洛必达法则详解
洛必达法则是什么

洛必达法则是什么
一、洛必达法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。
二、在运用洛必达法则之前,首先要完成两项任务:分子分母的极限是否都等于零(或者无穷大);分子分母在限定的区域内是否分别可导。
三、如果这两个条件都满足,接着求导并判断求导之后的极限是否存在:如果存在,直接得到答案;如果不存在,则说明此种未定式不可用洛必达法则来解决;如果不确定,即结果仍然为未定式,再在验证的基础上继续使用洛必达法则。
四、极限思想的思维功能:极限思想在现代数学乃至物理学等学科中,有着广泛的应用,这是由它本身固有的思维功能所决定的。
极限思想揭示了变量与常量、无限与有限的对立统一关系,是唯物辩证法的对立统一规律在数学领域中的应用。
五、借助极限思想,人们可以从有限认识无限,从“不变”认识“变”,从“直线构成形”认识“曲线构成形”,从量变去认识质变,从近似认识精确。
六、“无限”与’有限‘概念本质不同,但是二者又有联系,“无限”是大脑抽象思维的概念,存在于大脑里。
“有限”是客观实际存在的千变万化的事物的“量”的映射,符合客观实际规律的“无限”属于整体,按公理,
整体大于局部思维。
洛必达法则

00∞∞)(x f )(x F )()(lim )(x F x f x a x ∞→→00∞∞x x x tan lim 0→00bx ax x sin ln sin ln lim 0+→∞∞)(x f )(x F a)(x f ')(x F '0)(≠'x F )()(lim x F x f a x ''→)()(lim )()(lim x F x f x F x f a x a x ''=→→)()(x F x f ''00∞∞)(x f ')(x F '.)()(lim )()(lim )()(lim =''''=''=→→→x F x f x F x f x F x f a x a x a x .)()(lim )()(lim x F x f x F x f x x ''=∞→∞→∞∞x x x tan lim 0→第二节 洛必达法则一、 型及 型未定式解法:洛必达法则定义:如果当(或)时,两个函数 和 都趋于零或都趋于无穷 大,那么极限 可能存在、也可能不存在。
通常把这种极限称为 型及型未定式。
例如: 型 型定理1:设:(1)当时,函数 及 都趋于零;(2)在 点的某去心邻域内, 及 都存在,且 ; (3) 存在(或为无穷大); 那么这种在一定条件下通过分子分母分别求导再求极限来确定未定式的值的方法称为洛必达法则。
注:(1)如果 仍属 型及 型,且 及 满足定理条件,可以继续使用法则,即(2)当时,该法则仍然成立。
(定理2)(3)当,时的未定式 也有相应的法则。
a x →∞→x a x →∞→x a x →∞→x)()(tan lim 0''=→x x x 原式1sec lim 20x x →=123lim 2331+--+-→x x x x x x 求12333lim 221---=→x x x x 266lim 1-=→x x x 23=266lim 1-→x x x bxax x sin ln sin ln lim 0+→求22111lim xx x -+-=+∞→原式221lim x x x +=+∞→xx x 3tan tan lim 2π→求x x x 3sec 3sec lim 222π→=原式x x x 222cos 3cos lim 31π→=x x x x x sin cos 23sin 3cos 6lim 312--→πx x x 2sin 6sin lim 2π→=x x x 2cos 26cos 6lim 2π→=)0 ( lim >+∞→λλ为正整数,求n e xx n x x n x x n x e nx e x λλλ1lim lim -+∞→+∞→=xn x e x n λλ0!lim ⋅==+∞→ )0( ln lim >+∞→n x x n x 求例1:求解: =1例2: 解:原式注意:(1)上式中 不是未定式,不能使用洛必达法则,否则导致错误的结果。
洛必达法则

洛必达法则简介洛必达法则(L’Hôpital’s rule),又称洛必达法则(L’Hospital’s rule),是微积分中的一条重要定理,用于求解某些形式的极限。
这一定理由法国数学家洛必达(Guillaume-Roger-François, Marquis de L’Hôpital)在18世纪提出,被认为是微积分学中的重要工具之一。
洛必达法则主要用于解决形如f(x) / g(x)形式的函数极限问题,其中f(x)和g(x)是两个可导函数,并且极限结果存在不定型。
通过洛必达法则,我们可以将其转化为求f’(x) / g’(x)的极限,从而得到准确的结果。
洛必达法则的条件洛必达法则适用于以下情况:1.极限形式为f(x) / g(x);2.函数f(x)和g(x)在极限点的附近均连续;3.函数g’(x)不为零,除了可能在极限点上。
