表示为:若函数f(x)和g(x)满足洛必达法则的条件,并且极限:存在或为无穷大时,那么:其中,f’(x) 和g’(x) 分别表示函数f(x)和g(x)的导数。
洛必达法则的应用步骤使用洛必达法则解决极限问题的步骤如下:1.将函数f(x)和g(x)分别求导,得到f’(x)和g’(x);2.计算f’(x) / g’(x)的极限值。
若结果存在或为无穷大,则该极限值就是原始极限的结果;3.若求导后的函数又出现不定型,可以继续应用洛必达法则,依次求导,直到结果不再出现不定型。
示例让我们通过一个简单的例子来说明洛必达法则的应用。
假设我们需要求解如下极限问题:可以看到,分母g(x)在极限点0的附近为零,因此我们可以尝试使用洛必达法则来求解。
首先,我们计算函数f(x)和g(x)的导数:然后,我们计算f’(x) / g’(x)的极限:因此,根据洛必达法则,原始极限的结果为1。
总结洛必达法则是微积分中解决某些形式的极限问题的重要工具。
洛必达法则的原理及应用

洛必达法则的原理及应用一、洛必达法则的原理洛必达法则,又称为洛必达规则或洛必达法则,是微积分中应用极限概念的一种方法,用于求解极限的一种计算技巧。
其原理基于导数和极限的关系,通过对函数的导数进行运算,可简化求解复杂极限的过程。
洛必达法则的核心原理是,如果一个函数在某个点的极限不存在或者为无穷大,但是该函数的导数在该点存在,则可以通过对该函数及其导函数进行比较,从而确定极限的值。
二、洛必达法则的公式洛必达法则有两种常见的表达方式:1.使用洛必达法则的第一种形式,可表示为:如果lim(x->a) f(x) = 0且lim(x->a) g(x) = 0,则lim(x->a) [f(x) / g(x)] = lim(x->a) [f'(x) / g'(x)],其中f'(x)和g'(x)分别表示f(x)和g(x)的导数。
2.使用洛必达法则的第二种形式,可表示为:如果lim(x->a) f(x) = ±∞且lim(x->a) g(x) = ±∞,则lim(x->a) [f(x) / g(x)] = lim(x->a) [f'(x) / g'(x)]。
三、洛必达法则的应用示例以下是几个洛必达法则的具体应用示例:1.求解极限lim(x->∞) [x^2 / e^x]:根据洛必达法则,可以将分子和分母的导数进行比较:lim(x->∞) [x^2 / e^x] = lim(x->∞) [2x / e^x] = lim(x->∞) [2 / e^x] = 0。
所以,lim(x->∞) [x^2 / e^x] = 0。
2.求解极限lim(x->0) [(sinx - x) / x^3]:可以将分子和分母的导数进行比较:lim(x->0) [(sinx - x) / x^3] = lim(x->0) [(cosx - 1) / 3x^2] = lim(x->0) [-sinx / 6x] = -1/6。
高数洛必达法则

与夹逼定理(Squeeze Theorem)结合使用,可以 求解一些复杂的不定式极限
问题。
与单调有界定理(Monotone Bounded Theorem)相关联, 可用于判断数列或函数的收敛
性。
02
洛必达法则证明过程
构造函数法证明
构造函数
01
通过构造一个与原函数在某点处切线斜率相同的辅助函数,将
适用范围及条件
适用于0/0型和∞/∞型的不定式极限。
使用条件:当x趋向于某一值时(可以是无穷大),函数f(x)与g(x)都趋向于0或者无穷大,且两者的导函数存在且比值为常(Taylor's Theorem)有密切关系,洛必 达法则是泰勒公式在求解极限
时的特殊应用。
变量替换法
在某些情况下,通过变量替换可以简化极限的计算过程。
05
洛必达法则拓展与延伸
多元函数洛必达法则
多元函数洛必达法则的定 义
对于多元函数,当其在某点的偏导数存在且 连续时,该点处的极限值可以通过洛必达法 则求解。
多元函数洛必达法则的应用 条件
要求函数在考察点处偏导数存在且连续,同时需要 满足一定的限制条件,如分母不为零等。
高数洛必达法则
• 洛必达法则基本概念 • 洛必达法则证明过程 • 洛必达法则应用举例 • 洛必达法则注意事项 • 洛必达法则拓展与延伸
01
洛必达法则基本概念
洛必达法则定义
洛必达法则(L'Hôpital's Rule)是微 积分学中的一个重要定理,用于求解 不定式极限。
该法则以法国数学家纪尧姆·弗朗索瓦· 安托万·德·洛必达命名。
解不等式
将不等式转化为函数值比较问题,利用洛必 达法则求解函数的极值点,进而确定不等式 的解集。
洛必达法则

求
lim
x0
(1
3x cos
sin 3x x)ln(1
2
x
)
.
