液位自动控制系统设计
水箱液位自动控制系统设计

第一章水箱液位自动控制系统原理液位自动控制是通过控制投料阀来控制液位的高低,当传感器检测到液位设定值时,阀门关闭,防止物料溢出;当检测液位低于设定值时,阀门打开,使液位上升,从而达到控制液位的目的。
在制浆造纸工厂常见有两种方式的液位控制:常压容器和压力容器的液位控制,例如浆池和蒸汽闪蒸罐。
液位自动控制系统由液位变送器(或差压变送器)、电动执行机构和液位自动控制器构成。
根据用户需要也可采用控制泵启停或改变电机频率方式来进行液位控制。
结构简单,安装方便,操作简便直观,可以长期连续稳定在无人监控状态下运行。
应用范围在制浆造纸过程中涉及的所有池、罐、槽体液位自动控制。
图1.1中,是控制器的传递函数,是执行机构的传递函数,是测量变送器的传递函数,是被控对象的传递函数。
图5.1中,控制器,执行机构、测量变送器都属于自动化仪表,他们都是围绕被控对象工作的。
也就是说,一个过程控制的控制系统,是围绕被控现象而组成的,被控对象是控制系统的主体。
因此,对被控对象的动态特性进行深入了解是过程控制的一个重要任务。
只有深入了解被控对象的动态特性,了解他的内在规律,了解被控辩量在各种扰动下变化的情况,才能根据生产工艺的要求,为控制系统制定一个合理的动态性能指标,为控制系统的设计提供一个标准。
性能指标顶的偏低,可能会对产品的质量、产量造成影响。
性能指标顶的过高,可能会成不必要的投资和运行费用,甚至会影响到设备的寿命。
性能指标确定后,设计出合理的控制方案,也离不开对被控动态特性的了解。
不顾被控对象的特点,盲目进行设计,往往会导致设计的失败。
尤其是一些复杂控制方案的设计,不清楚被控对象的特点根本就无法进行设计。
有了正确的控制方案,控制系统中控制器,测量变送器、执行器等仪表的选择,必须已被控对象的特性为依据。
在控制系统组成后,合适的控制参数的确定及控制系统的调整,也完全依赖与对被控对象动态特性的了解。
由此可见,在控制工程中,了解被控制的对象是必须首先做好的一项工作。
基于PLC水箱液位控制系统毕业设计

基于PLC水箱液位控制系统毕业设计水箱液位控制系统是一种常见的自动化控制系统,通过控制水位的高低来实现水箱中水的供应与排放。
该系统常用于水处理、供水系统、工业生产等领域。
本篇毕业设计将基于可编程逻辑控制器(PLC)来设计一个水箱液位控制系统。
PLC作为控制器,能够实现对水位的监测、控制和保护。
首先,本设计将使用传感器来监测水箱的液位。
液位传感器将放置在水箱内部,在不同的液位位置测量水的高度。
传感器将通过模拟信号将液位信息传输给PLC。
PLC将读取并处理传感器的信号,得到水箱的液位信息。
其次,PLC将根据液位信息来控制水泵的运行。
当水箱的液位低于一定的阈值时,PLC将启动水泵,从水源处将水注入到水箱中。
当液位达到一定的高度时,PLC将关闭水泵,停止水的注入。
通过控制水泵的启动和停止,系统可以实现自动补水,从而保持水箱的水位在一个恰当的范围内。
此外,本系统还将具备一定的保护功能。
当水箱液位过高或过低时,PLC将触发报警装置,以便及时采取措施解决问题。
同时,系统将设置相应的安全控制,以防止水泵出现过载或短路等故障。
为了实现PLC控制系统的功能,本设计将使用PLC编程软件进行程序的编写和调试。
程序将根据液位传感器的输入信号,进行逻辑判断和控制指令的输出。
同时,本设计将与水泵、报警装置等硬件进行连接,以实现实际的控制功能。
最后,本设计将进行系统的仿真和调试。
通过模拟真实的液位变化情况,测试系统的控制性能和稳定性。
在确保系统正常运行的前提下,对系统进行各项性能指标的测试和评估。
通过该毕业设计的实施,我将能够掌握PLC水箱液位控制系统的原理和设计方法,提升自己在自动化控制领域的实践能力和工程应用能力。
同时,通过该设计的完成,也能为工业生产中的水箱液位控制问题提供一种可行的解决方案。
基于PLC的液位控制系统设计