洛必达法则的表述洛必达法则的一般形式可表示为:若函数f(x)和g(x)满足洛必达法则的条件,并且极限:存在或为无穷大时,那么:其中,f’(x) 和g’(x) 分别表示函数f(x)和g(x)的导数。
洛必达法则的应用步骤使用洛必达法则解决极限问题的步骤如下:1.将函数f(x)和g(x)分别求导,得到f’(x)和g’(x);2.计算f’(x) / g’(x)的极限值。
若结果存在或为无穷大,则该极限值就是原始极限的结果;3.若求导后的函数又出现不定型,可以继续应用洛必达法则,依次求导,直到结果不再出现不定型。
示例让我们通过一个简单的例子来说明洛必达法则的应用。
假设我们需要求解如下极限问题:可以看到,分母g(x)在极限点0的附近为零,因此我们可以尝试使用洛必达法则来求解。
首先,我们计算函数f(x)和g(x)的导数:然后,我们计算f’(x) / g’(x)的极限:因此,根据洛必达法则,原始极限的结果为1。
总结洛必达法则是微积分中解决某些形式的极限问题的重要工具。
洛必达法则的原理及应用

洛必达法则的原理及应用一、洛必达法则的原理洛必达法则,又称为洛必达规则或洛必达法则,是微积分中应用极限概念的一种方法,用于求解极限的一种计算技巧。
其原理基于导数和极限的关系,通过对函数的导数进行运算,可简化求解复杂极限的过程。
洛必达法则的核心原理是,如果一个函数在某个点的极限不存在或者为无穷大,但是该函数的导数在该点存在,则可以通过对该函数及其导函数进行比较,从而确定极限的值。
二、洛必达法则的公式洛必达法则有两种常见的表达方式:1.使用洛必达法则的第一种形式,可表示为:如果lim(x->a) f(x) = 0且lim(x->a) g(x) = 0,则lim(x->a) [f(x) / g(x)] = lim(x->a) [f'(x) / g'(x)],其中f'(x)和g'(x)分别表示f(x)和g(x)的导数。
2.使用洛必达法则的第二种形式,可表示为:如果lim(x->a) f(x) = ±∞且lim(x->a) g(x) = ±∞,则lim(x->a) [f(x) / g(x)] = lim(x->a) [f'(x) / g'(x)]。
三、洛必达法则的应用示例以下是几个洛必达法则的具体应用示例:1.求解极限lim(x->∞) [x^2 / e^x]:根据洛必达法则,可以将分子和分母的导数进行比较:lim(x->∞) [x^2 / e^x] = lim(x->∞) [2x / e^x] = lim(x->∞) [2 / e^x] = 0。
所以,lim(x->∞) [x^2 / e^x] = 0。
2.求解极限lim(x->0) [(sinx - x) / x^3]:可以将分子和分母的导数进行比较:lim(x->0) [(sinx - x) / x^3] = lim(x->0) [(cosx - 1) / 3x^2] = lim(x->0) [-sinx / 6x] = -1/6。
洛必达法则详解

洛必达法则详解洛必达法则(Lotka's law)是由美国图书馆学家洛思会(Losethere A. Guadognini)在1926年首次提出的。
该定律描述了科学研究者的成果发表数量与其发表文章数量之间的关系。
洛必达法则的核心理论依据是假设文章发表数量与研究者的科研能力和资源有关。
在科研领域,存在着很大的不平等性和差异性,少数顶尖研究者拥有更多的资源和机会,因此他们可以发表更多的文章。
而大多数研究者则受限于多种因素,如时间、经费、实验设备等,因此他们的发表数量相对较少。
洛必达法则对科研界具有重要的启示意义。
首先,它提醒我们少数顶尖研究者的重要作用。
即使在科研活动中,存在着“20/80原则”,即20%的人贡献了80%的成果。
其次,洛必达法则也指出了科研资源的分配不平等问题。
少数研究者能够获得更多的资源和机会,使得他们能够取得更多的发表成果。
这也意味着大多数研究者应该寻求更好的资源分配和机会,以提高自己的发表数量。
然而,洛必达法则也存在一些争议。
一些学者指出,洛必达法则忽略了一些重要的因素,如学术背景、经验和个体能力等。
他们认为科研成果的发表数量受到多种因素的影响,而不仅仅是发表文章的数量。
此外,洛必达法则假设发表数量与排名存在的确定关系,忽视了研究者之间的差异性和复杂性。
总的来说,洛必达法则是科研领域的一个重要理论,揭示了科研发表数量的分布规律。
它提醒我们发现并重视那些少数取得多数成果的顶尖研究者,同时也需要关注并提供更多的资源和机会给大多数研究者,以推动整个科研领域的发展。
然而,洛必达法则也需要进一步的研究和探讨,以更好地理解科研成果发表数量的形成机制。
(参考资料)洛必达法则详解

sec x
1
正解:
lim lim 1 x tan x x sin x
2
2
18
信息学院 罗捍东
4.2.3 其它型未定式
关键:将其它类型未定式化为洛必达法则 可解决的类型 ( 0 ),( ) .