解
当 x 0 时,
1
cos
x
~
1 2
x2,
ln(1
2x)
~
2
x,
故
lim
x0
(1
3x cos
x
sin 3x )ln(1
2
x
)
lim
x0
3
x
sin x3
3
x
lim
x0
3
3cos 3x2
3
x
lim
x0
3
sin 3 2x
x
9. 2
完
1
ln cot x
解 lim (cot x)ln x lim e ln x
x0
x0
e lim x0
ln cot ln x
x
e lim x0
tan
xcsc2 1
x
x
e lim x0
cos1xsinx
x
e1.
完
例22 求 lim (e3x 5 x)1x.(0 ) x
解
lim (e3x
1
5x) x
洛必达法则
取何值无关,故可补充定义 f (a) g(a) 0.
根据定理的条件,知函数 f ( x)与 g( x)在以 a与 x
为端点的区间上满足柯西中值定理的条件, 于是
f (x) g( x)
f (x) g(x)
f (a) g(a)
f '( ) g'( )
( 在
x 与 a
洛必达法则公式表
洛必达法则公式表德国物理学家恩斯特·洛必达(Ernst Mach)在19世纪末提出了洛必达法则,它被认为是科学中关于物体运动的最基本的定律之一、洛必达法则描述了物体受力时的运动状况,是牛顿第二定律的一种特殊形式。
下面是洛必达法则的公式表及其详细解释。
F=m*a解释:F:物体所受合力的大小,单位为牛顿(N)m:物体的质量,单位为千克(kg)a:物体的加速度,单位为米每秒的平方(m/s²)根据洛必达法则,物体所受合力的大小与加速度之间存在直接的关系。
当物体受到的合力增大时,加速度也会相应增大;反之,当物体受到的合力减小时,加速度也会相应减小。
同时,物体的质量也会影响其加速度,质量越大,物体相同力量作用下加速度越小。
a=F/m这个公式表明,物体受到的合力除以其质量,等于物体的加速度。
这意味着我们可以通过测量物体的质量和给定物体所受的合力来计算其加速度。
另外,根据洛必达法则公式的变形,可以得到以下公式:F=m*Δv/Δt这个公式表明,物体所受合力等于质量乘以速度变化的比率(加速度)。
速度变化可以通过将物体的初始速度与最终速度相减得到,时间变化可以通过将物体的初始时间与最终时间相减得到。
总结:洛必达法则的公式表为F=m*a,其中F为物体所受合力的大小,m为物体的质量,a为物体的加速度。
根据洛必达法则,合力与加速度之间存在直接的关系,质量也会影响加速度。
公式也可以重写为a=F/m或F=m*Δv/Δt,这些公式可以帮助我们计算物体在受力作用下的运动情况。
洛必达法则公式表在物理学中是非常基础和重要的一个概念。
4.3 洛必达法则
证明 : f ( x ) 在 x = 0 点右可导 , 且 f +′ (0) = A. a −b lim (a、b > 0) x →0 x
x x
lim π
x→
π 2
cos x 2 −x
lim x→2
→
x 2 − 2x
cos
π
2 x + 2− x − 2 lim . 2 x →0 x
用罗必塔法则也不一定总是最简便,有时可灵活选用 用罗必塔法则也不一定总是最简便, 其他简便方法,或者两者结合起来应用。方法包括: 其他简便方法,或者两者结合起来应用。方法包括 1.不影响极限类型的乘积因子应及时分出( 1.不影响极限类型的乘积因子应及时分出(不定式因子 不影响极限类型的乘积因子应及时分出 的分离) 的分离); 2.能用等价无穷小代替的因子应及时用等价无穷小代替; 能用等价无穷小代替的因子应及时用等价无穷小代替; 能用等价无穷小代替的因子应及时用等价无穷小代替 3.能用恒等变换简化的因子应及时用恒等变换简化。 3.能用恒等变换简化的因子应及时用恒等变换简化。 能用恒等变换简化的因子应及时用恒等变换简化 4.变量代换法等 变量代换法等. 4.变量代换法等.