基于PLC的液位控制系统设计液位控制系统是工业自动化中常见的一种控制系统,主要用于监测和控制液体或粉末在容器中的液位。
PLC(可编程逻辑控制器)是一种常用的自动化控制器,它通过编程逻辑和输入输出模块实现自动控制。
本文将基于PLC的液位控制系统进行设计和讨论。
首先,我们需要了解液位控制系统的基本原理。
液位控制系统主要由三个组成部分组成:传感器、控制器和执行器。
传感器用于监测液位高度,常用的传感器有浮球传感器、电容传感器和超声波传感器。
控制器根据传感器获得的液位信号,通过编程逻辑判断液位是否达到设定值,并根据结果控制执行器的开关状态。
执行器可以是电磁阀、泵或搅拌器,用于调节液位。
PLC作为控制器可以实现复杂的逻辑控制,并且具有可编程性和可扩展性。
下面是基于PLC的液位控制系统的设计步骤:第一步是确定系统需求和设计目标。
根据具体的液位控制需求,确定液位控制系统的功能要求和性能指标,例如需要实现液位的自动控制、报警功能和远程监控等。
然后确定设计目标,例如控制系统的稳定性、精度和可靠性。
第二步是选择适当的控制器和传感器。
根据设计目标和系统需求,选择适合的PLC控制器和液位传感器。
PLC控制器应具有足够的输入输出模块和计算能力,以满足液位控制系统的需求。
液位传感器的选择应考虑液体的性质、工作环境和控制精度等因素。
第三步是进行系统硬件设计。
根据选定的PLC控制器和传感器,设计系统的硬件连接和布置。
将传感器与PLC控制器连接,确保信号的稳定传输。
同时,还需要考虑系统的电气安全和防护措施。
第四步是进行PLC编程。
根据设计需求和目标,编写逻辑控制程序。
程序应能够实现液位的监测、判断和控制,同时具备保护和报警功能。
编程语言通常使用ladder diagram(梯形图),也可以使用其他编程语言如指令列表和函数图。
第五步是进行系统调试和优化。
完成PLC编程后,进行系统调试和优化。
对系统进行全面的测试,确保液位的检测和控制功能正常运行。
PLC水箱液位控制系统毕业设计

PLC水箱液位控制系统毕业设计PLC水箱液位控制系统是一种基于可编程逻辑控制器(PLC)的自动控制系统,用于监测和调节水箱中的液位。
这个系统可以应用于各种场景,比如工业生产中的水箱液位控制、建筑物的水池液位控制等。
在本篇文章中,将详细介绍PLC水箱液位控制系统的设计和实现。
首先,我们需要对PLC水箱液位控制系统的硬件进行设计。
其中包括传感器模块、执行器模块和PLC控制器。
传感器模块用于监测水箱中的液位,可以选择合适的液位传感器,如浮球开关、超声波传感器等。
执行器模块用于控制水箱中的液位,可以选择水泵或阀门等执行器。
PLC控制器用于接收传感器模块的信号,根据预设的控制策略来控制执行器模块的工作。
同时,还需要考虑电源模块、通信模块等其他辅助模块。
接下来,我们需要对PLC水箱液位控制系统的软件进行设计。
PLC控制器通常使用Ladder Diagram(梯形图)进行编程。
在本设计中,我们可以根据液位传感器的信号来控制执行器的开关。
当液位低于一定阈值时,PLC控制器可以启动水泵或打开阀门,以增加水箱中的液位。
当液位高于一定阈值时,PLC控制器可以停止水泵或关闭阀门,以减少水箱中的液位。
同时,我们还可以增加一些安全措施,如设置最大液位和最小液位报警,当液位超出范围时,PLC控制器可以发出警报信号或采取相应的措施。
在实际应用中,我们还可以通过人机界面(HMI)来对PLC水箱液位控制系统进行监控和操作。
通过HMI,我们可以实时查看水箱中的液位,修改控制策略,记录操作日志等。
同时,我们还可以将PLC水箱液位控制系统与上位机进行通信,实现远程监控和控制。
最后,我们需要对PLC水箱液位控制系统进行实验验证。
在实验中,我们可以模拟不同的液位情况,观察PLC控制器的响应和执行器的工作情况。
通过实验,我们可以测试系统的稳定性、精度和可靠性,并对系统进行优化和改进。