0
1. 0 型
步骤:
0 0 0,
1
0
或
0
1
0
.
19
信息学院 罗捍东
例11: 求 lim x2e x . x
3. 1 ,00 ,0 型
步骤:
1
ln1
00
取对数
0 ln 0
0
0 ln
0 .
23
信息学院 罗捍东
1
例13: 求 lim x1 x . x1
( 1 )
e 1
1 ln x
解: lim x1x lim e1x
x1
x1
limln x x11 x
1
e
lim x
x1 1 e1 .
24
罗捍东
洛必达法则
型
f g 1 g1 f 1 g1 f
0型 0 型
00 ,1 , 0 型
令y f g 取对数
0型
f g f 1g
29
其它型的未定式还有: 0 , ,1 ,00,0
1
信息学院 罗捍东
4.2.1 0 型未定式 0
定理:洛必达法则 设:(1) lim f (x) lim g(x) 0;
xa
xa
(2) f (x), g(x)在a点的某去心邻域内可导,且g(x) 0;
(3) lim f (x) 存在(或); xa g(x)
洛必达法则的内容

洛必达法则
一、洛必达法则的基本形式
洛必达法则是微积分中的一个重要定理,用于解决0/0或无穷/无穷的极限问题。
其基本形式为:如果函数f(x)和g(x)满足以下条件:
1. f(x)和g(x)在某点a的某个邻域内可导;
2. g'(x)不等于0;
3. 存在一个实数点b,使得f(b)=0;
4. 存在一个实数点c,使得g(c)=0。
那么,当x趋近于a时,f'(x)/g'(x)的极限等于f(a)/g(a)。
二、洛必达法则的推导过程
洛必达法则的推导过程涉及到极限、导数和微分的知识。
其证明过程为:根据泰勒公式,f(x)和g(x)都可以展开为泰勒级数,然后通过比较系数,可以证明f'(x)/g'(x)的极限等于f(a)/g(a)。
三、洛必达法则的应用范围
洛必达法则可以应用于解决0/0或无穷/无穷的极限问题。
具体来说,当分母或分子为无穷大时,可以通过求导数的方法来解决极限问题。
此外,洛必达法则还可以应用于一些其他类型的极限问题,例如求定积分、不定积分等。
四、洛必达法则的局限性
虽然洛必达法则是微积分中的一个重要定理,但是它也存在一些局限性。
首先,洛必达法则只适用于0/0或无穷/无穷的极限问题,对于其他类型的极限问题无法应用。
其次,在使用洛必达法则时需要注意满足其前提条件,否则可能导致错误的结果。
此外,洛必达法则也无法应用于一些复杂的极限问题,例如涉及到多个变量或多个函数的极限问题。
因此,在使用洛必达法则时需要结合其他方法来解决复杂的极限问题。
叙述洛必达法则

洛必达法则(L'Hopital's Rule)是一种求极限的方法,应用于解决未定式极限问题。
它的核心思想是通过求导和求极限的过程,将未定式转化为可求极限的形式。
洛必达法则的应用范围广泛,是微积分学中的重要知识点。
洛必达法则的基本表述如下:设函数f(x)和F(x)在点a的邻域内可导,且当x趋近于a时,f(x)和F(x)都趋近于零,且F'(x)不为零。
如果当x趋近于a时,极限存在(或为无穷大),那么此时极限的结果为:lim (f(x) / F(x)) = lim (f'(x) / F'(x))换句话说,当两个函数在某一点附近趋近于零时,我们可以通过求导并求极限的方式,来确定这两个函数的比值的极限。
在使用洛必达法则时,需要注意以下几点:1. 检查是否满足使用条件:在使用洛必达法则之前,首先要确保给定的函数满足极限存在的条件,如0/0或∞/∞型未定式。
否则,滥用洛必达法则会产生错误。
2. 连续多次使用:洛必达法则可以连续多次应用,直到求出最终的极限。
每次应用洛必达法则时,都要确保满足使用条件。