0 0
e x − e− x ex + e−x e x + e−x = (4) lim x −x × lim x = lim x x → +∞ x → +∞ e + e − x x→+∞ e − e e − e−x x − sin x 1 − cos x ( 5) lim =x ×lim 1 − sin x x →∞ x + cos x →∞
x + sin x 例、求lim x x→0 (e − 1)(cos2 x + 1) x + sin x 解 lim x x→0 (e − 1)(cos2 x + 1)
大一洛必达法则知识点总结
大一洛必达法则知识点总结洛必达法则(L'Hôpital's Rule)是微积分中解决极限问题的重要工具之一,由法国数学家洛必达 (Guillaume de l'Hôpital) 提出。
该法则主要适用于形式为“0/0”或“∞/∞”型的不定型极限。
在本文中,我将总结大一学习中遇到的洛必达法则的几个关键知识点。
1. 洛必达法则的基本形式洛必达法则指出,对于形式为“0/0”或“∞/∞”型的不定型极限,可以利用求导技巧,通过计算函数的导数来求解。
具体而言,设有函数f(x)和g(x),在某一点a处,满足以下条件:(1) f(a) = g(a) = 0,并且(2) f'(x)和g'(x)在点a的一个去心邻域内连续。
若满足以上条件,则有极限lim(x→a) [f(x)/g(x)] = lim(x→a)[f'(x)/g'(x)]。
2. 应用洛必达法则的步骤(1)确定极限形式是否为“0/0”或“∞/∞”,即是否为不定型极限。
(2)求出f'(x)和g'(x)。
(3)计算极限lim(x→a) [f'(x)/g'(x)]。
(4)若极限存在,即可得到原极限的值。
需要注意的是,洛必达法则是一个迭代过程,若应用后仍然遇到不定型极限,则可以再次应用该法则,重复以上步骤,直到得到确定的极限值或判断不存在。
3. 与洛必达法则相关的特殊极限(1)若形式为“∞-∞”,可以利用变量替换将其转化为“0/0”的形式。
例如,当x趋于无穷大时,可令h(x) = 1/f(x),将原极限转化为0/0形式。
(2)若形式为“0^0”或“∞^0”,可以利用指数函数的连续性将其转化为“0/0”的形式。
(3)若形式为“1^∞”,可以通过自然对数将其转化为“∞/∞”的形式。
4. 应用洛必达法则的注意事项(1)计算导数时要注意使用正确的求导规则和技巧。
(2)应用洛必达法则前,确保被除函数和除数函数在点a附近有定义,并且满足导数连续的条件。
洛必达法则洛必达法则
洛必达法则洛必达法则洛必达法则洛必达法则(L'Hospital法则),是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。
设(1)当x→a时,函数f(x)及F(x)都趋于零;(2)在点a的去心邻域内,f'(x)及F'(x)都存在且F'(x)≠0;(3)当x→a时lim f'(x)/F'(x)存在(或为无穷大),那么x→a时 lim f(x)/F(x)=lim f'(x)/F'(x)。
再设(1)当x→∞时,函数f(x)及F(x)都趋于零;(2)当|x|>N时f'(x)及F'(x)都存在,且F'(x)≠0;(3)当x→∞时lim f'(x)/F'(x)存在(或为无穷大),那么x→∞时 lim f(x)/F(x)=lim f'(x)/F'(x)。
利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意:①在着手求极限以前,首先要检查是否满足0/0或∞/∞型未定式,否则滥用洛必达法则会出错。
当不存在时(不包括∞情形),就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。