总结而言,PLC水箱液位控制系统是一种自动控制系统,用于监测和调节水箱中的液位。
基于PLC的液位控制系统设计

基于PLC的液位控制系统设计液位控制系统是一种自动控制系统,用于控制液体在容器中的液位。
PLC(可编程逻辑控制器)被广泛应用于液位控制系统中,因为它具有可编程性、易于安装和维护以及可靠性高的特点。
在本文中,我们将基于PLC设计一个液位控制系统。
首先,我们需要选择适合的PLC设备。
根据液位控制系统的规模和需求,我们可以选择不同型号和品牌的PLC,例如西门子、施耐德等。
一个PLC系统通常包括CPU、输入和输出模块、通信模块等组成部分。
根据液位控制系统的需求,我们可以选择适当的输入和输出模块来连接传感器和执行器。
接下来,我们将设计液位传感器和执行器的布置。
液位传感器用于检测液位的高度,并将信号传输给PLC系统。
常用的液位传感器包括浮球传感器、压力传感器等。
根据液位控制系统的需求,我们可以将传感器布置在不同的位置和高度。
执行器用于控制液位,例如开关泵来增加液位或者打开泄水阀来降低液位。
然后,我们需要设计PLC的逻辑控制程序。
PLC的逻辑控制程序决定了液位控制系统的工作方式。
我们可以使用PLC编程语言(如ladder diagram)来编写逻辑控制程序。
在程序中,我们可以定义液位的上下限,并根据实际液位与设定值之间的偏差来控制执行器的开关状态。
例如,当液位低于设定值时,PLC会启动泵来增加液位;当液位高于设定值时,PLC会打开泄水阀来降低液位。
最后,我们需要测试和调试液位控制系统。
在测试过程中,我们可以使用仿真工具来模拟真实情况,并验证PLC的逻辑控制程序是否正确。
如果发现问题,我们可以对逻辑控制程序进行修改或优化。
一旦测试通过,我们就可以将液位控制系统部署到实际环境中,并进行调试。
在调试过程中,我们需要确保PLC系统能够稳定地控制液位,并及时响应外部输入和输出信号。
总结起来,基于PLC的液位控制系统设计包括选择PLC设备、设计液位传感器和执行器布置、编写逻辑控制程序以及测试和调试系统等步骤。
通过合理设计和调试,PLC可以有效地控制液位,提高系统的自动化程度和稳定性。
基于PLC与组态的液位控制系统设计

基于PLC与组态的液位控制系统设计液位控制系统是工业自动化中的重要组成部分,在许多工业领域中都有广泛的应用。
本文将基于PLC(可编程逻辑控制器)与组态软件对液位控制系统进行设计。
首先,我们需要明确液位控制系统的基本原理。
液位控制系统主要通过监测液位传感器的信号,并根据设定的液位值进行控制,以实现液位的稳定控制。
在设计液位控制系统之前,我们需要进行系统的需求分析,包括液体的性质、液位范围、控制精度要求等。
接下来,我们可以选择适合的PLC型号,并搭配相应的组态软件。
PLC作为液位控制系统中的核心控制设备,负责接收和处理液位传感器的信号,并输出控制信号控制液位的变化。
组态软件负责图形化地配置PLC 的输入和输出,以及实现控制逻辑图的编程。
在液位控制系统的设计中,需要将液位传感器与PLC进行接线,并进行参数的配置。
液位传感器可以选择合适的类型,如浮球式、电容式或超声波式等,以满足实际应用的需求。
接线和参数配置的正确与否直接影响到液位控制系统的准确性和可靠性。
接下来,我们需要在组态软件中进行逻辑控制的编程。
根据系统的需求分析,我们可以设置液位的目标值、偏差范围,同时结合输出控制信号的方式(如开关量控制、模拟量控制等),设计相应的控制逻辑。
在组态软件中,我们可以使用逻辑语言来实现这些控制逻辑,如梯形图、功能块图等。
此外,还可以设置报警功能,当液位超过预设范围时,及时发出报警信号,保证系统的安全性。
完成逻辑控制的编程后,我们需要进行系统的调试与测试。
可以通过手动调节液位传感器的输入信号,观察PLC输出的控制信号是否满足预期要求,以及液位的变化是否稳定。
如果发现问题,可以对液位控制系统的参数和控制逻辑进行调整,直到满足实际应用需求。