3. 适用范围:洛必达法则适用于解决一系列未定式极限问题,但并非所有极限问题都可以用洛必达法则求解。
当极限形式不满足0/0或∞/∞时,洛必达法则不适用。
此时,需要寻求其他求解方法,如泰勒公式等。
4. 化简结果:在求解过程中,可能需要对结果进行化简,以得到最终的极限值。
5. 举例说明:例如,求极限:lim (sin x / x)我们可以先求导,得到:lim (sin'(x) / 1) = lim (cos x / x) 再求导,得到:lim (cos'(x) / 1) = lim (-\sin x / x^2) 继续求导,得到:lim (-\cos x / 2) = lim (-\sin'(x) / 2x) 最后,我们可以看到,当x趋近于0时,极限存在,且满足洛必达法则的条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x x
x
(
0 ) 0
e e lim 2 x 0 cos x
9
信息学院
x
罗捍东
例 5:
e cos x 求 lim x 0 x sin x
x
e sin x e cos x lim 解:lim x 0 x 0 sin x x cos x x sin x
x
e x cos x 11 lim 1 x 0 cos x cos x x sin x 11 0
lim ( x )
e
0
1 lim x x 0 1 2 x
e
x 0
e 1
25
信息学院
(cot x ) 例15: 求 lim
x 0 1 ln x
罗捍东
.
( )
0
解:取对数得 ln(cot x)
1 ln x
ln(cot x) lim x0 ln x
1 ln x
x lim 1, x0 cos x sin x
x
罗捍东
2
lim
x0
e 2C 1 2 B B 4C x Cx 6x
得
B 4C 2Cx lim x0 6
1 B A 0 2 B 2C 1 0 B 4C 0
8分
10分
14
解得
1 2 1 A , B ,C 3 3 6
x 1
1 1 x
lim x
lim e
x 1
e
ln x lim x 11 x
1
e
lim
x 1
x 1
e .
1
24
信息学院
x 0 求 lim x . 例14: (0 ) x 0
罗捍东
x ln x
解:
x 0
lim x lim e
x x 0
e
ln x lim x 0 1 x
ln sin ax lim ,( ) x 0 ln sin bx
其它型的未定式还有: 0
, ,1 ,0 ,
0
0
1
信息学院
罗捍东
0 4.2.1 型未定式 0 定理:洛必达法则 设:(1) lim f ( x) lim g ( x) 0;
xa xa
(2) f ( x), g ( x)在a点的某去心邻域内可导,且g ( x) 0;
步骤:
0 0 0 , 1 0
或 0 . 1 0
19
信息学院
罗捍东
2 x 求 lim x e . ( 0 ) 例11: x
解:
x e lim x 2 e x lim 2 x x x
( )
x e e lim lim . x 2 x x 2
(sec 2 x) 2 2 lim x0 (cos3 x ) 3 3
6
信息学院
例3: 求 lim 2
x
罗捍东
.
( 0 ) 0
arctan x 1 x
2 lim 解: x
arctan x 1 x
2
x lim 1 2 x 1 x
1 2 1 x lim x 1 2 x
2
sec x lim A 1 tan x x
2
正解:
sec x 1 lim lim 1 x tan x x sin x
2 2
18
信息学院
罗捍东
4.2.3 其它型未定式
关键:将其它类型未定式化为洛必达法则
可解决的类型 ( 0 ),( ) .