比如利用泰勒公式求解。
②若条件符合,洛必达法则可连续多次使用,直到求出极限为止。
③洛必达法则是求未定式极限的有效工具,但是如果仅用洛必达法则,往往计算会十分繁琐,因此一定要与其他方法相结合,比如及时将非零极限的乘积因子分离出来以简化计算、乘积因子用等价量替换等等. 泰勒公式(T aylor's formula)泰勒中值定理:若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于(x-x.)多项式和一个余项的和:f(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!*(x-x.)^2,+f'''(x.)/3!*(x-x.)^3+……+f(n)(x.) /n!*(x-x.)^n+Rn其中Rn=f(n+1)(ξ)/(n+1)!*(x-x.)^(n+1),这里ξ在x和x.之间,该余项称为拉格朗日型的余项。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分享∙我的分享∙∙当前分享返回分享首页»分享洛必达法则洛必达法则(L'Hospital法则),是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。
设(1)当x→a时,函数f(x)及F(x)都趋于零;(2)在点a的去心邻域内,f'(x)及F'(x)都存在且F'(x)≠0;(3)当x→a时lim f'(x)/F'(x)存在(或为无穷大),那么x→a时 lim f(x)/F(x)=lim f'(x)/F'(x)。
再设(1)当x→∞时,函数f(x)及F(x)都趋于零;(2)当|x|>N时f'(x)及F'(x)都存在,且F'(x)≠0;(3)当x→∞时lim f'(x)/F'(x)存在(或为无穷大),那么x→∞时 lim f(x)/F(x)=lim f'(x)/F'(x)。
利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意:①在着手求极限以前,首先要检查是否满足0/0或∞/∞型未定式,否则滥用洛必达法则会出错。
当不存在时(不包括∞情形),就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。
比如利用泰勒公式求解。
②若条件符合,洛必达法则可连续多次使用,直到求出极限为止。
③洛必达法则是求未定式极限的有效工具,但是如果仅用洛必达法则,往往计算会十分繁琐,因此一定要与其他方法相结合,比如及时将非零极限的乘积因子分离出来以简化计算、乘积因子用等价量替换等等. 泰勒公式(Taylor's formula)泰勒中值定理:若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于(x-x.)多项式和一个余项的和:f(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!*(x-x.)^2,+f'''(x.)/3!*(x-x.)^3+……+f(n)(x.)/n!*(x-x.)^n+Rn其中Rn=f(n+1)(ξ)/(n+1)!*(x-x.)^(n+1),这里ξ在x和x.之间,该余项称为拉格朗日型的余项。
(注:f(n)(x.)是f(x.)的n阶导数,不是f(n)与x.的相乘。
)证明我们知道f(x)=f(x.)+f'(x.)(x-x.)+α(根据拉格朗日中值定理导出的有限增量定理有limΔx→0 f(x.+Δx)-f(x.)=f'(x.)Δx),其中误差α是在limΔx→0 即limx→x.的前提下才趋向于0,所以在近似计算中往往不够精确;于是我们需要一个能够足够精确的且能估计出误差的多项式:P(x)=A0+A1(x-x.)+A2(x-x.)^2+……+An(x-x.)^n来近似地表示函数f(x)且要写出其误差f(x)-P(x)的具体表达式。