最后,我们还可以根据实际应用的需求,对液位控制系统进行扩展和优化。
例如,可以增加远程监控和控制功能,通过网络连接,实现对液位控制系统的远程监控和操作。
此外,还可以根据不同的液位范围和控制精度要求,选择不同型号的液位传感器和PLC,以满足不同工业领域的应用需求。
液位自动控制系统方案

等级:课程设计课程名称电气控制与PLC课程设计课题名称液位自动控制系统设计与调试专业班级学号姓名指导老师电气信息学院课程设计任务书课题名称液位自动控制系统设计与调试姓名专业班级学号指导老师课程设计时间教研室意见审核人:一.课程设计的性质与目的本课程设计是自动化专业教学计划中不可缺少的一个综合性教学环节,是实现理论与实践相结合的重要手段。
它的主要目的是培养学生综合运用本课程所学知识和技能去分析和解决本课程围的一般工程技术问题,建立正确的设计思想,掌握工程设计的一般程序和方法。
通过课程设计使学生得到工程知识和工程技能的综合训练,获得应用本课程的知识和技术去解决工程实际问题的能力。
二. 课程设计的容1.根据控制对象的用途、基本结构、运动形式、工艺过程、工作环境和控制要求,确定控制方案。
2.绘制水箱液位系统的PLC I/O接线图和梯形图,写出指令程序清单。
3.选择电器元件,列出电器元件明细表。
4.上机调试程序。
5.编写设计说明书。
三. 课程设计的要求1.所选控制方案应合理,所设计的控制系统应能够满足控制对象的工艺要求,并且技术先进,安全可靠,操作方便。
2.所绘制的设计图纸符合国家标准局颁布的GB4728-84《电气图用图形符号》、GB6988-87《电气制图》和GB7159-87《电气技术中的文字符号制定通则》的有关规定。
3.所编写的设计说明书应语句通顺,用词准确,层次清楚,条理分明,重点突出,篇幅不少于7000字。
四.进度安排1.第一周星期一:布置课程设计任务,讲解设计思路和要求,查阅设计资料。
2.第一周星期二~星期四:详细了解搬运机械手的基本组成结构、工艺过程和控制要求。
确定控制方案。
配置电器元件,选择PLC型号。
绘制传送带A、B的拖动电机的控制线路原理图和搬运机械手控制系统的PLC I/O接线图。
设计PLC梯形图程序,列出指令程序清单。
3.第一周星期五:上机调试程序。
4.第二周星期一:指导编写设计说明书。
基于PLC的液位控制系统设计

毕业设计开题报告1. PID 简述简述 过程控制通常是指石油、化工、冶金、轻工、纺织、制药、建材等工业生产过程中的自动控制程中的自动控制,它是自动化技术的一个极其重要的方面。
本次毕业设计是基于PLC 的液位控制系统的设计,它的控制对象是水箱的液位,是过程控制中经常遇到热工参数。
本人在这次设计中主要负责控制策略——PID 算法的确定,就在次将PID 算法作个简要的介绍。
算法作个简要的介绍。
在生产过程自动控制的发展历程中在生产过程自动控制的发展历程中,PID ,PID 控制是历史最久、生命力最强的基本控制方式。
它简单实用制方式。
它简单实用,,易于实现易于实现,,适用范围广适用范围广,,鲁棒性好鲁棒性好,,在现今的工业过程中获得了广泛的应用广泛的应用..据统计据统计,,目前工业控制器中约有90%90%仍是仍是PID 控制器。
PID 控制器的设计及其参数整定一直是控制领域所关注的问题。
其设计和整定方法得到国内外广泛研究, 著名的如Ziegler-Nichols 法、基于内模控制的方法及基于误差的积分的优化方法。
基于误差的积分准则由于能较好地反映闭环系统的性能以及易于计算的原因基于误差的积分准则由于能较好地反映闭环系统的性能以及易于计算的原因,,在PID 优化设计中被广泛采用。
(1)在工业生产过程控制中,模拟量的模拟量的 PID (比例、比例、积分、积分、微分)调节是常见的一种控制方式,这是由于这是由于PID 调节不需要求出控制系统的数学模型,至今为止,很难求出许多控制对象准确的数学模型,对于这一类系统,使用使用PID 控制可以取得比较令人满意的效果,同时同时PID 调节器又具有典型的结构,可以根据被控对象的具体情况,采用各种PID 的变种,有较强的灵活性和适用性。