0
1. 0 型
a tan bx lim x0 b tan ax
2
ab sec bx lim 1 2 x0 ba sec ax
16
信息学院
罗捍东
tan x 求 lim . ( ) 例 9: tan 3 x x 2
tan x sec x lim 解: lim 2 x tan 3 x x 3sec 3 x
7
信息学院
罗捍东
f ( x ), g( x )
f ( x ) 如果 g( x ) 仍然是未定式极限,且
也满足罗必塔法则的条件,则可继续使用罗必塔法则。
即
f ( x) f ( x ) f ( x ) lim lim lim x a g ( x ) x a g( x ) x a g ( x )
2
2
17
信息学院
sec x 例10: 求 lim x tan x
2
罗捍东
sec x A 解: 设 lim x tan x
2
sec x tan x sec x tan x 1 A lim lim lim 2 tan x sec x x x A x sec x 2 2
.
8
信息学院
x x
罗捍东
( 0 ) 0
例4: 解:
e e 2x lim x 0 x sin x
x x e x e x 2 x e e 2 0 lim lim ( ) x 0 x sin x x 0 1 cos x 0
e e lim x 0 sin x
1 ln(cot x) ln(cot x) , ln x ln x 1 1 2 cot x sin x lim 1 x 0 x
lim(cot x )
x0
e .
26
1
信息学院
考研题欣赏 (2003年3,4)设
罗捍东
1 1 1 f ( x) , x [ ,1) . sin x (1 x) 2
2 2 2
1 cos 2 3 x 1 6 cos 3 x sin 3 x lim lim 2 3 x cos x 3 x 2 cos x sin x
2
2
6cos 6 x sin 6 x lim 3 lim x 2cos 2 x x sin 2 x
f ( x ) f ( x ) f (a ) f ( ) 则有 (在x与a之间) g( x ) g( x ) g(a ) g( )
当x a时, a ,
f ( ) f ( x ) A, lim A, lim a g( ) x a g( x )
x
20
信息学院
罗捍东
2. 型
步骤:
1 1 00 0 0 00
1 1 例12: 求 lim( ). x 0 sin x x
()
1 1 x sin x 0 ). lim 解: lim( ( ) x0 sin x x 0 x x sin x 0
15
信息学院
罗捍东
( )
ln sin ax , a, b 0. 例8:求 lim x0 ln sin bx
解:
1 a cos ax ln sin ax sin ax lim lim x0 ln sin bx x0 1 b cos bx sin bx
0 ( ) 0
1 Bx Cx 1 Ax o x
2 3
解: 根据题设和罗必达法则,由于
0 limห้องสมุดไป่ตู้
x0
e x 1 Bx Cx 2 1 Ax
3
2分
lim
x0
x x 2 e 1 B Bx 2Cx Cx A 3x
2
13
信息学院
4
信息学院
罗捍东
0 ( ) 0
x 3x 2
3
x3 3x 2 . 例1:求 lim 3 2 x 2 x x 2 x 8
3
解:
x 3x 2 lim 3 lim 2 x 2 x x 2 x 8 x 2 3 2 x x 2 x 8
1 cos x sin x lim lim 0 x0 sin x x cos x x0 cos x cos x x sin x
21
信息学院
有关考研题
罗捍东
1 x 1 2005(15) 求 lim x x0 x 1 e
2 1 cos x 2004(15) 求 lim 2 2 x 0 x sin x
2
1 x sin x 1 x 正解:lim lim x sin 1 0 0 x 0 sin x x 0 sin x x
2
11
信息学院
罗捍东
注意:洛必达法则是求未定式的一种有效方法,但 与其它求极限方法结合使用(特别是利用等价无穷 小量替换),效果更好。
利用等价 tan x x tan x x 解: lim 无穷小量 lim 2 3 x0 x tan x x0 x 替换
信息学院
罗捍东
第二节 洛必达法则
当 x a (或 x ) 时,如果函数f(x)和g(x)的极
f ( x) 限都为零或都趋于无穷大,则极限 lim g( x )
可能存在也可能不存在,通常称这类的极限为未定
0 式,简记为 或 。 0
tan x 0 ,( ) 例如:lim x 0 x 0
信息学院
4.2.2 型未定式
定理:洛必达法则
罗捍东
设:(1) lim f ( x) lim g( x) ;
x a x a
(2) f ( x),g( x)在a点的某去心邻域内可导, 且g( x) 0; f ( x) (3) lim 存在(或); xa g( x ) f ( x) f ( x) 那末 lim lim . xa g( x ) xa g( x )