设函数P(x)满足P(x.)=f(x.),P'(x.)=f'(x.),P''(x.)=f''(x.),……,P(n)(x.)=f(n)(x.),于是可以依次求出A0、A1、A2、……、An。
显然,P(x.)=A0,所以A0=f(x.);P'(x.)=A1,A1=f'(x.);P''(x.)=2!A2,A2=f''(x.)/2!……P(n)(x.)=n!An,An=f(n)(x.)/n!。
至此,多项的各项系数都已求出,得:P(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!?(x-x.)^2+……+f(n)(x.)/n!?(x-x.)^n.接下来就要求误差的具体表达式了。
设Rn(x)=f(x)-P(x),于是有Rn(x.)=f(x.)-P(x.)=0。
所以可以得出Rn(x.)=Rn'(x.)=Rn''(x.)=……=Rn(n)(x.)=0。
根据柯西中值定理可得Rn(x)/(x-x.)^(n+1)=(Rn(x)-Rn(x.))/((x-x.)^(n+1)-0)=Rn'(ξ1)/(n+1)(ξ1-x.)^n(注:(x.-x.)^(n+1)=0),这里ξ1在x和x.之间;继续使用柯西中值定理得(Rn'(ξ1)-Rn'(x.))/((n+1)(ξ1-x.)^n-0)=Rn''(ξ2)/n(n+1)(ξ2-x.)^(n-1)这里ξ2在ξ1与x.之间;连续使用n+1次后得出Rn(x)/(x-x.)^(n+1)=Rn(n+1)(ξ)/(n+1)!,这里ξ在x.和x之间。
但Rn(n+1)(x)=f(n+1)(x)-P(n+1)(x),由于P(n)(x)=n!An,n!An是一个常数,故P(n+1)(x)=0,于是得Rn(n+1)(x)=f(n+1)(x)。
综上可得,余项Rn(x)=f(n+1)(ξ)/(n+1)!?(x-x.)^(n+1)。
一般来说展开函数时都是为了计算的需要,故x往往要取一个定值,此时也可把Rn(x)写为Rn。
麦克劳林展开式:若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于x多项式和一个余项的和:f(x)=f(0)+f'(0)x+f''(0)/2!?x^2,+f'''(0)/3!?x^3+……+f(n)(0)/n!?x^n+Rn其中Rn=f(n+1)(θx)/(n+1)!?x^(n+1),这里0<θ<1。
证明:如果我们要用一个多项式P(x)=A0+A1x+A2x^2+……+Anx^n来近似表示函数f(x)且要获得其误差的具体表达式,就可以把泰勒公式改写为比较简单的形式即当x.=0时的特殊形式:f(x)=f(0)+f'(0)x+f''(0)/2!?x^2,+f'''(0)/3!?x^3+……+f(n)(0)/n!?x^n+f(n+1)(ξ)/(n+1)!?x^ (n+1)由于ξ在0到x之间,故可写作θx,0<θ<1。
麦克劳林展开式的应用:1、展开三角函数y=sinx和y=cosx。
解:根据导数表得:f(x)=sinx , f'(x)=cosx , f''(x)=-sinx , f'''(x)=-cosx ,f(4)(x)=sinx……于是得出了周期规律。
分别算出f(0)=0,f'(0)=1, f''(x)=0, f'''(0)=-1, f(4)=0……最后可得:sinx=x-x^3/3!+x^5/5!-x^7/7!+x^9/9!-……(这里就写成无穷级数的形式了。
)类似地,可以展开y=cosx。