在模拟量的控制中,经常用到经常用到PID 运算来执行来执行PID 回路的功能,PID 回路指令使这一任务的编程和实现变得非常容易。
如果一个果一个 PID 回路的输出回路的输出M ( t)是时间的函数,则可以看作是比例项、积分项和微分项三部分之和(2),即:,即:dt de K M edt K e K t M C tc C *+++*=⎰00)( 式中式中 e ——偏差;——偏差;T i ——积分常数;——积分常数;T d ——微分常数;——微分常数;K c ——放大倍数(比例系数)——放大倍数(比例系数)M 0——偏差为零时的控制值,有积分环节存在,此项也可不加——偏差为零时的控制值,有积分环节存在,此项也可不加以上各量都是连续量,第一项为比例项,最后一项为微分项,中间两项为积分项。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章液位自动控制系统原理液位自动控制是通过控制投料阀来控制液位的高低,当传感器检测到液位设定值时,阀门关闭,防止物料溢出;当检测液位低于设定值时,阀门打开,使液位上升,从而达到控制液位的目的。
在制浆造纸工厂常见有两种方式的液位控制:常压容器和压力容器的液位控制,例如浆池和蒸汽闪蒸罐。
液位自动控制系统由液位变送器(或差压变送器)、电动执行机构和液位自动控制器构成。
根据用户需要也可采用控制泵启停或改变电机频率方式来进行液位控制。
结构简单,安装方便,操作简便直观,可以长期连续稳定在无人监控状态下运行。
应用范围在制浆造纸过程中涉及的所有池、罐、槽体液位自动控制。
图1.1中,是控制器的传递函数,是执行机构的传递函数,是测量变送器的传递函数,是被控对象的传递函数。
图5.1中,控制器,执行机构、测量变送器都属于自动化仪表,他们都是围绕被控对象工作的。
也就是说,一个过程控制的控制系统,是围绕被控现象而组成的,被控对象是控制系统的主体。
因此,对被控对象的动态特性进行深入了解是过程控制的一个重要任务。
只有深入了解被控对象的动态特性,了解他的内在规律,了解被控辩量在各种扰动下变化的情况,才能根据生产工艺的要求,为控制系统制定一个合理的动态性能指标,为控制系统的设计提供一个标准。
性能指标顶的偏低,可能会对产品的质量、产量造成影响。
性能指标顶的过高,可能会成不必要的投资和运行费用,甚至会影响到设备的寿命。
性能指标确定后,设计出合理的控制方案,也离不开对被控动态特性的了解。
不顾被控对象的特点,盲目进行设计,往往会导致设计的失败。
尤其是一些复杂控制方案的设计,不清楚被控对象的特点根本就无法进行设计。
有了正确的控制方案,控制系统中控制器,测量变送器、执行器等仪表的选择,必须已被控对象的特性为依据。
在控制系统组成后,合适的控制参数的确定及控制系统的调整,也完全依赖与对被控对象动态特性的了解。
由此可见,在控制工程中,了解被控制的对象是必须首先做好的一项工作。
过程控制的被控对象设计的范围很广。
被控对象不一定是指一个具体的设备,不少情况下被控对象是指一个过程。
有些过程可能涉及好几种设备,而在有些设备内部可能包括了几个过程。
过程控制被控对象的内在机理较为复杂,由简单过程,又存在严重非线性的过程,有多变量过程,有些被控对象的特性随时间或工作条件而变化。
对被控对象动态特性的了解,一种方法是通过分析被控对象的工作机理,建立被控对象的数学模型。
但由于连续生产过程的复杂性,完全从机理上揭示其内在规律,获得精确的数学模型还有较大的困难。
另一种方法是工程上经常使用的方法,它采用实验法来获得被控对象的数学模型。
这种方法通过测量被控对象的阶跃相应曲线(称为飞升曲线),近似确定被控对象的数学模型,研究被控对象的动态特性。
第二章系统元件的选择2.1 有自平衡能力的单容元件如果被控对象在扰动作用下偏离了原来的平衡状态,在没有外部干预的情况下(指没有自动控制或人工控制参与),被控变量依靠被控对象内部的反馈机理,能自发达到新的平衡状态,我们称这类对象是有自平衡能力的被控对象。
具有自平衡能力的单容对象的传递函数为(2.1)这是个一阶惯性环节。
描述这类对象的参数是时间常数T和放大系数K。
图2.1 单容水箱图2.1是单容水箱的示意图。
我们已经推导过水箱的传递函数为其中T=RC,C为水箱的横截面积,R为输出管道阀门的阻力。
T称为水箱的时间常数。
K称为水箱的放大系数。
一阶系统的特性我们已经在时域分析中进行了详细的讨论,所有结论都适用于单容对象。
作为过程控制的被控对象,单容对象的时间常数比较大。
2.2 无自平衡能力的单容元件图2.2单容积分水箱图2.2也是一个单容水箱。
不同的是水箱的出口侧安装了一台水泵,这样一来,水箱的流出水量就与水位无关,而是保持不变,即流出量的变化量。
在静态下,流入水箱的流量与水泵的排水量相同都为Q,水箱的水位H保持不变。
在流入量有一个增量时,静态平衡被破坏,但流出量并不变化,水箱的水位变化规律为式中C为水箱的横截面积。
对上式两端求取拉普拉斯变换,可得水箱的传递函数:(2.2)这是一个积分环节。
它的单位阶跃响应为图2.3 两种水箱变化的比较(a)单容积分水箱(b)有自平衡能力的单容水箱图2.3(a)是水位变化的曲线。
为了比较,我们把具有惯性环节特性的水箱在单位阶跃输入下的水位响应曲线也画出来,如图2.3(b)所示。
很明显,具有惯性环节特性的单容水箱,在输入作用下,水位经过一个动态过程后,可以重新达到一个新的稳定状态。
而具有积分环节的水箱在受到同样的扰动之后,水位则无限地上升,永远不会达到一个新的稳定状态。
我们称这种水箱为单容水箱。
具有积分环节特性的单容对象的传递函数可以表示为(2.3)式中称为飞升速度。
其单位阶跃响应为(2.4)这是一条直线方程,如图2.3(a)所示。
是直线的斜率。
式(2-4)说明,当被控对象原来的平衡状态被扰动作用破坏后,如果不依靠自动控制或人工控制的外来作用,被控变量将一直变化下去,不可能达到新的平衡状态。
我们称这类对象为无自平衡能力的对象。
2.3单容对象的特性参数被控对象有无自平衡能力,是被控对象本身固有的特性。
图5—5给出了两类水箱的方框图。
图5-5(a)是有自平衡能力的单容水箱,从方框图中可以看出,水箱的水位既与流入量有关,也受流出量的制约,在被控对象内部形成了一个负反馈机制。
当流入量增大时,将引起水位的上升。
水位上升的结果,流出量就会增加。
流出量的增大又限制了水位的进一步上升。
经过一个动态过程后,总能重新找到一个平衡点,使流入量与流出量相等,水位不再变化。
图5-5(b)是无自平衡能力的单容水箱,在其内部不存在负反馈机制,水位只与流量有关。
具有自平衡能力的被控对象,本身对扰动有一定的克服能力,控制性能较好。
而无自平衡能力的被控对象,其传递函数的极点位于虚轴上,是不稳定的。
被控变量若要按要求的规律变化,必须完全依赖于对象外部的控制系统。
图5.5 两种类型的单容水箱(a)有自平衡能力(b)无自平衡能力我们曾经提到,一阶系统是含有一个存贮元件的系统。
本节中我们看到,有自平衡能力无自平衡能力的对象都含有存贮元件,为什么表现出不同的特性呢?上面,我们就其内部机理进行分析。
现在我们来看表征其特性的参数的异同描述存贮元件存贮能力的参数称为对象的容量系数。
容量系数可定义为C=被控对象储存的物质或能量的变化量/输出的变化量容量系数对不同的被控对象有不同的物理意义,如水箱的横截面积,电容器的电容量。
热力系统得热容量等。
在我们推导系统或环节的传递函数时,经常遇到T 称为系统或环节的时间常数,它是系统或环节惯性大小的量度。
式中的R称为阻力系数。
如电路的电阻,流体流动的液阻,传热过程的热阻等。