2、计算近似值e=lim x→∞ (1+1/x)^x。
解:对指数函数y=e^x运用麦克劳林展开式并舍弃余项:e^x≈1+x+x^2/2!+x^3/3!+……+x^n/n!当x=1时,e≈1+1+1/2!+1/3!+……+1/n!取n=10,即可算出近似值e≈2.7182818。
3、欧拉公式:e^ix=cosx+isinx(i为-1的开方,即一个虚数单位)证明:这个公式把复数写为了幂指数形式,其实它也是由麦克劳林展开式确切地说是麦克劳林级数证明的。
过程具体不写了,就把思路讲一下:先展开指数函数e^z,然后把各项中的z写成ix。
由于i的幂周期性,可已把系数中含有土i的项用乘法分配律写在一起,剩余的项写在一起,刚好是cosx,sinx的展开式。
然后让sinx乘上提出的i,即可导出欧拉公式。
有兴趣的话可自行证明一下。
泰勒展开式原理e的发现始于微分,当 h 逐渐接近零时,计算之值,其结果无限接近一定值 2.71828...,这个定值就是 e,最早发现此值的人是瑞士著名数学家欧拉,他以自己姓名的字头小写 e 来命名此无理数.计算对数函数的导数,得 ,当 a=e 时, 的导数为 ,因而有理由使用以 e 为底的对数,这叫作自然对数.若将指数函数 ex 作泰勒展开,则得以 x=1 代入上式得此级数收敛迅速,e 近似到小数点后 40 位的数值是将指数函数 ex 扩大它的定义域到复数 z=x+yi 时,由透过这个级数的计算,可得由此,De Moivre 定理,三角函数的和差角公式等等都可以轻易地导出.譬如说,z1=x1+y1i, z2=x2+y2i,另方面,所以,我们不仅可以证明 e 是无理数,而且它还是个超越数,即它不是任何一个整系数多项式的根,这个结果是 Hermite 在1873年得到的.甲)差分.考虑一个离散函数(即数列) R,它在 n 所取的值 u(n) 记成 un,通常我们就把这个函数书成或 (un).数列 u 的差分还是一个数列,它在 n 所取的值以定义为以后我们干脆就把简记为(例):数列 1, 4, 8, 7, 6, -2, ... 的差分数列为 3, 4, -1, -1, -8 ...注:我们说「数列」是「定义在离散点上的函数」如果在高中,这样的说法就很恶劣.但在此地,却很恰当,因为这样才跟连续型的函数具有完全平行的类推.差分算子的性质(i) [合称线性](ii) (常数) [差分方程根本定理](iii)其中 ,而 (n(k) 叫做排列数列.(iv) 叫做自然等比数列.(iv)' 一般的指数数列(几何数列)rn 之差分数列(即「导函数」)为 rn(r-1)(乙).和分给一个数列 (un).和分的问题就是要算和 . 怎么算呢我们有下面重要的结果:定理1 (差和分根本定理) 如果我们能够找到一个数列 (vn),使得 ,则和分也具有线性的性质:甲)微分给一个函数 f,若牛顿商(或差分商) 的极限存在,则我们就称此极限值为 f 为点 x0 的导数,记为 f'(x0) 或 Df(x),亦即若 f 在定义区域上每一点导数都存在,则称 f 为可导微函数.我们称为 f 的导函数,而叫做微分算子.微分算子的性质:(i) [合称线性](ii) (常数) [差分方程根本定理](iii) Dxn=nxn-1(iv) Dex=ex(iv)' 一般的指数数列 ax 之导函数为(乙)积分.设 f 为定义在 [a,b] 上的函数,积分的问题就是要算阴影的面积.我们的办法是对 [a,b] 作分割:;其次对每一小段 [xi-1,xi] 取一个样本点 ;再求近似和 ;最后再取极限 (让每一小段的长度都趋近于 0).若这个极限值存在,我们就记为的几何意义就是阴影的面积.(事实上,连续性也「差不多」是积分存在的必要条件.)积分算子也具有线性的性质:定理2 若 f 为一连续函数,则存在.(事实上,连续性也「差不多」是积分存在的必要条件.)定理3 (微积分根本定理) 设 f 为定义在闭区间 [a,b] 上的连续函数,我们欲求积分如果我们可以找到另一个函数 g,使得 g'=f,则注:(1)(2)两式虽是类推,但有一点点差异,即和分的上限要很小心!上面定理1及定理3基本上都表述着差分与和分,微分与积分,是两个互逆的操作,就好像加法与减法,乘法与除法是互逆的操作一样.我们都知道差分与微分的操作比和分与积分简单多了,而上面定理1及定理3告诉我们,要计算 (un) 的和分及 f 的积分,只要去找另一个 (vn) 及 g 满足 , g'=f (这是差分及微分的问题),那么对 vn 及 g 代入上下限就得到答案了.换句话说,我们可以用较简单的差分及微分操作来掌握较难的和分及积分操作,这就是"以简御繁"的精神.牛顿与莱布尼慈对微积分最大的贡献就在此.甲)Taylor展开公式这分别有离散与连续的类推.它是数学中「逼近」这个重要想法的一个特例.逼近想法的意思是这样的:给一个函数 f,我们要研究 f 的行为,但 f 本身可能很复杂而不易对付,于是我们就想法子去找一个较「简单」的函数 g,使其跟 f 很「靠近」,那么我们就用 g 来取代 f.这又是以简御繁的精神表现.由上述我们看出,要使用逼近想法,我们还需要澄清两个问题:即如何选取简单函数及逼近的尺度.(一) 对于连续世界的情形,Taylor 展式的逼近想法是选取多项函数作为简单函数,并且用局部的「切近」作为逼近尺度.说得更明白一点,给一个直到到 n 阶都可导微的函数 f,我们要找一个 n 次多项函数 g,使其跟 f 在点 x0 具有 n 阶的「切近」,即 ,答案就是此式就叫做 f 在点 x0 的 n 阶 Taylor 展式.g 在 x0 点附近跟 f 很靠近,于是我们就用 g 局部地来取代 f.从而用 g 来求得 f 的一些局部的定性行为.因此 Taylor 展式只是局部的逼近.当f是足够好的一个函数,即是所谓解析的函数时,则 f可展成 Taylor 级数,而且这个 Taylor 级数就等于 f 自身.值得注意的是,一阶 Taylor 展式的特殊情形,此时 g(x)=f(x0)+f'(x0)(x-x0) 的图形正好是一条通过点 (x0,f(x0)) 而且切于 f 的图形之直线.因此 f 在点 x0 的一阶 Taylor 展式的意义就是,我们用过点 (x0,f(x0)) 的切线局部地来取代原来 f 曲线.这种局部化「用平直取代弯曲」的精神,是微分学的精义所在.利用 Taylor 展式,可以帮忙我们做很多事情,比如判别函数的极大值与极小值,求积分的近似值,作函数表(如三角函数表,对数表等),这些都是意料中事.事实上,我们可以用逼近的想法将微积分「一以贯之」.复次我们注意到,我们选取多项函数作为逼近的简单函数,理由很简单:在众多初等函数中,如三角函数,指数函数,对数函数,多项函数等,从算术的观点来看,以多项函数最为简单,因为要计算多项函数的值,只牵涉到加减乘除四则运算,其它函数就没有这么简单.当然,从别的解析观点来看,在某些情形下还另有更有用更重要的简单函数.例如,三角多项式,再配合上某种逼近尺度,我们就得到 Fourier 级数展开,这在应用数学上占有举足轻重的地位.(事实上,Fourier 级数展开是采用最小方差的逼近尺度,这在高等数学中经常出现,而且在统计学中也有应用.)注:取 x0=0 的特例,此时 Taylor 展式又叫做 Maclaurin 展式.不过只要会做特例的展开,欲求一般的 Taylor 展式,作一下平移(或变数代换)就好了.因此我们大可从头就只对 x=0 点作 Taylor 展式.(二) 对于离散的情形,Taylor 展开就是:给一个数列 ,我们要找一个 n 次多项式数列 (gt),使得 gt 与 ft 在 t=0 点具有 n 阶的「差近」.