被控对象的容量系数,表示了被控对象抵抗扰动的能力,如水箱的横截面积大,同样流入量下,水位上升得就慢。
电路的电容量大,在同样充电电流下,电压上升得就慢。
惯性环节的惯性,其根本原因就是因为它具有存贮能力。
但这并不是决定惯性大小的唯一因素。
还有另一个因素就是阻力系数。
阻力系数是对流入存贮元件净流入量的制约。
在R-C充电电路里,它限制了流入电容器的电流,在单容水箱中,它限制了水箱的净进水量。
惯性环节因为其具备了自平衡能力,在其动态参数上,用时间常数来表示,而单容积分环节则不存在阻力系数,只用容量系数就可以表征其特性。
描述有自平衡能力单容被控对象的参数有两个:放大系数K和时间常数T,称为被控对象的特性参数。
放大系数K表示输入信号通过被控对象后稳态输出是输入的K倍。
对于同样的输入信号,放大系数大,对应的输出信号就大。
K表示了被控对象的稳态放大能力,是被控对象的稳态参数。
T是描述被控对象惯性大小的参数,时间常数T越大,被控对象在输入作用下的输出变化得越慢。
T是单容被控对象的动态参数。
无自平衡能力的被控对象在输入作用下不会达到新的稳定状态,描述其性能的参数只有一个动态参数:飞升速度。
第三章控制器参数的整定3.1 参数的确定控制器参数的整定,对PID控制规律来说,就是恰当选择比例度(或比例放大系数)、积分时间常数和微分时间常数的值。
控制器参数整定的方法有两类,一类是理论计算法,一类是工程整定法.已知被控对象较准确的数学模型,可以应用理论计算法。
用传统的时域法、频率法、根轨迹法都可以进行整定,利用计算机进行参数整定和优化的方法也很多。
往往由于数学模型的原因,理论计算得到的数据精度不高,但它却可以为工程整定法提供指导。
工程整定法易于掌握,是比较实用的方法。
常用的工程整定法有稳定边界法、衰减曲线法、响应曲线法等。
稳定边界法又称为临界比例度法。
具体过程是,先将控制器变为比例控制器,逐渐减小比例带,直到出现等幅振荡。
这是的比例度称为临界比例度,记为。
记下两个波峰相距的时间(临界振荡周期),根据和,按表3.1 进行计算。
表3.1 稳定边界法计算公式表(衰减率)控制规律比例度(%)积分时间(min) 微分时间(min)衰减曲线法。
衰减曲线法是使系统产生衰减振荡,根据衰减振荡参数来确定控制器参数。
工程上认为,衰减率(衰减比为4:1)时,系统的动态过程较适宜。
因此,一般都采用4:1衰减曲线来进行整定。
具体过程是:先将控制器变成比例控制器,比例度取较大的值,给定值为阶跃函数,观察曲线的衰减情况。
然后逐渐减小比例度,直到衰减比为 4:1,此时的比例度为,衰减周期为,如图5.34所示图3.1 4:1衰减曲线根据和,按表 3.1进行计算。
表3.2 衰减曲线法计算表控制规律比例度(%)积分时间(min) 微分时间(min)响应曲线法与以上两种方法不同。
以上两种方法都是在闭环系统下进行的,而响应曲线法则要测出系统的开环阶跃响应。
把控制系统从控制器输出点断开。
在调节阀上加一个阶跃输入,测量变送器的输出作为响应曲线。
响应曲线一般的形式如图 3.2所示。
根据响应曲线可近似求出如下传递函数图3.2 系统的开环阶跃响应根据求出的K,T和值,按表3.3计算。
表3.3 响应曲线计算表(衰减率)被控对象控制规律3.2 电动机的数学模型直流电动机的数学模型。
直流电动机可以在较宽的速度范围和负载范围内得到连续和准确地控制,因此在控制工程中应用非常广泛。
直流电动机产生的力矩与磁通和电枢电流成正比,通过改变电枢电流或改变激磁电流都可以对电流电机的力矩和转速进行控制。
在这种控制方式中,激磁电流恒定,控制电压加在电枢上,这是一种普遍采用的控制方式。
设为输入的控制电压电枢电流为电机产生的主动力矩为电机轴的角速度为电机的电感为电枢导数的电阻为电枢转动中产生的反电势为电机和负载的转动惯量根据电路的克希霍夫定理整理后式中:称为直流电动机的电气时间常数;称为直流电动机的机电时间常数;,为比例系数。