所谓在 0 点具有 n 阶差近是指:答案是此式就是离散情形的 Maclaurin 公式.乙)分部积分公式与Abel分部和分公式的类推(一) 分部积分公式:设 u(x),v(x) 在 [a,b] 上连续,则(二) Abel分部和分公式:设(un),(v)为两个数列,令 sn=u1+......+un,则上面两个公式分别是莱布尼慈导微公式 D(uv)=(Du)v+u(Dv),及莱布尼慈差分公式的结论.注意到,这两个莱布尼慈公式,一个很对称,另一个则不然.(丁)复利与连续复利 (这也分别是离散与连续之间的类推)(一) 复利的问题是这样的:有本金 y0,年利率 r,每年复利一次,要问 n 年后的本利和yn= 显然这个数列满足差分方程 yn+1=yn(1+r)根据(丙)之(二)得知 yn=y0(1+r)n 这就是复利的公式.(二) 若考虑每年复利 m 次,则 t 年后的本利和应为令 ,就得到连续复利的概念,此时本利和为y(t)=y0ert换句话说,连续复利时,t 时刻的本利和 y(t)=y0ert 就是微分方程 y'=ry 的解答.由上述我们看出离散复利问题由差分方程来描述,而连续复利的问题由微分方程来描述.对于常系数线性的差分方程及微分方程,解方程式的整个要点就是叠合原理,因此求解的办法具有完全平行的类推.(戊)Fubini 重和分定理与 Fubini 重积分定理(也是离散与连续之间的类推)(一) Fubini 重和分定理:给一个两重指标的数列 (ars),我们要从 r=1 到 m,s=1到 n, 对(ars) 作和 ,则这个和可以这样求得:光对 r 作和再对 s 作和(反过来亦然).亦即我们有(二)Fubini 重积分定理:设 f(x,y) 为定义在上之可积分函数,则当然,变数再多几个也都一样.(己)Lebesgue 积分的概念(一) 离散的情形:给一个数列 (an),我们要估计和 ,Lebesgue 的想法是,不管这堆数据指标的顺序,我们只按数值的大小来分堆,相同的分在一堆,再从每一堆中取一个数值,乘以该堆的个数,整个作和起来,这就得到总和.(二)连续的情形:给一个函数 f,我们要定义曲线 y=f(x) 跟 X 轴从 a 到 b 所围出来的面积.Lebesgue 的想法是对 f 的影域作分割:函数值介 yi-1 到 yi 之间的 x 收集在一齐,令其为 , 于是 [a,b] 就相应分割成 ,取样本点 ,作近似和让影域的分割加细,上述近似和的极限若存在的话,就叫做 f 在 [a,b] 上的 Lebesgue 积分. 余项泰勒公式的余项f(x)=f(a) + f'(a)(x-a)/1! + f''(a)(x-a)^2/2! + …… +f(n)(a)(x-a)^n/n! + Rn(x) [其中f(n)是f的n阶导数]泰勒余项可以写成以下几种不同的形式:1.佩亚诺(Peano)余项:Rn(x) = o((x-a)^n)2.施勒米尔希-罗什(Schlomilch-Roche)余项:Rn(x) = f(n+1)(a+θ(x-a))(1-θ)^(n+1-p)(x-a)^(n+1)/(n!p)[f(n+1)是f的n+1阶导数,θ∈(0,1)]3.拉格朗日(Lagrange)余项:Rn(x) = f(n+1)(a+θ(x-a))(x-a)^(n+1)/(n+1)![f(n+1)是f的n+1阶导数,θ∈(0,1)]4.柯西(Cauchy)余项:Rn(x) = f(n+1)(a+θ(x-a))(1-θ)^n (x-a)^(n+1)/n![f(n+1)是f的n+1阶导数,θ∈(0,1)]5.积分余项:Rn(x) = [f(n+1)(t)(x-t)^n在a到x上的积分]/n![f(n+1)是f的n+1阶导数]也叫Cauchy中值定理。